
Chinmay Nirkhe | CSE 421 Winter 2026

Lecture 6
More greedy algorithms and minimum spanning trees

1

Previously in CSE 421…

2

Dijkstra’s algorithm

• Initialize (“parent” of is undefined) for all .

• Set

• Create priority queue and for each

• While isn’t empty, pop minimum key-element from queue

• For each neighbor of , check if

• If so, , and

• Return for distance and parent functions.

d(v) ← ∞, p(v) ← ⊥ v v ≠ s

d(s) ← 0, p(s) ← root

Q insert(Q, key = d(v), v) v ∈ V

Q u

v u d(u) + w(u, v) < d(v)

d(v) ← d(u) + w(u, v), p(v) ← u
setkey(Q, key = d(v), v)

d, p

3

Today

4

Minimizing lateness

• A new scheduling problem. There is a single resource but instead of start and finish times, each
job has

• A time requirement which must be scheduled contiguously

• A target deadline by which the request is ideally finished

• Minimum start time is 0.

• Each item is graded a lateness: where is it’s end time

• Total lateness is defined as the max lateness:

• Goal: Find a scheduling that minimizes the maximum lateness .

i

τi

di

ℓi := max{0, ti − di} ti

L = max
i=1,…,n

ℓi .

L

5

Example minimizing lateness problem

6

Finding the right greedy strategy

• Greedy template suggests finding a strategy and seeing if there are any
glaring counterexamples.

• Shortest processing time. Sort the jobs according to and select in
order.

• Earliest deadline first. Sort according to and select in order.

• Smallest slack. Sort according to slack, , and select in order.

τi

di

di − τi

7

Counterexamples
Shortest processing time

• Sort the jobs according to and select in order.τi

8

Counterexamples
Smallest slack

• Sort according to slack, , and select in order.di − τi

9

Earliest deadline first (EDF)

• Algorithm:

• Sort deadlines in increasing order .

• Set .

• For to

• Assign job to run in interval. . Increment

d1 ≤ d2 ≤ … ≤ dn

T ← 0

i ← 1 n

i (T, T + τi) T ← T + τi .

10

Example EDF schedule

11

Exchange argument for optimality

• If for any solution there exists a modification that modifies solution but its value is at
least as good as the original, then wlog optimal solution has modification

• Consider a solution with “gaps” between jobs  
 
 
 

• Then a “gapless” solution by shifting every job earlier is just as good

• Proof: The new for every job is at most . And is monotonic in . So, the new
loss is at most .

t′￼i ti ℓi ti
L′￼ L

12

The EDF Schedule

• By construction, the EDF schedule is gapless

• This doesn’t alone prove optimality

• Property of EDF: No inversions in EDF schedule.

• An inversion is if job is before job but .

• An inversion is adjacent if it occurs between adjacent jobs.

• Exchange principle: If a schedule has an adjacent inversion, flipping the
adjacent inversion yields a schedule of shorter lateness.

i j di > dj

13

The EDF Schedule

• Property of EDF: No inversions in EDF schedule.

• An inversion is if job is before job but .

• An inversion is adjacent if it occurs between adjacent jobs.

• Exchange principle: If a schedule has an adjacent inversion, flipping the
adjacent inversion yields a schedule of shorter max lateness.

• Proof:

i j di > dj

14

The EDF Schedule

• Property of EDF: No inversions in EDF schedule.

• An inversion is if job is before job but .

• An inversion is adjacent if it occurs between adjacent jobs.

• Exchange principle: If a schedule has an adjacent inversion, flipping the
adjacent inversion yields a schedule of shorter max lateness.

• Proof:

i j di > dj

15

The EDF Schedule

• Property of EDF: No inversions in EDF schedule.

• An inversion is if job is before job but .

• An inversion is adjacent if it occurs between adjacent jobs.

• Exchange principle: If a schedule has an adjacent inversion, flipping the
adjacent inversion yields a schedule of shorter max lateness.

• Proof:

i j di > dj

16

Inversion removal

• Lemma (exercise): If a schedule has an inversion, then it must also have an
adjacent inversion

• Hint: Prove by induction, that if is an inversion for but is not an
inversion for , then is an adjacent inversion

• Exchange principle lets us clean up all the adjacent inversions

• “Gapless” and “inversion” exchange principles yield a gapless schedule with no
inversions

• This is precisely, the earliest deadline first (EDF) schedule up to events of equal
deadline. All such schedules have same lateness. Thus, it is optimal

(i, j) i < j (i, j′￼)
i < j′￼ < j (j − 1,j)

17

Maximizing bipartiteness

• We saw how to verify if a graph is bipartite or not using a BFS algorithm

• We could also come up with a “measure of bipartiteness”

•

• For each possible coloring , measure how many edges are colored
“correctly”

• The is the max number of edges colored correctly over
all colorings

• Deciding if or can be done by the BFS algorithm

• Is there an algorithm for computing in general?

maxcut(G) = max
C:V→{0,1} ∑

(u,v)∈E

1{C(u)≠C(v)}

C

maxcut(G)

maxcut(G) = m ≠ m

maxcut(G)

18

Why is it called MaxCut?

• The fn. partitions the vertices in two sets
(yellow and blue).

• A partition of the vertices into two sets is also called
a cut.

• We say that an edge crosses the cut if and
.

• counts the

maximum number of edges that cross any cut.

• Computing “bipartiteness” is equivalent to computing the
max cut.

C : V → {0,1}

(S, T)

(u, v) u ∈ S
v ∈ T

maxcut(G) = max
C:V→{0,1} ∑

(u,v)∈E

1{C(u)≠C(v)}

19

A proof that Max Cut is always ≥ m/2

• Choose uniformly randomly and independently.

• Then for any edge , let be the event that crosses the cut.

• Since and are chosen uniformly randomly, .

• By linearity of expectation, .

• A random cut crosses edges. Therefore, there exists a cut that crosses
 edges and .

C : V → {0,1}

(u, v) = e ∈ E Xe e

C(u) C(v) 𝔼Xe = 1/2

𝔼∑
e∈E

Xe = ∑
e∈E

𝔼Xe =
m
2

C m/2
≥ m/2 m/2 ≤ maxcut(G) ≤ m

20

Finding a cut crossing edges≥ m/2

• We know a cut exists crossing
edges. Can we find it efficiently?

• Let’s use a greedy algorithm.

• Algorithm overview: Color the first vertex
as 0 (yellow). Then, for every future vertex
, if has more 0 (yellow) neighbors than

1’s (blues), assign it the color 1 (blue),
otherwise assign it 0 (yellow).

≥ m/2

v v

21

Finding a cut crossing edges≥ m/2

• We know a cut exists crossing
edges. Can we find it efficiently?

• Let’s use a greedy algorithm.

• Algorithm overview: Color the first vertex
as 0 (yellow). Then, for every future vertex
, if has more 0 (yellow) neighbors than

1’s (blues), assign it the color 1 (blue),
otherwise assign it 0 (yellow).

≥ m/2

v v

22

Finding a cut crossing edges≥ m/2

• We know a cut exists crossing
edges. Can we find it efficiently?

• Let’s use a greedy algorithm.

• Algorithm overview: Color the first vertex
as 0 (yellow). Then, for every future vertex
, if has more 0 (yellow) neighbors than

1’s (blues), assign it the color 1 (blue),
otherwise assign it 0 (yellow).

≥ m/2

v v

23

Finding a cut crossing edges≥ m/2

• We know a cut exists crossing
edges. Can we find it efficiently?

• Let’s use a greedy algorithm.

• Algorithm overview: Color the first vertex
as 0 (yellow). Then, for every future vertex
, if has more 0 (yellow) neighbors than

1’s (blues), assign it the color 1 (blue),
otherwise assign it 0 (yellow).

≥ m/2

v v

24

Finding a cut crossing edges≥ m/2

• We know a cut exists crossing
edges. Can we find it efficiently?

• Let’s use a greedy algorithm.

• Algorithm overview: Color the first vertex
as 0 (yellow). Then, for every future vertex
, if has more 0 (yellow) neighbors than

1’s (blues), assign it the color 1 (blue),
otherwise assign it 0 (yellow).

≥ m/2

v v

25

Finding a cut crossing edges≥ m/2

• We know a cut exists crossing
edges. Can we find it efficiently?

• Let’s use a greedy algorithm.

• Algorithm overview: Color the first vertex
as 0 (yellow). Then, for every future vertex
, if has more 0 (yellow) neighbors than

1’s (blues), assign it the color 1 (blue),
otherwise assign it 0 (yellow).

