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Lecture 6
More greedy algorithms and minimum spanning trees

1



Previously in CSE 421…
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Dijkstra’s algorithm

• Initialize (“parent” of  is undefined) for all .


• Set 


• Create priority queue  and  for each 


• While  isn’t empty, pop minimum key-element  from queue


• For each neighbor  of , check if 


• If so, , and 



• Return  for distance and parent functions.

d(v) ← ∞, p(v) ← ⊥ v v ≠ s

d(s) ← 0, p(s) ← root

Q insert(Q, key = d(v), v) v ∈ V

Q u

v u d(u) + w(u, v) < d(v)

d(v) ← d(u) + w(u, v), p(v) ← u
setkey(Q, key = d(v), v)

d, p
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Today
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Minimizing lateness

• A new scheduling problem. There is a single resource but instead of start and finish times, each 
job  has


• A time requirement  which must be scheduled contiguously


• A target deadline  by which the request is ideally finished


• Minimum start time is 0.


• Each item is graded a lateness:  where  is it’s end time


• Total lateness is defined as the max lateness: 


• Goal: Find a scheduling that minimizes the maximum lateness .

i

τi

di

ℓi := max{0, ti − di} ti

L = max
i=1,…,n

ℓi .

L
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Example minimizing lateness problem
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Finding the right greedy strategy

• Greedy template suggests finding a strategy and seeing if there are any 
glaring counterexamples.


• Shortest processing time. Sort the jobs according to  and select in 
order.


• Earliest deadline first. Sort according to  and select in order.


• Smallest slack. Sort according to slack, , and select in order.

τi

di

di − τi
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Counterexamples
Shortest processing time

• Sort the jobs according to  and select in order.τi

8



Counterexamples
Smallest slack

• Sort according to slack, , and select in order.di − τi
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Earliest deadline first (EDF)

• Algorithm: 


• Sort deadlines in increasing order .


• Set .


• For  to 


• Assign job  to run in interval. . Increment 

d1 ≤ d2 ≤ … ≤ dn

T ← 0

i ← 1 n

i (T, T + τi) T ← T + τi .
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Example EDF schedule
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Exchange argument for optimality

• If for any solution there exists a modification that modifies solution but its value is at 
least as good as the original, then wlog optimal solution has modification


• Consider a solution with “gaps” between jobs  
 
 
 

• Then a “gapless” solution by shifting every job earlier is just as good


• Proof: The new  for every job is at most . And  is monotonic in . So, the new 
loss  is at most .

t′￼i ti ℓi ti
L′￼ L
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The EDF Schedule

• By construction, the EDF schedule is gapless


• This doesn’t alone prove optimality


• Property of EDF: No inversions in EDF schedule.


• An inversion is if job  is before job  but .


• An inversion is adjacent if it occurs between adjacent jobs.


• Exchange principle: If a schedule has an adjacent inversion, flipping the 
adjacent inversion yields a schedule of shorter lateness.

i j di > dj
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Inversion removal

• Lemma (exercise): If a schedule has an inversion, then it must also have an 
adjacent inversion 

• Hint: Prove by induction, that if  is an inversion for  but  is not an 
inversion for , then  is an adjacent inversion 

• Exchange principle lets us clean up all the adjacent inversions


• “Gapless” and “inversion” exchange principles yield a gapless schedule with no 
inversions


• This is precisely, the earliest deadline first (EDF) schedule up to events of equal 
deadline. All such schedules have same lateness. Thus, it is optimal

(i, j) i < j (i, j′￼)
i < j′￼ < j ( j − 1,j)
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Maximizing bipartiteness

• We saw how to verify if a graph is bipartite or not using a BFS algorithm


• We could also come up with a “measure of bipartiteness”


• 


• For each possible coloring , measure how many edges are colored 
“correctly”


• The  is the max number of edges colored correctly over 
all colorings


• Deciding if  or  can be done by the BFS algorithm


• Is there an algorithm for computing  in general?

maxcut(G) = max
C:V→{0,1} ∑

(u,v)∈E

1{C(u)≠C(v)}

C

maxcut(G)

maxcut(G) = m ≠ m

maxcut(G)
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Why is it called MaxCut?

• The fn.  partitions the vertices in two sets 
(yellow and blue).


• A partition of the vertices into two sets  is also called 
a cut.


• We say that an edge  crosses the cut if  and 
.


•  counts the 

maximum number of edges that cross any cut.


• Computing “bipartiteness” is equivalent to computing the 
max cut.

C : V → {0,1}

(S, T)

(u, v) u ∈ S
v ∈ T

maxcut(G) = max
C:V→{0,1} ∑

(u,v)∈E

1{C(u)≠C(v)}
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A proof that Max Cut is always ≥ m/2

• Choose  uniformly randomly and independently. 


• Then for any edge , let  be the event that  crosses the cut.


• Since  and  are chosen uniformly randomly, .


• By linearity of expectation, .


• A random cut  crosses  edges. Therefore, there exists a cut that crosses 
 edges and .

C : V → {0,1}

(u, v) = e ∈ E Xe e

C(u) C(v) 𝔼Xe = 1/2

𝔼∑
e∈E

Xe = ∑
e∈E

𝔼Xe =
m
2

C m/2
≥ m/2 m/2 ≤ maxcut(G) ≤ m
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Finding a cut crossing  edges≥ m/2

• We know a cut exists crossing  
edges. Can we find it efficiently?


• Let’s use a greedy algorithm.


• Algorithm overview: Color the first vertex 
as 0 (yellow). Then, for every future vertex 
, if  has more 0 (yellow) neighbors than 

1’s (blues), assign it the color 1 (blue), 
otherwise assign it 0 (yellow).

≥ m/2

v v
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Greedy algorithm can be suboptimal

• The greedy algorithm can be suboptimal 
and fail to find the max cut.


• One can design examples where it fails.


• Consider the following graph on  
vertices explored in the order that the 
vertices are numbered.

2n
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Greedy algorithm can be suboptimal

• The greedy algorithm can be suboptimal and fail to find the max 
cut.


• One can design examples where it fails.


• Consider the following graph on  vertices explored in the 
order that the vertices are numbered.


• The left vertices have alternating colors.


• Right vertices are all yellow.


• Greedy cut of the graph as  edges crossing cut. 
Optimal cut has  edges crossing cut.


• So  as .

2n

n2/2 + (n − 1)
n2

|greedy cut |
maxcut(G)

=
n2

2 + (n − 1)

n2
→

1
2

n → ∞
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Proof of greedy algorithm optimality

• Lemma: The greedy algorithm always produces a cut crossing  
edges.


• Proof:


• Consider the set of edges  used to determine the color of vertex . 
By choosing the color of  to be the opposite of the majority of 
neighbors, at least half of the edges of  cross the greedy cut.


• Every edge is in exactly one set  where  is the later of its two 
vertices to be assigned a color.


• Since  and at least half of the edges of  cross the greedy 

cut, then at least half the edges of the  cross the greedy cut.

≥ m/2

Ev v
v

Ev

Ev v

E = ⨆
v∈V

Ev Ev

E
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NP-completeness

• Max Cut is also a -complete problem.


• We strongly do not believe there is an efficient algorithm for Max Cut.


• The greedy algorithm always produces a  factor of the optimal sized cut 
but cannot do better than this (due to our example).


• Constitutes an approximation algorithm for the Max Cut problem.


• [Goemans-Williamson]: Best known efficient approximation algorithm achieves 
a  factor.


• [UGC Conjecture]: Believed to be inefficient to approximate past this barrier

𝖭𝖯

≥ 1/2

∼ 0.878
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