Lecture 6

More greedy algorithms and minimum spanning trees

Chinmay Nirkhe | CSE 421 Winter 2026 w

Previously in CSE 421...

Dijkstra’s algorithm

o Initialize d(v) <« oo, p(v) « L (“parent” of v is undefined) for all v # .
e Setd(s) « 0, p(s) « root

» Create priority queue Q and insert(Q, key = d(v),v) foreachv € V

« While Q isn’t empty, pop minimum key-element u from queue

» For each neighbor v of u, check if d(u) + w(u,v) < d(v) uPDWZ ?&ﬂ’-vd’ C“E %

e If so, d(v) «— d(u) + w(u, v), p(v) «— U, and +o be L.
setkey(Q, key = d(v), v) -

 Return d, p for distance and parent functions.

Today

Minimizing lateness

* A new scheduling problem. There is a single resource but instead of start and finish times, each
job 1 has

 Atime requirement 7; which must be scheduled contiguously

» A target deadline d; by which the request is ideally finished

e Minimum start time is O.

» Each item is graded a lateness: where 7; is it’s end time

UC\A A V\‘\“H/I V]
L= max 7. « CUC uj chre)

i=1,....n L) 2 @L |

« Goal: Find a scheduling that minimizes the maximum lateness L. 1z [WL

. lotal [ateness is defined as the max lateness:

5

Example minimizing lateness problem

2 4
9 9 14 15

noOnon
.
6

lateness = 2 lateness = 0 max lateness = 6
)))

d3:9 dz=8 d6=15 d1=6 d5=14 d4=9
0 1 > 3 a4 5 6 7 8 9 10 1 12 13 14 15

Finding the right greedy strategy

* (Greedy template suggests finding a strategy and seeing if there are any
glaring counterexamples.

« Shortest processing time. Sort the jobs according to 7; and select in
order.

» Earliest deadline first. Sort according to d; and select in order.

» Smallest slack. Sort according to slack, d; — 7;, and select in order.

Counterexamples

Shortest processing time

« Sort the jobs according to 7; and select in order.

1 2 Solb 1 (s gelectesl dne ‘o e dwedion ‘

- 4 10 Bt Hor Tob 2 incwrs o |adencss of 1
{

100 1 O‘Jvos\k acden W O lakeness .

Counterexamples

Smallest slack

» Sort according to slack, d; — 7;, and select in order.

Sob 2 lhos smaller Slack
T - Couses o loateness of 11 -2 = 9

] Otber orden bas (adeness o]ﬁ

Earliest deadline first (EDF)

e Algorithm:
» Sort deadlines in increasingorderd; < d, < ... <d,
e SetT « 0.

e Fori « lton

e Assign jobitorunininterval. (1,7 + 7;). Increment ' < T + ;.

10

Example EDF schedule

(1]2[3[4|5]|6
3 2 1 4 3 2
6 8 9 9 14 15

lateness = 2 lateness =0 max lateness = 6
)))

Original Schedule d;=9 d,=8 dy = 15 d;=6 ds = 14 ds= 9
0 1 2 3 4 5 6 7 8 9 0 1 12 13 14 15

max lateness = 1
)

EDF Schedule d1:6 d2=8 d3=9 d4=9 d5= 14 d6= 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

11

Exchange argument for optimality

* |f for any solution there exists a modification that modifies solution but its value is at
least as good as the original, then wlog optimal solution has modification

* Consider a solution with “gaps” between jobs

d=4 d=6 d=12
0 1 2 3 4 5 6 7 8 9 10 1

At least as good d=4 d=6 d=12
0 1 2 3 4 5 6 7 8 9 10 1

 Then a “gapless” solution by shifting every job earlier is just as good

» Proof: The new t; for every job is at most ;. And Z; is monotonic in ¢,. So, the new
loss L' is at most L.

12

The EDF Schedule

By construction, the EDF schedule is gapless

* This doesn’t alone prove optimality

 Property of EDF: No inversions in EDF schedule.
. An inversion is if job i is before job j but d; > d]

 An inversion is adjacent If it occurs between adjacent jobs.

 Exchange principle: If a schedule has an adjacent inversion, flipping the
adjacent inversion yields a schedule of shorter lateness.

13

The EDF Schedule

 Property of EDF: No inversions in EDF schedule.
» An inversion is if job i is before job j but d; > d.
 An inversion is adjacent if it occurs between adjacent jobs.

 Exchange principle: If a schedule has an adjacent inversion, flipping the
adjacent inversion yields a schedule of shorter max lateness.

+Proon] |
EEIRI T

d; d;

The EDF Schedule

 Property of EDF: No inversions in EDF schedule.
. An inversion is if job i is before job j but d; > d]
 An inversion is adjacent if it occurs between adjacent jobs.

 Exchange principle: If a schedule has an adjacent inversion, flipping the
adjacent inversion yields a schedule of shorter max lateness.

* Proof:

The EDF Schedule

 Property of EDF: No inversions in EDF schedule.
. An inversion is if job i is before job j but d; > d]

 An inversion is adjacent if it occurs between adjacent jobs.

