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Previously in CSE 421...



Dijkstra’s algorithm

o Initialize d(v) <« oo, p(v) « L (“parent” of v is undefined) for all v # .
e Setd(s) « 0, p(s) « root

» Create priority queue Q and insert(Q, key = d(v),v) foreachv € V

« While Q isn’t empty, pop minimum key-element u from queue

» For each neighbor v of u, check if d(u) + w(u,v) < d(v) uPDWZ ?&ﬂ’-vd’ C“E %

e If so, d(v) «— d(u) + w(u, v), p(v) «— U, and +o be L.
setkey(Q, key = d(v), v) -

 Return d, p for distance and parent functions.



Today



Minimizing lateness

* A new scheduling problem. There is a single resource but instead of start and finish times, each
job 1 has

 Atime requirement 7; which must be scheduled contiguously

» A target deadline d; by which the request is ideally finished

e Minimum start time is O.

» Each item is graded a lateness: where 7; is it’s end time

UC\A A V\‘\“H/I V]
L= max 7. « CUC uj chre )

i=1,....n L ) 2 @L |

« Goal: Find a scheduling that minimizes the maximum lateness L. 1z [ WL

. lotal [ateness is defined as the max lateness:
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Example minimizing lateness problem
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) ) )

d3:9 dz=8 d6=15 d1=6 d5=14 d4=9
0 1 > 3 a4 5 6 7 8 9 10 1 12 13 14 15




Finding the right greedy strategy

* (Greedy template suggests finding a strategy and seeing if there are any
glaring counterexamples.

« Shortest processing time. Sort the jobs according to 7; and select in
order.

» Earliest deadline first. Sort according to d; and select in order.

» Smallest slack. Sort according to slack, d; — 7;, and select in order.



Counterexamples

Shortest processing time

« Sort the jobs according to 7; and select in order.
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Counterexamples

Smallest slack

» Sort according to slack, d; — 7;, and select in order.

Sob 2 lhos smaller Slack
T - Couses o loateness of 11 -2 = 9
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Earliest deadline first (EDF)

e Algorithm:
» Sort deadlines in increasingorderd; < d, < ... <d,
e SetT « 0.

e Fori « lton

e Assign jobitorunininterval. (1,7 + 7;). Increment ' < T + ;.
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Example EDF schedule

(1]2[3[4|5]|6
3 2 1 4 3 2
6 8 9 9 14 15

lateness = 2 lateness =0 max lateness = 6
) ) )

Original Schedule d;=9 d,=8 dy = 15 d;=6 ds = 14 ds= 9
0 1 2 3 4 5 6 7 8 9 0 1 12 13 14 15

max lateness = 1
)

EDF Schedule d1:6 d2=8 d3=9 d4=9 d5= 14 d6= 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Exchange argument for optimality

* |f for any solution there exists a modification that modifies solution but its value is at
least as good as the original, then wlog optimal solution has modification

* Consider a solution with “gaps” between jobs

d=4 d=6 d=12
0 1 2 3 4 5 6 7 8 9 10 1

At least as good d=4 d=6 d=12
0 1 2 3 4 5 6 7 8 9 10 1

 Then a “gapless” solution by shifting every job earlier is just as good

» Proof: The new t; for every job is at most ;. And Z; is monotonic in ¢,. So, the new
loss L' is at most L.
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The EDF Schedule

By construction, the EDF schedule is gapless

* This doesn’t alone prove optimality

 Property of EDF: No inversions in EDF schedule.
. An inversion is if job i is before job j but d; > d]

 An inversion is adjacent If it occurs between adjacent jobs.

 Exchange principle: If a schedule has an adjacent inversion, flipping the
adjacent inversion yields a schedule of shorter lateness.
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The EDF Schedule

 Property of EDF: No inversions in EDF schedule.
» An inversion is if job i is before job j but d; > d.
 An inversion is adjacent if it occurs between adjacent jobs.

 Exchange principle: If a schedule has an adjacent inversion, flipping the
adjacent inversion yields a schedule of shorter max lateness.
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The EDF Schedule

 Property of EDF: No inversions in EDF schedule.
. An inversion is if job i is before job j but d; > d]
 An inversion is adjacent if it occurs between adjacent jobs.

 Exchange principle: If a schedule has an adjacent inversion, flipping the
adjacent inversion yields a schedule of shorter max lateness.

* Proof:




The EDF Schedule

 Property of EDF: No inversions in EDF schedule.
. An inversion is if job i is before job j but d; > d]

 An inversion is adjacent if it occurs between adjacent jobs.

 Exchange principle: If a schedule has an adjacent inversion, flipping the
adjacent inversion yields a schedule of shorter max lateness.

Notice: max |ateness decrzcsen

_‘19_‘3 {'\'.x_fnj inversion .

