
Chinmay Nirkhe | CSE 421 Winter 2026

Lecture 5
Greedy approximation and graph algorithms

1

Previously in CSE 421…

2

Greedy algorithm general strategy

• Greedy algorithm stays ahead: Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithms

• Structural: Discover a structure-based argument asserting that the greedy
solution is at least as good as every possible solution.

• Exchange argument: We can gradually transform any solution into the one
found by the greedy algorithm with each transform only improving or
maintaining the value of the current solution.

3

Today

4

Scheduling all intervals

• Input: for for “jobs” each using 1 room.

• Output: A scheduling of all jobs to rooms using the minimum number of
rooms so that no two use the same room at the same time.

(si, ti) i = 1,…, n n

5

Scheduling all intervals
A greedy algorithm

• Greedy strategy: Increment chronologically and open a new room if all rooms are currently full.

• Algorithm:

• Sort requests by start time in increasing order.

• Initialize an sized array as zeroes and an sized array .

• For to

• Find the first such that .

• Then set and set .

• Return assignment function .

s1 ≤ s2 ≤ … ≤ sn

n last(j) n r(j)

i ← 1 n

j si ≥ last(j)

last(j) ← ti r(i) ← j

r

6

Scheduling all intervals
A greedy algorithm

• Greedy strategy: Increment chronologically and open a new room if all rooms are currently full.

• Algorithm:

• Sort requests by start time in increasing order.

• Initialize an sized array as zeroes and an sized array .

• For to

• Find the first such that .

• Then set and set .

• Return assignment function .

s1 ≤ s2 ≤ … ≤ sn

n last(j) n r(j)

i ← 1 n

j si ≥ last(j)

last(j) ← ti r(i) ← j

r

7

Scheduling all intervals
Proof of correctness

• Theorem: The greedy algorithm is minimal: If room is ever used, then there is a time when jobs
are occurring simultaneously.

• Proof:

• Consider when a new room is “allocated” for the first time. Let job be the reason.

• Then, for all .

• Since denotes when the jobs in the other rooms will free up, the -th job is incompatible
with the jobs currently in the other rooms.

• Since we sort requests by start time, those jobs all started before and haven’t ended yet.

• So there are incompatible requests, requiring at least rooms.

j ≥ j

j i

si < last(j′￼) j′￼ < j

last(j′￼) i
j − 1

si

≥ j ≥ j

8

Scheduling all intervals
Runtime

• Greedy strategy: Increment chronologically and open a new room if all
rooms are currently full.

• Algorithm:

• Sort requests by start time in increasing order.

• Initialize an sized array as zeroes and an sized array .

• For to

• Find the first such that .

• Then set and set .

• Return assignment function .

s1 ≤ s2 ≤ … ≤ sn

n last(j) n r(j)

i ← 1 n

j si ≥ last(j)

last(j) ← ti r(i) ← j

r

9

Scheduling all intervals
Runtime

• Greedy strategy: Increment chronologically and open a new room if all rooms are
currently full.

• Algorithm:

• Sort requests by start time in increasing order.

• Initialize a priority queue , and an sized array .

• For to

• Set .

• If , schedule job in room : and

• Else, allocate a new room and and

• Return assignment function .

s1 ≤ s2 ≤ … ≤ sn

Q k ← 0 n r(j)

i ← 1 n

j ← findmin(Q)

si ≥ last(j) i j setkey(j, Q) ← ti r(i) = j .

k ← k + 1 setkey(k, Q) ← ti r(i) = k .

r

10

Greedy algorithm general strategies

• Greedy algorithm stays ahead: Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithms

• Structural: Discover a structure-based argument asserting that the greedy
solution is at least as good as every possible solution.

• Exchange argument: We can gradually transform any solution into the one
found by the greedy algorithm with each transform only improving or
maintaining the value of the current solution.

11

Interval scheduling

• Input: start and end times for for “jobs”

• Output: A maximal set of mutually compatible jobs

(si, ti) i = 1,…, n n

12

Greedy algorithm analysis
Contradiction argument edition

• Let denote the jobs selected by the greedy algorithm.

• Let denote the jobs selected in an optimal solution.

• Assume for the largest possible .

• Since greedy is not optimal (by assumption), .

a1, a2, …, at

o1, o2, …, os

a1 = o1, a2 = o2, …, ak = ok k

s > k

13

Greedy algorithm analysis
Contradiction argument edition

• Let denote the jobs selected by the greedy algorithm.

• Let denote the jobs selected in an optimal solution.

• Assume for the largest possible .

• Since greedy is not optimal (by assumption), .

a1, a2, …, at

o1, o2, …, os

a1 = o1, a2 = o2, …, ak = ok k

s > k

14

Greedy algorithm analysis
Contradiction argument edition

• Let denote the jobs selected by the greedy algorithm.

• Let denote the jobs selected in an optimal solution.

• Assume for the largest possible .

• Since greedy is not optimal (by assumption), .

a1, a2, …, at

o1, o2, …, os

a1 = o1, a2 = o2, …, ak = ok k

s > k

15

Greedy algorithm analysis
Contradiction argument edition

• Let denote the jobs selected by the greedy algorithm.

• Let denote the jobs selected in an optimal solution.

• Assume for the largest possible .

• Since greedy is not optimal (by assumption), .

a1, a2, …, at

o1, o2, …, os

a1 = o1, a2 = o2, …, ak = ok k

s > k

16

Greedy graph algorithms

17

Shortest path problem

• Input: , edge weights , and source .

