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Lecture 5
Greedy approximation and graph algorithms
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Previously in CSE 421…
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Greedy algorithm general strategy

• Greedy algorithm stays ahead: Show that after each step of the greedy 
algorithm, its solution is at least as good as any other algorithms


• Structural: Discover a structure-based argument asserting that the greedy 
solution is at least as good as every possible solution.


• Exchange argument: We can gradually transform any solution into the one 
found by the greedy algorithm with each transform only improving or 
maintaining the value of the current solution.
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Today
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Scheduling all intervals

• Input:  for  for  “jobs” each using 1 room.


• Output: A scheduling of all jobs to rooms using the minimum number of 
rooms so that no two use the same room at the same time. 

(si, ti) i = 1,…, n n
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Scheduling all intervals
A greedy algorithm

• Greedy strategy: Increment chronologically and open a new room if all rooms are currently full.


• Algorithm:


• Sort requests by start time  in increasing order.


• Initialize an  sized array  as zeroes and an  sized array .


• For  to 


• Find the first  such that .


• Then set  and set .


• Return assignment function .

s1 ≤ s2 ≤ … ≤ sn

n last( j) n r( j)

i ← 1 n

j si ≥ last( j)

last( j) ← ti r(i) ← j

r
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Scheduling all intervals
Proof of correctness

• Theorem: The greedy algorithm is minimal: If room  is ever used, then there is a time when  jobs 
are occurring simultaneously. 


• Proof:


• Consider when a new room  is “allocated” for the first time. Let job  be the reason.


• Then,  for all . 


• Since  denotes when the jobs in the other rooms will free up, the -th job is incompatible 
with the jobs currently in the other  rooms.


• Since we sort requests by start time, those jobs all started before  and haven’t ended yet.


• So there are  incompatible requests, requiring at least  rooms.

j ≥ j

j i

si < last( j′￼) j′￼ < j

last( j′￼) i
j − 1

si

≥ j ≥ j
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Scheduling all intervals
Runtime

• Greedy strategy: Increment chronologically and open a new room if all 
rooms are currently full.


• Algorithm:


• Sort requests by start time  in increasing order.


• Initialize an  sized array  as zeroes and an  sized array .


• For  to 


• Find the first  such that .


• Then set  and set .


• Return assignment function .
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Scheduling all intervals
Runtime

• Greedy strategy: Increment chronologically and open a new room if all rooms are 
currently full.


• Algorithm:


• Sort requests by start time  in increasing order.


• Initialize a priority queue ,  and an  sized array .


• For  to 


• Set .


• If , schedule job  in room :  and 


• Else, allocate a new room  and  and 


• Return assignment function .

s1 ≤ s2 ≤ … ≤ sn

Q k ← 0 n r( j)

i ← 1 n

j ← findmin(Q)

si ≥ last( j) i j setkey( j, Q) ← ti r(i) = j .

k ← k + 1 setkey(k, Q) ← ti r(i) = k .

r
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Greedy algorithm general strategies

• Greedy algorithm stays ahead: Show that after each step of the greedy 
algorithm, its solution is at least as good as any other algorithms


• Structural: Discover a structure-based argument asserting that the greedy 
solution is at least as good as every possible solution.


• Exchange argument: We can gradually transform any solution into the one 
found by the greedy algorithm with each transform only improving or 
maintaining the value of the current solution.
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Interval scheduling

• Input: start and end times  for  for  “jobs”


• Output: A maximal set of mutually compatible jobs

(si, ti) i = 1,…, n n

12



Greedy algorithm analysis
Contradiction argument edition

• Let  denote the jobs selected by the greedy algorithm.


• Let  denote the jobs selected in an optimal solution.


• Assume  for the largest possible .


• Since greedy is not optimal (by assumption), .

a1, a2, …, at

o1, o2, …, os

a1 = o1, a2 = o2, …, ak = ok k

s > k
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Greedy graph algorithms
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Shortest path problem

• Input: , edge weights , and source .


• Output:  with the min-weight of a path .

G = (V, E) w : E → ℝ≥0 s ∈ V

d : V → ℝ≥0 d(u) = s ↝ u

18



Shortest path problem

• Input: , edge weights , and source .


• Output:  with the min-weight of a path .

G = (V, E) w : E → ℝ≥0 s ∈ V

d : V → ℝ≥0 d(u) = s ↝ u

19



Dijkstra’s algorithm

• Initialize (“parent” of  is undefined) for all .


• Set 


• Create priority queue  and  for each 


• While  isn’t empty, pop minimum key-element  from queue


• For each neighbor  of , check if 


• If so, , and 



• Return  for distance and parent functions.

d(v) ← ∞, p(v) ← ⊥ v v ≠ s

d(s) ← 0, p(s) ← ′￼′￼root′￼′￼

Q insert(Q, key = d(v), v) v ∈ V

Q u

v u d(u) + w(u, v) < d(v)

d(v) ← d(u) + w(u, v), p(v) ← u
setkey(Q, key = d(v), v)

d, p
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Dijkstra’s algorithm
Example execution
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Dijkstra’s algorithm
Example execution
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Dijkstra’s algorithm
Proof of correctness

• Lemma: If  is a path  of minimal weight to , then for any vertex  on 
, the subpath from  to  is of minimal weight.


• Proof:

q s ↝ u u v
q s v
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Dijkstra’s algorithm
Proof of correctness

• Claim: During run, let  be the set of 
vertices popped off . At that moment,


• for ,  = length of shortest 
path  and 


• for ,  = length of shortest path 
 with only the last edge leaving .


• Proof: By induction. Let  be the next 
vertex popped off.

S
Q

y ∈ S d(y)
s ↝ y

x ∉ S d(x)
s ↝ x S

u
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Dijkstra’s algorithm other perks

• The assignment of parent  generates a tree of shortest paths with root 


• If you only want to calculate the shortest path to vertex , can abort the 
algorithm as soon as  is popped from the queue.


• This follows from the correctness claim in the previous slide


• For the vertices in , the distance is minimal over all paths and not just the 
ones contained in .


• Dijkstra’s algorithm also works for directed graphs. Similar proof — feel free to 
use both directed and undirected versions in your psets/exams (without proof).

p(u) s

u
u

S
S
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Priority queue data structure review

• Each element  in the queue is associated with a key 


• Operations allowed by the data structure


• 


•  or 


•  if  is already in the queue.


• Implementations


• With arrays:  time for find-min or delete, and  time for set and decrease


• With heaps:  time for insert, delete, decrease and  for find-min

v k

insert(v, k)

(v, k) ← findmin(Q) (v, k) ← deletemin(Q)

decreasekey(v, k) v

O(n) O(1)

O(log n) O(1)
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Dijkstra’s algorithm

• The algorithm has  insertions,  delete-mins since each vertex is added and 
deleted once


• And  decrease-keys with each decrease-key corresponding to an edge


• Implementation based runtimes


• Array has insert , delete-min , and decrease-key  


• Array has total  time


• Heap has insert, delete-min, and decrease-key  


• Heap has total  time

O(n) O(n)

O(m)

O(1) O(n) O(1)

O(n + n2 + m) = O(n2)

O(log n)

O(m log n)

36



Example problem: Johnny’s birthday present

• Consider a city expressed as a directed weighted 
graph  with weight function .


• Johnny’s mother starts at  and needs to get to 
the birthday party at location 


• She forgot to buy a birthday present though and can 
find one at vertices .


• Goal: Calculate the shortest path from  that 
includes a vertex of .

G = (V, E) w : E → ℝ≥0

s ∈ V
t ∈ V

V′￼ ⊆ V

s ↝ t
V′￼
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Johnny’s birthday present

• Naive algorithm: Brute-force search + Dijkstra’s algorithm


• We want to compute 


• Iterate over each “midpoint” ,


• And use Dijkstra’s twice to compute 


• Keep track of the minimum as we go along


• Runtime is 


• Can we do better?

min
u∈V′￼

d(s, u) + d(u, t)

u ∈ V′￼

d(s, u) + d(u, t)

O( |V′￼| ) ⋅ Runtime(Dijkstra′￼s) = O( |V′￼|m log n)
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Johnny’s birthday present

• The key will be finding a better graph.


• Consider a graph with vertex set  
with a vertex  indicating location x 
[whether store has been visited]


• Starting vertex:  since item isn’t acquired


• End vertex:  since item is acquired


• Now we are looking for shortest path from  
to  in graph . But what is ?

V2 = V × {0,1}
(v, b) ∈ V2

(s,0)

(t,1)

(s,0)
(t,1) G2 = (V2, E2) E2
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Johnny’s birthday present

• Algorithm: 


• Let . 


• Construct edge set  by including  
and  whenever  in . Set the 
weight of the new edges to be that of 


• For every , include edge  of 
weight 0.


• Run Dijkstra’s on  from  to .


• Runtime: 

V2 = V × {0,1}

E2 (u,0) → (v,0)
(u,1) → (v,1) u → v E

u → v

v ∈ V′￼ (v,0) → (v,1)

G2 (s,0) (t,1)

O((2m + n)log(2n)) = O(m log n)
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Johnny’s birthday present

• Correctness: 

• There is a 1-to-1 correspondence between 


• paths  for  in .


• And paths  in .


• This is because any path in  must descend in the second 
coordinate once and this can only happen at a vertex . No 
edges allow ascending in the second coordinate.


• In particular, both paths in the correspondence have the same 
length.


• Therefore, optimizing over the second set of paths is equivalent to 
the optimizing over the first.


• Dijkstra’s algorithm optimizes over the second set of paths.

s ↝ v ↝ t v ∈ V′￼ G

(s,0) ↝ (t,1) G2

G2
v ∈ V′￼
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