* Proof:




Inversion removal

« Lemma (exercise): If a schedule has an inversion, then it must also have an
adjacent inversion

» Hint: Prove by induction, that if (7, /) is an inversion for i < j but (7, ') is not an
inversion for i < j' < j, then (j — 1,7) is an adjacent inversion

 Exchange principle lets us clean up all the adjacent inversions

« “Gapless” and “inversion” exchange principles yield a gapless schedule with no
Inversions

* This is precisely, the earliest deadline first (EDF) schedule up to events of equal
deadline. All such schedules have same lateness. Thus, it is optimal
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Maximizing bipartiteness

We saw how to verify if a graph is bipartite or not using a BFS algorithm

We could also come up with a “measure of bipartiteness”

maxcut(G) =

* For each possible coloring C, measure how many edges are colored

“correctly”

« The maxcut((G) is the max number of edges colored correctly over

all colorings

Deciding if maxcut(G) = m or # m can be done by the BFS algorithm

max
C:V—1{0,1}

D Licuecm)

(u,v)elr
L

—

Number c{ Conrecstt

/ Colored Cot&es

Is there an algorithm for computing maxcut(G) in general?
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Why is it called MaxCut?

e« Thefn.C : V — {0,1} partitions the vertices in two sets /
(yellow and blue). 0

» A partition of the vertices into two sets (5, T') is also called o 0
a cut. /

« We say that an edge (u, v) crosses the cut if u € S and ;
vel. @ @

maxcut(G) = max Z L ci-coy) counts the

° C:V—-{0,1} (ueE

maximum number of edges that cross any cut. 1 cotaes Cross Hus

« Computing “bipartiteness” is equivalent to computing the Cut
max cut.
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A proof that Max Cut is always > m/2

e Choose C : V — {0,1} uniformly randomly and independently.

 Then for any edge (u,v) = e € E, let X, be the event that e crosses the cut.

» Since C(u) and C(v) are chosen uniformly randomly, EX, = 1/2.

m
_ By linearity of expectation, [t Z X, = Z X, = 5

eck eck

« A random cut C crosses m/2 edges. Therefore, there exists a cut that crosses
> m/2 edges and m/2 < maxcut(G) < m.
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Finding a cut crossing > m/2 edges

« We know a cut exists crossing > m/?2 0 —
edges. Can we find it efficiently? \

, - 0
* | et’s use a greedy algorithm. k>< X(

» Algorithm overview: Color the first vertex / \ /

as 0 (yellow). Then, for every future vertex

v, If v has more 0O (yellow) neighbors than
1’s (blues), assign it the color 1 (blue), O
otherwise assign it O (yellow).
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Finding a cut crossing > m/2 edges

« We know a cut exists crossing > m/?2 O —
edges. Can we find it efficiently? \

, - 0
* | et’s use a greedy algorithm. k>< X(

» Algorithm overview: Color the first vertex / \ /

as 0 (yellow). Then, for every future vertex

v, If v has more 0O (yellow) neighbors than
1’s (blues), assign it the color 1 (blue), O
otherwise assign it O (yellow).
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Finding a cut crossing > m/2 edges

« We know a cut exists crossing > m/?2 O .
edges. Can we find it efficiently? \

, - 0
* | et’s use a greedy algorithm. k>< X(

» Algorithm overview: Color the first vertex / \ /

as 0 (yellow). Then, for every future vertex

v, If v has more 0O (yellow) neighbors than
1’s (blues), assign it the color 1 (blue), O
otherwise assign it O (yellow).
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Finding a cut crossing > m/2 edges

« We know a cut exists crossing > m/2 O .
edges. Can we find it efficiently?
* |et’s use a greedy algorithm. k y

D -
—0
o Algorithm overview: Color the first vertex / \ / /

as 0 (yellow). Then, for every future vertex

v, If v has more 0O (yellow) neighbors than
1’s (blues), assign it the color 1 (blue), O
otherwise assign it O (yellow).
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Finding a cut crossing > m/2 edges

« We know a cut exists crossing > m/2 O
edges. Can we find it efficiently? e

* |et’s use a greedy algorithm. 5/ y
@
» Algorithm overview: Color the first vertex / \ /

as 0 (yellow). Then, for every future vertex

v, If v has more 0O (yellow) neighbors than
1’s (blues), assign it the color 1 (blue), O
otherwise assign it O (yellow).
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Finding a cut crossing > m/2 edges

« We know a cut exists crossing > m/2 O
edges. Can we find it efficiently?

as 0 (yellow). Then, for every future vertex

v, If v has more 0O (yellow) neighbors than
1’s (blues), assign it the color 1 (blue), O
otherwise assign it O (yellow).

e Let’s use a greedy algorithm. 5 0
O
o Algorithm overview: Color the first vertex / \ / /
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Finding a cut crossing > m/2 edges

« We know a cut exists crossing > m/2 O .
edges. Can we find it efficiently?
* |et’s use a greedy algorithm. (x) y
@
e Algorithm overview: Color the first vertex / /
as 0 (yellow). Then, for every future vertex o
v, If v has more 0 (yellow) neighbors than e

1’s (blues), assign it the color 1 (blue), O
otherwise assign it O (yellow).
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Finding a cut crossing > m/2 edges

« We know a cut exists crossing > m/2 O
edges. Can we find it efficiently?