 Exchange principle: If a schedule has an adjacent inversion, flipping the
adjacent inversion yields a schedule of shorter max lateness.

Notice: max |ateness decrzcsen

‘19‘3 {'\'.x_fnj inversion .

* Proof:

Inversion removal

« Lemma (exercise): If a schedule has an inversion, then it must also have an
adjacent inversion

» Hint: Prove by induction, that if (7, /) is an inversion for i < j but (7, ') is not an
inversion for i < j' < j, then (j — 1,7) is an adjacent inversion

 Exchange principle lets us clean up all the adjacent inversions

« “Gapless” and “inversion” exchange principles yield a gapless schedule with no
Inversions

* This is precisely, the earliest deadline first (EDF) schedule up to events of equal
deadline. All such schedules have same lateness. Thus, it is optimal

17

Maximizing bipartiteness

We saw how to verify if a graph is bipartite or not using a BFS algorithm

We could also come up with a “measure of bipartiteness”

maxcut(G) =

* For each possible coloring C, measure how many edges are colored

“correctly”

« The maxcut((G) is the max number of edges colored correctly over

all colorings

Deciding if maxcut(G) = m or # m can be done by the BFS algorithm

max
C:V—1{0,1}

D Licuecm)

(u,v)elr
L

—

Number c{ Conrecstt

/ Colored Cot&es

Is there an algorithm for computing maxcut(G) in general?

18

[

/

Why is it called MaxCut?

e« Thefn.C : V — {0,1} partitions the vertices in two sets /
(yellow and blue). 0

» A partition of the vertices into two sets (5, T') is also called o 0
a cut. /

« We say that an edge (u, v) crosses the cut if u € S and ;
vel. @ @

maxcut(G) = max Z L ci-coy) counts the

° C:V—-{0,1} (ueE

maximum number of edges that cross any cut. 1 cotaes Cross Hus

« Computing “bipartiteness” is equivalent to computing the Cut
max cut.

19

A proof that Max Cut is always > m/2

e Choose C : V — {0,1} uniformly randomly and independently.

 Then for any edge (u,v) = e € E, let X, be the event that e crosses the cut.

» Since C(u) and C(v) are chosen uniformly randomly, EX, = 1/2.

m
_ By linearity of expectation, [t Z X, = Z X, = 5

eck eck

« A random cut C crosses m/2 edges. Therefore, there exists a cut that crosses
> m/2 edges and m/2 < maxcut(G) < m.

20

Finding a cut crossing > m/2 edges

« We know a cut exists crossing > m/?2 0 —
edges. Can we find it efficiently? \

, - 0
* | et’s use a greedy algorithm. k>< X(

» Algorithm overview: Color the first vertex / \ /

as 0 (yellow). Then, for every future vertex

v, If v has more 0O (yellow) neighbors than
1’s (blues), assign it the color 1 (blue), O
otherwise assign it O (yellow).

21

Finding a cut crossing > m/2 edges

« We know a cut exists crossing > m/?2 O —
edges. Can we find it efficiently? \

, - 0
* | et’s use a greedy algorithm. k>< X(

» Algorithm overview: Color the first vertex / \ /

as 0 (yellow). Then, for every future vertex

v, If v has more 0O (yellow) neighbors than
1’s (blues), assign it the color 1 (blue), O
otherwise assign it O (yellow).

22

Finding a cut crossing > m/2 edges

« We know a cut exists crossing > m/?2 O .
edges. Can we find it efficiently? \

, - 0
* | et’s use a greedy algorithm. k>< X(

» Algorithm overview: Color the first vertex / \ /

as 0 (yellow). Then, for every future vertex

v, If v has more 0O (yellow) neighbors than
1’s (blues), assign it the color 1 (blue), O
otherwise assign it O (yellow).

23

Finding a cut crossing > m/2 edges

« We know a cut exists crossing > m/2 O .
edges. Can we find it efficiently?
* |et’s use a greedy algorithm. k y

D -
—0
o Algorithm overview: Color the first vertex / \ / /

as 0 (yellow). Then, for every future vertex

v, If v has more 0O (yellow) neighbors than
1’s (blues), assign it the color 1 (blue), O
otherwise assign it O (yellow).

24

Finding a cut crossing > m/2 edges

« We know a cut exists crossing > m/2 O
edges. Can we find it efficiently? e

* |et’s use a greedy algorithm. 5/ y
@
» Algorithm overview: Color the first vertex / \ /

as 0 (yellow). Then, for every future vertex

v, If v has more 0O (yellow) neighbors than
1’s (blues), assign it the color 1 (blue), O
otherwise assign it O (yellow).

25

Finding a cut crossing > m/2 edges

« We know a cut exists crossing > m/2 O
edges. Can we find it efficiently?

as 0 (yellow). Then, for every future vertex

v, If v has more 0O (yellow) neighbors than
1’s (blues), assign it the color 1 (blue), O
otherwise assign it O (yellow).

e Let’s use a greedy algorithm. 5 0
O
o Algorithm overview: Color the first vertex / \ / /

26

Finding a cut crossing > m/2 edges

« We know a cut exists crossing > m/2 O .
edges. Can we find it efficiently?
* |et’s use a greedy algorithm. (x) y
@
e Algorithm overview: Color the first vertex / /
as 0 (yellow). Then, for every future vertex o
v, If v has more 0 (yellow) neighbors than e

1’s (blues), assign it the color 1 (blue), O
otherwise assign it O (yellow).