• Output: with the min-weight of a path .

G = (V, E) w : E → ℝ≥0 s ∈ V

d : V → ℝ≥0 d(u) = s ↝ u

18

Shortest path problem

• Input: , edge weights , and source .

• Output: with the min-weight of a path .

G = (V, E) w : E → ℝ≥0 s ∈ V

d : V → ℝ≥0 d(u) = s ↝ u

19

Dijkstra’s algorithm

• Initialize (“parent” of is undefined) for all .

• Set

• Create priority queue and for each

• While isn’t empty, pop minimum key-element from queue

• For each neighbor of , check if

• If so, , and

• Return for distance and parent functions.

d(v) ← ∞, p(v) ← ⊥ v v ≠ s

d(s) ← 0, p(s) ← ′￼′￼root′￼′￼

Q insert(Q, key = d(v), v) v ∈ V

Q u

v u d(u) + w(u, v) < d(v)

d(v) ← d(u) + w(u, v), p(v) ← u
setkey(Q, key = d(v), v)

d, p

20

Dijkstra’s algorithm
Example execution

21

Dijkstra’s algorithm
Example execution

22

Dijkstra’s algorithm
Example execution

23

Dijkstra’s algorithm
Example execution

24

Dijkstra’s algorithm
Example execution

25

Dijkstra’s algorithm
Example execution

26

Dijkstra’s algorithm
Example execution

27

Dijkstra’s algorithm
Proof of correctness

• Lemma: If is a path of minimal weight to , then for any vertex on
, the subpath from to is of minimal weight.

• Proof:

q s ↝ u u v
q s v

28

Dijkstra’s algorithm
Proof of correctness

• Lemma: If is a path of minimal weight to , then for any vertex on
, the subpath from to is of minimal weight.

• Proof:

q s ↝ u u v
q s v

29

Dijkstra’s algorithm
Proof of correctness

• Lemma: If is a path of minimal weight to , then for any vertex on
, the subpath from to is of minimal weight.

• Proof:

q s ↝ u u v
q s v

30

Dijkstra’s algorithm
Proof of correctness

• Claim: During run, let be the set of
vertices popped off . At that moment,

• for , = length of shortest
path and

• for , = length of shortest path
 with only the last edge leaving .

• Proof: By induction. Let be the next
vertex popped off.

S
Q

y ∈ S d(y)
s ↝ y

x ∉ S d(x)
s ↝ x S

u

31

Dijkstra’s algorithm
Proof of correctness

• Claim: During run, let be the set of
vertices popped off . At that moment,

• for , = length of shortest
path and

• for , = length of shortest path
 with only the last edge leaving .

• Proof: By induction. Let be the next
vertex popped off.

S
Q

y ∈ S d(y)
s ↝ y

x ∉ S d(x)
s ↝ x S

u

32

Dijkstra’s algorithm other perks

• The assignment of parent generates a tree of shortest paths with root

• If you only want to calculate the shortest path to vertex , can abort the
algorithm as soon as is popped from the queue.

• This follows from the correctness claim in the previous slide

• For the vertices in , the distance is minimal over all paths and not just the
ones contained in .

• Dijkstra’s algorithm also works for directed graphs. Similar proof — feel free to
use both directed and undirected versions in your psets/exams (without proof).

p(u) s

u
u

S
S

33

Dijkstra’s algorithm

• Initialize (“parent” of is undefined) for all .

• Set

• Create priority queue and for each

• While isn’t empty, pop minimum key-element from queue

• For each neighbor of , check if

• If so, , and

• Return for distance and parent functions.

d(v) ← ∞, p(v) ← ⊥ v v ≠ s

d(s) ← 0, p(s) ← root

Q insert(Q, key = d(v), v) v ∈ V

Q u

v u d(u) + w(u, v) < d(v)

d(v) ← d(u) + w(u, v), p(v) ← u
setkey(Q, key = d(v), v)

d, p

34

Priority queue data structure review

• Each element in the queue is associated with a key

• Operations allowed by the data structure

•

• or

• if is already in the queue.

• Implementations

• With arrays: time for find-min or delete, and time for set and decrease

• With heaps: time for insert, delete, decrease and for find-min

v k

insert(v, k)

(v, k) ← findmin(Q) (v, k) ← deletemin(Q)

decreasekey(v, k) v

O(n) O(1)

O(log n) O(1)

35

Dijkstra’s algorithm

• The algorithm has insertions, delete-mins since each vertex is added and
deleted once

• And decrease-keys with each decrease-key corresponding to an edge

• Implementation based runtimes

• Array has insert , delete-min , and decrease-key

• Array has total time

• Heap has insert, delete-min, and decrease-key

• Heap has total time

O(n) O(n)

O(m)

O(1) O(n) O(1)

O(n + n2 + m) = O(n2)

O(log n)

O(m log n)

36

Example problem: Johnny’s birthday present

• Consider a city expressed as a directed weighted
graph with weight function .

• Johnny’s mother starts at and needs to get to
the birthday party at location

• She forgot to buy a birthday present though and can
find one at vertices .

• Goal: Calculate the shortest path from that
includes a vertex of .

G = (V, E) w : E → ℝ≥0

s ∈ V
t ∈ V

V′￼ ⊆ V

s ↝ t
V′￼

37

Johnny’s birthday present

• Naive algorithm: Brute-force search + Dijkstra’s algorithm

• We want to compute

• Iterate over each “midpoint” ,

• And use Dijkstra’s twice to compute

• