Lecture 5

Greedy approximation and graph algorithms

Chinmay Nirkhe | CSE 421 Winter 2026

Previously in CSE 421...

Greedy algorithm general strategy

 Greedy algorithm stays ahead: Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithms

o Structural: Discover a structure-based argument asserting that the greedy
solution is at least as good as every possible solution.

 Exchange argument: We can gradually transform any solution into the one
found by the greedy algorithm with each transform only improving or
maintaining the value of the current solution.

Today

Scheduling all intervals

e Input: (s,) fori = 1,...,n for n “jobs” each using 1 room.

e Output: A scheduling of all jobs to rooms using the minimum number of
rooms so that no two use the same room at the same time.

. . ’ ’ . . [
' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' '
- ' ' ' ' ' i ' i i i) ' \
-— ' ' ' ' ' '
' ' ' ' ' ' -
' ' ' ' ' '
' ' ' ' e ' '
' ' ' ' ' '
' ' ' ' ' '
' ' ' ' ' '
' ' ' [' ' [' ' ' '
' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' i [' '
' ’ '
' ' '
’ '

An_ Ctxs&—(VWY AT AL

Ow, ‘uALV\\A.Mlo«J\ a?

roowny qu,\'m A, .

‘ ‘

‘ .] ‘ . ‘] ‘ ‘ ‘ ‘ ‘

' ' . ' ‘ ' .] ‘] ‘ ' ‘

] ‘ . ‘ .

. L] . ‘ . ‘ y - - ' 'y

. L] . .] .

. L] . ‘] ‘ .
. L] . ‘] ‘

. L] ‘ ‘] ‘ '
.] . ‘] ‘

. ’ ‘ ' . '

‘ . ‘ . . .]

‘ . ‘ . . . ‘ . ‘] . .

‘ ‘ . . .] ‘ . ‘] ‘ ‘

‘ ‘ . . .] ‘ ‘ ‘] ‘ .

.

S 9:30 10 10:30 11 1:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 ,
Time

Scheduling all intervals
A greedy algorithm

 Greedy strategy: Increment chronologically and open a new room if all rooms are currently full.

* Algorithm:
 Sort requests by start time s; < 5, < ... < §, in increasing order.

» Initialize an n sized array last(j) as zeroes and an n sized array ().

e Fori « lton

e FIind the flrSt_] such that S; > laSt(]) AN A T R S A S R S
€ | | | sd | | fg | |
» Then set last(j) < l; and set r(i) < J. ° A R N R B "

 Return assignment function r.

—

g 9:30 10 10:30 11 1:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 ,
Time

6

Scheduling all intervals
A greedy algorithm

 Greedy strategy: Increment chronologically and open a new room if all rooms are currently full.

* Algorithm:
 Sort requests by start time s; < 5, < ... < §, in increasing order.

» Initialize an n sized array last(j) as zeroes and an n sized array ().
e Fori <« ltonm

» Find the first j such that s; > last()).
« Then set last(j) « t,and set r(i) « j. IRz nTn AR
* Return assignment function 7. AN I S S NN NN SN NS N N N N

>

g 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 ,
Time

14

Scheduling all intervals

Proof of correctness

« Theorem: The greedy algorithm is minimal: If room j is ever used, then there is a time when 2> j jobs
are occurring simultaneously.

* Proof:
« Consider when a new room j is “allocated” for the first time. Let job 1 be the reason.
» Then, s; < last(j’) for all j’ <.

» Since last(j) denotes when the jobs in the other rooms will free up, the i-th job is incompatible
with the jobs currently in the other j — 1 rooms.

« Since we sort requests by start time, those jobs all started before §; and haven’t ended yet.

« So there are > j incompatible requests, requiring at least > j rooms.

Scheduling all intervals

Runtime

» Greedy strategy: Increment chronologically and open a new room if all
rooms are currently full.

* Algorithm:
 Sort requests by start time s; < 5, < ... < 5, In increasing order. & OG\’ lf_‘)

» Initialize an n sized array last(j) as zeroes and an n sized array r(j).

_

« Fori <« lton i l_c,,_.,(, ame O(n) tmw .

» Find the first j such that s; > last(j). #— —~__ cold be sl O(n) oadn Hme.

» Then set last(j) < ¢ and set r(i) < J.

» Return assignment functionr. O(:L)

Tokal : O(n*) dwe o loop.

Scheduling all intervals

Runtime

 Greedy strategy: Increment chronologically and open a new room if all rooms are
currently full.

* Algorithm: CH O(‘k [ve '> |
& .
« Sort requests by start time s; < 5, < ... < §, In increasing order.

» Initialize a priority queue O, k < 0 and an n sized array r(j). Better data struchre

. Fori<—.1ton | v Neowo ot_lj OC‘fj L) Hwne
« Setj « findmin(Q).

« If s, > last(j), schedule job i in room j: setkey(j, Q) « t.and r(i) = J . Also OClij k) Hoe
. Else, allocate a new room k < k + 1 and setkey(k, Q) < t,and r(i) = k.

* Return assignment function r.

Totz| vimtine : C)C_W\og \4> di o belten
a{oc)ra SJWLW.

10

Greedy algorithm general strategies

 Greedy algorithm stays ahead: Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithms

o Structural: Discover a structure-based argument asserting that the greedy
solution is at least as good as every possible solution.

 Exchange argument: We can gradually transform any solution into the one
found by the greedy algorithm with each transform only improving or
maintaining the value of the current solution.

11

Interval scheduling

e Input: start and end times (s;, ¢,) fori = 1,..., n for n “jobs”

e Output: A maximal set of mutually compatible jobs

. >
0 1 2 3 4 5 6 7 8 9 10 1 Time

Greedy algorithm analysis

Contradiction argument edition

» Leta,,a,,...,a, denote the jobs selected by the greedy algorithm.
» Let0y,0,,...,0, denote the jobs selected in an optimal solution.
» Assume a; = 0y,d, = 0,, ..., 4, = 0y, for the largest possible k.

 Since greedy is not optimal (by assumption), s > k.

C‘R’CE’D/'. o] &= ... [a | [@ [. [ﬂtJ

OPT'MAL_ ' ,O,j [: O, 4‘] [Q7 ’: O v“ B -[05

——

13

Greedy algorithm analysis

Contradiction argument edition

» Leta,,a,,...,a, denote the jobs selected by the greedy algorithm.
» Let0y,0,,...,0, denote the jobs selected in an optimal solution.
» Assume a; = 0y,d, = 0,, ..., 4, = 0y, for the largest possible k.

Q,Flac,\‘né Wit [Qe 7
» Since greedy is not optimal (by assumption), s > k. s C")‘%«l— as OP‘h‘mﬂ,

S

| a, (

CT?EE'D/: TA'W [5’\1 1 ...]“kl [Qs 7

OPT'MAL_ ' ,O,j [: O, 4‘] [Q7 ’: O v“ B -[05

Greedy algorithm analysis

Contradiction argument edition

» Leta,,a,,...,a, denote the jobs selected by the greedy algorithm.
» Let0y,0,,...,0, denote the jobs selected in an optimal solution.
» Assume a; = 0y,d, = 0,, ..., 4, = 0y, for the largest possible k.

Q,Flac,\‘né Wit [Qe 7
» Since greedy is not optimal (by assumption), s > k. s C")‘%«l— as OP‘h‘mﬂ,

S

| a, (

CT?EE'D/: TA'W [5’\1 1 ...]“kl [Qs 7

Optmac :]o,j o j [q7 | A] [16s

[

Greedy algorithm analysis

Contradiction argument edition now we can wndudt

\

» Leta,,a,,...,a, denote the jobs selected by the greedy algorithm.

» Let0y,0,,...,0, denote the jobs selected in an optimal solution.

» Assume a; = 0y,d, = 0,, ..., 4, = 0y, for the largest possible k.
&Flac\‘né it | Qe 7
 Since greedy is not optimal (by assumption), s > k. A 3%4— as oPﬁmgl

S

| a, (

CT?EE'D/: TA'W [5’\1 1 ...]“kl [Qs 7

Optmac :]o,j o j [q7 | A] [16s

[

Greedy graph algorithms

Shortest path problem

e Input: G = (V, E), edge weights w : E — R, and source s € V.

+ Output: d : V — R=Y with d(1) = the min-weight of a path s ~ .

Nz

18

Shortest path problem

e Input: G = (V, E), edge weights w : E — R, and source s € V.

. Output: d : V = R2 with d(u) = the min-weight of a path s ~ u.

Dijkstra’s algorithm

o Initialize d(v) <« oo, p(v) « L (“parent” of v is undefined) for all v # .
e Setd(s) < 0, p(s) « "root”

» Create priority queue Q and insert(Q, key = d(v),v) foreachv € V

« While Q isn’t empty, pop minimum key-element u from queue

» For each neighbor v of u, check if d(u) + w(u,v) < d(v) uPDWZ ?&ﬂ’-vd’ C“E %

e If so, d(v) «— d(u) + w(u, v), p(v) «— U, and +o be L.
setkey(Q, key = d(v), v) -

 Return d, p for distance and parent functions.

20

Dijkstra’s algorithm

Example execution

©

?//1 \\

@) RN

O//é \@/@ 5 @
09) _ ﬁ@ ,8
“t \

Dijkstra’s algorithm
Example execution oot is first vestex ?or\wi 0% -

©

?//1 \\

@) RN

G//é \@/@ 5 @
09) _ ﬁ@ ,8
“t \

Dijkstra’s algorithm

Example execution

©

o2, ////?\i
G//é \@ 4 @5 &
>0) _ & -

T \

Dijkstra’s algorithm

Example execution

©

: @/1\@

1 ®/ /3\
O//é \@ 4 @ 5 &
00) _ ﬁ@ ,8

T \

Dijkstra’s algorithm

Example execution

©

: @/1\@

1 ®/ /3\
O//é \@ 4 @ 5 o
00) _ ﬁ@ ,8

T \

Dijkstra’s algorithm

Example execution

©

: @/1\@

1 ®/ /3\
O//é \@ 4 @ 5 o
00) _ ﬁ@ ,8

T \

Dijkstra’s algorithm

Example execution

©

: @/1\@

1 ®/ /3\
O//é \@ 4 @ 5 o
00) _ ﬁ@ ,8

T \

Dijkstra’s algorithm

Proof of correctness

 Lemma: If g is a path s ~ u of minimal weight to i, then for any vertex v on
g, the subpath from s to v is of minimal weight.

* Proof:

28

Dijkstra’s algorithm

Proof of correctness

 Lemma: If g is a path s ~ u of minimal weight to i, then for any vertex v on
g, the subpath from s to v is of minimal weight.

* Proof:

AN

. -

assume o Shorlec Pa‘\"/\ exists

29

Dijkstra’s algorithm

Proof of correctness

 Lemma: If g is a path s ~ u of minimal weight to u, then for any vertex v on
g, the subpath from s to v is of minimal weight.

* Proof:

AN T

o — 0

assume o Shorlec Pa‘\"/\ exists

r\ ’H’\C,V\ Hus S a S\/\DF]'C\" ’Pa‘\'\/\, 'h) w. L.

30

Dijkstra’s algorithm Consitin, any ol pee with.

X ‘H'\L Ys 1
Proof of correctness g Tk vertex outside S

vertices popped off (). At that moment,

+ Claim: During run, let S be the set of i\/ ?

« fory € S, d(y) = length of shortest T
path s ~ y and

« forx & S, d(x) = length of shortest path S w s poppes fp o de) A(x).

s ~r x with only the last edge leaving 3.
y 9 g T\Kw\,| lmT\L "f Wlone. qu,‘_ N |€,*\Thf\ JY blaclk FocH«

 Proof: By induction. Let u be the next

Sia . | .
vertex pOpped off. “ X’Z hess V‘U"l-mja‘l'\\m wjl\:\—.

31 go, ’CVIJJ"A o‘(\ Ptrl'lz\ +o U is Coml.c"".

Dijkstra’s algorithm Consitin, any ol pee with.

X ‘H'\L Ys 1
Proof of correctness g Tk vertex outside S

vertices popped off (). At that moment,

+ Claim: During run, let S be the set of i\/ ?

« fory € S, d(y) = length of shortest "
path s ~ y and

« forx & S, d(x) = length of shortest path S w s poppes fp o de) A(x).

s ~r x with only the last edge leaving 3.
y 9 g T\Kw\,| lmT\L "f Wlone. qu,‘_ N |€,*\Thf\ JY blaclk FocH«

 Proof: By induction. Let u be the next

Sia . | .
vertex pOpped off. “ X’Z hess V‘U"l-mja‘l'\\m wjl\:\—.

30 QD, ’Q\ﬂj&"a D‘(\ Pq‘l"z\ —J‘b U ;5 (,oﬂ\Lc,"".

Dijkstra’s algorithm other perks

» The assignment of parent p(u1) generates a tree of shortest paths with root s

 |f you only want to calculate the shortest path to vertex u, can abort the
algorithm as soon as u is popped from the queue.

* This follows from the correctness claim in the previous slide

» For the vertices in S, the distance is minimal over all paths and not just the
ones contained in S.

* Dijkstra’s algorithm also works for directed graphs. Similar proof — feel free to
use both directed and undirected versions in your psets/exams (without proof).

33

Dijkstra’s algorithm

o Initialize d(v) <« oo, p(v) « L (“parent” of v is undefined) for all v # .
e Setd(s) « 0, p(s) « root

» Create priority queue Q and insert(Q, key = d(v),v) foreachv € V

« While Q isn’t empty, pop minimum key-element u from queue

» For each neighbor v of u, check if d(u) + w(u,v) < d(v) uPDWZ ?&ﬂ’-vd’ C“E %

e If so, d(v) «— d(u) + w(u, v), p(v) «— U, and +o be L.
setkey(Q, key = d(v), v) -

 Return d, p for distance and parent functions.

34

Priority queue data structure review

» Each element v in the queue is associated with a key k

* Operations allowed by the data structure
e 1nsert(v, k)
e (v, k) « findmin(Q) or (v, k) « deletemin(Q)
 decreasekey(v, k) if v is already in the queue.
* |Implementations
« With arrays: O(n) time for find-min or delete, and O(1) time for set and decrease

» With heaps: O(log n) time for insert, delete, decrease and O(1) for find-min

35

Dijkstra’s algorithm

» The algorithm has O(n) insertions, O(n) delete-mins since each vertex is added and
deleted once

» And O(m) decrease-keys with each decrease-key corresponding to an edge

* |mplementation based runtimes
o Array has insert O(1), delete-min O(n), and decrease-key O(1)
. Array has total O(n + n” + m) = O(n”) time
» Heap has insert, delete-min, and decrease-key O(log n)

» Heap has total O(mlogn) time

36

Example problem: Johnny’s birthday present

* Consider a city expressed as a directed weighted
graph G = (V, E) with weight functionw : E — R,

» Johnny’s mother starts at s € V and needs to get to
the birthday party at locationt € V

* She forgot to buy a birthday present though and can
find one at vertices V' C V.

o Goal: Calculate the shortest path from s ~ that
includes a vertex of V.

37

Johnny'’s birthday present

* Naive algorithm: Brute-force search + Dijkstra’s algorithm

. We want to compute min d(s, u) + d(u, t)
ueV’

e |terate over each “midpoint” u € V/,

« And use Dijkstra’s twice to compute d(s, u) + d(u, t)

» Keep track of the minimum as we go along
» Runtimeis O(|V’|) - Runtime(Di1jkstra’s) = O(| V'|mlogn)
* Can we do better?

38

Johnny'’s birthday present

* The key will be finding a better graph.

» Consider a graph with vertex set V, = V' X {0,1}

with a vertex (v, b) € V, indicating location x
[whether store has been visited]

» Starting vertex: (s5,0) since item isn’t acquired
« End vertex: (7,1) since item is acquired

« Now we are looking for shortest path from (s,0)
to (#,1) in graph G, = (V,, E,). But what is E,?

39

Johnny'’s birthday present

* Algorithm:
e Let V2 = VX {0,1}

» Construct edge set E, by including (#,0) — (v,0)
and (#,1) - (v,1) whenever u — vin E. Set the
weight of the new edges to be thatofu — v

« Foreveryv € V', include edge (v,0) — (v,1) of
weight 0.

» Run Dijkstra’s on G, from (s,0) to (z,1).

» Runtime: O((2m + n)log(2n)) = O(mlogn)

40

Johnny'’s birthday present

e Correctness:

 Thereis a 1-to-1 correspondence between
e« pathss ~ v ~ tforv € V'in G.

 And paths (5,0) ~ (2,1) in G,.

« This is because any path in G, must descend in the second

coordinate once and this can only happen at a vertex v € V'. No
edges allow ascending in the second coordinate.

* |n particular, both paths in the correspondence have the same
length.

* Therefore, optimizing over the second set of paths is equivalent to
the optimizing over the first.

* Dijkstra’s algorithm optimizes over the second set of paths.

41