27

Finding a cut crossing > m/2 edges

« We know a cut exists crossing > m/2 O
edges. Can we find it efficiently?

* |et’s use a greedy algorithm. (x)

e Algorithm overview: Color the first vertex /
as 0 (yellow). Then, for every future vertex
v, If v has more 0 (yellow) neighbors than e

1’s (blues), assign it the color 1 (blue), O
otherwise assign it O (yellow).

28

Finding a cut crossing > m/2 edges

« We know a cut exists crossing > m/2 O
edges. Can we find it efficiently?

* |et’s use a greedy algorithm. k

e Algorithm overview: Color the first vertex /
as 0 (yellow). Then, for every future vertex

v, If v has more 0O (yellow) neighbors than @
1’s (blues), assign it the color 1 (blue), ®
otherwise assign it O (yellow).

29

Finding a cut crossing > m/2 edges

« We know a cut exists crossing > m/2 O
edges. Can we find it efficiently?

* |et’s use a greedy algorithm. k

e Algorithm overview: Color the first vertex /
as 0 (yellow). Then, for every future vertex

v, If v has more 0O (yellow) neighbors than @
1’s (blues), assign it the color 1 (blue), ®
otherwise assign it O (yellow).

30

Greedy algorithm can be suboptimal

Nn+|

* The greedy algorithm can be suboptimal | o
and fail to find the max cut. ‘]3
* One can design examples where it fails. 2 'A n+2
O v O
» Consider the following graph on 2n (\
vertices explored in the order that the S, ‘ 3
vertices are numbered. | “
| |
no ©O- 0

31

Greedy algorithm can be suboptimal

Nn+|

* The greedy algorithm can be suboptimal | o
and fail to find the max cut. f])
* One can design examples where it falls. 2 'A n+2
@ v O
» Consider the following graph on 2n (\
vertices explored in the order that the ; ‘ "3
vertices are numbered. | “

* The left vertices have alternating colors.

32

Greedy algorithm can be suboptimal

I
* The greedy algorithm can be suboptimal and fail to find the max | "

cut. o _ 0

« Consider the following graph on 2n vertices explored in the z " N+

order that the vertices are numbered. @ v
/ \

* One can design examples where it fails.

* The left vertices have alternating colors.

3 ‘ niR
* Right vertices are all yellow. ‘
. Greedy cut of the graph as n°/2 + (n — 1) edges crossing cut. : ‘
Optimal cut has n” edges crossing cut. |
no @) In

I’l2
|greedy cut| S +t@®@—=1 1
So = > —asn — 0.
maxcut(G) n? 2

33

Proof of greedy algorithm optimality

« Lemma: The greedy algorithm always produces a cut crossing > m/?2
edges.

* Proof:

« Consider the set of edges £, used to determine the color of vertex v.

By choosing the color of v to be the opposite of the majority of
neighbors, at least half of the edges of £, cross the greedy cut.

 Every edge is in exactly one set E,, where v is the later of its two
vertices to be assigned a color.

. Since £ = Ll E, and at least half of the edges of E,, cross the greedy

veV
cut, then at least half the edges of the E cross the greedy cut.

34

W\f\')ar\l«/ o{‘ As?ij"\-% wjl"jo"”
Coe. m/e,llu-uo
—H ~

O @ C)\ Q /O o O
A/
v V1S sed aa

/ o b
O 0..0

\/‘\/

MV\%S{\T“\UQ V\LGLJM S

C

Proof of greedy algorithm optimality

« Lemma: The greedy algorithm always produces a cut crossing > m/?2
edges.

* Proof:

« Consider the set of edges £, used to determine the color of vertex v.

By choosing the color of v to be the opposite of the majority of
neighbors, at least half of the edges of £, cross the greedy cut.

 Every edge is in exactly one set E,, where v is the later of its two
vertices to be assigned a color.

. Since £ = Ll E, and at least half of the edges of E,, cross the greedy

veV
cut, then at least half the edges of the E cross the greedy cut.

35

W\f\')ar\l\«/ o{‘ Mgﬂj”‘ﬁ wjb\lom

Cet. '\/Ln.u—uo
A

O 0 O o @

\//

Vis s as
/ s
j"—ug-?/ alg

O 0..0
N

MV\%S{\T“\UQ V\LGLJM S

C

NP-completeness

e Max Cut is also a NP-complete problem.

* We strongly do not believe there is an efficient algorithm for Max Cut.

e The greedy algorithm always produces a > 1/2 factor of the optimal sized cut
but cannot do better than this (due to our example).

* Constitutes an approximation algorithm for the Max Cut problem.

o [Goemans-Williamson]: Best known efficient approximation algorithm achieves
a ~ (0.878 factor.

 [UGC Conjecture]. Believed to be inefficient to approximate past this barrier

36