* |et’s use a greedy algorithm. (x)

e Algorithm overview: Color the first vertex /
as 0 (yellow). Then, for every future vertex
v, If v has more 0 (yellow) neighbors than e

1’s (blues), assign it the color 1 (blue), O
otherwise assign it O (yellow).

28




Finding a cut crossing > m/2 edges

« We know a cut exists crossing > m/2 O
edges. Can we find it efficiently?

* |et’s use a greedy algorithm. k

e Algorithm overview: Color the first vertex /
as 0 (yellow). Then, for every future vertex

v, If v has more 0O (yellow) neighbors than @
1’s (blues), assign it the color 1 (blue), ®
otherwise assign it O (yellow).
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Finding a cut crossing > m/2 edges

« We know a cut exists crossing > m/2 O
edges. Can we find it efficiently?

* |et’s use a greedy algorithm. k

e Algorithm overview: Color the first vertex /
as 0 (yellow). Then, for every future vertex

v, If v has more 0O (yellow) neighbors than @
1’s (blues), assign it the color 1 (blue), ®
otherwise assign it O (yellow).
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Greedy algorithm can be suboptimal

Nn+|

* The greedy algorithm can be suboptimal | o
and fail to find the max cut. ‘]3
* One can design examples where it fails. 2 'A n+2
O v O
» Consider the following graph on 2n (\
vertices explored in the order that the S, ‘ 3
vertices are numbered. | “
| |
no ©O- 0
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Greedy algorithm can be suboptimal

Nn+|

* The greedy algorithm can be suboptimal | o
and fail to find the max cut. f])
* One can design examples where it falls. 2 'A n+2
@ v O
» Consider the following graph on 2n (\
vertices explored in the order that the ; ‘ "3
vertices are numbered. | “

* The left vertices have alternating colors.
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Greedy algorithm can be suboptimal

I
* The greedy algorithm can be suboptimal and fail to find the max | "

cut. o _ 0

« Consider the following graph on 2n vertices explored in the z " N+

order that the vertices are numbered. @ v
/ \

* One can design examples where it fails.

* The left vertices have alternating colors.

3 ‘ niR
* Right vertices are all yellow. ‘
. Greedy cut of the graph as n°/2 + (n — 1) edges crossing cut. : ‘
Optimal cut has n” edges crossing cut. |
no @ ) In

I’l2
|greedy cut| S +t@®@—=1 1
So = > —asn — 0.
maxcut(G) n? 2
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Proof of greedy algorithm optimality

« Lemma: The greedy algorithm always produces a cut crossing > m/?2
edges.

* Proof:

« Consider the set of edges £, used to determine the color of vertex v.

By choosing the color of v to be the opposite of the majority of
neighbors, at least half of the edges of £, cross the greedy cut.

 Every edge is in exactly one set E,, where v is the later of its two
vertices to be assigned a color.

. Since £ = Ll E, and at least half of the edges of E,, cross the greedy

veV
cut, then at least half the edges of the E cross the greedy cut.

34

W\f\')ar\l«/ o{‘ As?ij"\-% wjl"jo"”
Coe. m/e,llu-uo
—H ~

O @ C)\ Q /O o O
A/
v V1S sed aa

/ o b
O 0..0

\/‘\/

MV\%S{\T“\UQ V\LGLJM S

C




Proof of greedy algorithm optimality

« Lemma: The greedy algorithm always produces a cut crossing > m/?2
edges.

* Proof:

« Consider the set of edges £, used to determine the color of vertex v.

By choosing the color of v to be the opposite of the majority of
neighbors, at least half of the edges of £, cross the greedy cut.

 Every edge is in exactly one set E,, where v is the later of its two
vertices to be assigned a color.

. Since £ = Ll E, and at least half of the edges of E,, cross the greedy

veV
cut, then at least half the edges of the E cross the greedy cut.
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NP-completeness

e Max Cut is also a NP-complete problem.

* We strongly do not believe there is an efficient algorithm for Max Cut.

e The greedy algorithm always produces a > 1/2 factor of the optimal sized cut
but cannot do better than this (due to our example).

* Constitutes an approximation algorithm for the Max Cut problem.

o [Goemans-Williamson]: Best known efficient approximation algorithm achieves
a ~ (0.878 factor.

 [UGC Conjecture]. Believed to be inefficient to approximate past this barrier
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