≥ m/2

v v

26

Finding a cut crossing edges≥ m/2

• We know a cut exists crossing
edges. Can we find it efficiently?

• Let’s use a greedy algorithm.

• Algorithm overview: Color the first vertex
as 0 (yellow). Then, for every future vertex
, if has more 0 (yellow) neighbors than

1’s (blues), assign it the color 1 (blue),
otherwise assign it 0 (yellow).

≥ m/2

v v

27

Finding a cut crossing edges≥ m/2

• We know a cut exists crossing
edges. Can we find it efficiently?

• Let’s use a greedy algorithm.

• Algorithm overview: Color the first vertex
as 0 (yellow). Then, for every future vertex
, if has more 0 (yellow) neighbors than

1’s (blues), assign it the color 1 (blue),
otherwise assign it 0 (yellow).

≥ m/2

v v

28

Finding a cut crossing edges≥ m/2

• We know a cut exists crossing
edges. Can we find it efficiently?

• Let’s use a greedy algorithm.

• Algorithm overview: Color the first vertex
as 0 (yellow). Then, for every future vertex
, if has more 0 (yellow) neighbors than

1’s (blues), assign it the color 1 (blue),
otherwise assign it 0 (yellow).

≥ m/2

v v

29

Finding a cut crossing edges≥ m/2

• We know a cut exists crossing
edges. Can we find it efficiently?

• Let’s use a greedy algorithm.

• Algorithm overview: Color the first vertex
as 0 (yellow). Then, for every future vertex
, if has more 0 (yellow) neighbors than

1’s (blues), assign it the color 1 (blue),
otherwise assign it 0 (yellow).

≥ m/2

v v

30

Greedy algorithm can be suboptimal

• The greedy algorithm can be suboptimal
and fail to find the max cut.

• One can design examples where it fails.

• Consider the following graph on
vertices explored in the order that the
vertices are numbered.

2n

31

Greedy algorithm can be suboptimal

• The greedy algorithm can be suboptimal
and fail to find the max cut.

• One can design examples where it fails.

• Consider the following graph on
vertices explored in the order that the
vertices are numbered.

• The left vertices have alternating colors.

2n

32

Greedy algorithm can be suboptimal

• The greedy algorithm can be suboptimal and fail to find the max
cut.

• One can design examples where it fails.

• Consider the following graph on vertices explored in the
order that the vertices are numbered.

• The left vertices have alternating colors.

• Right vertices are all yellow.

• Greedy cut of the graph as edges crossing cut.
Optimal cut has edges crossing cut.

• So as .

2n

n2/2 + (n − 1)
n2

|greedy cut |
maxcut(G)

=
n2

2 + (n − 1)

n2
→

1
2

n → ∞

33

Proof of greedy algorithm optimality

• Lemma: The greedy algorithm always produces a cut crossing
edges.

• Proof:

• Consider the set of edges used to determine the color of vertex .
By choosing the color of to be the opposite of the majority of
neighbors, at least half of the edges of cross the greedy cut.

• Every edge is in exactly one set where is the later of its two
vertices to be assigned a color.

• Since and at least half of the edges of cross the greedy

cut, then at least half the edges of the cross the greedy cut.

≥ m/2

Ev v
v

Ev

Ev v

E = ⨆
v∈V

Ev Ev

E

34

Proof of greedy algorithm optimality

• Lemma: The greedy algorithm always produces a cut crossing
edges.

• Proof:

• Consider the set of edges used to determine the color of vertex .
By choosing the color of to be the opposite of the majority of
neighbors, at least half of the edges of cross the greedy cut.

• Every edge is in exactly one set where is the later of its two
vertices to be assigned a color.

• Since and at least half of the edges of cross the greedy

cut, then at least half the edges of the cross the greedy cut.

≥ m/2

Ev v
v

Ev

Ev v

E = ⨆
v∈V

Ev Ev

E

35

NP-completeness

• Max Cut is also a -complete problem.

• We strongly do not believe there is an efficient algorithm for Max Cut.

• The greedy algorithm always produces a factor of the optimal sized cut
but cannot do better than this (due to our example).

• Constitutes an approximation algorithm for the Max Cut problem.

• [Goemans-Williamson]: Best known efficient approximation algorithm achieves
a factor.

• [UGC Conjecture]: Believed to be inefficient to approximate past this barrier

𝖭𝖯

≥ 1/2

∼ 0.878

36

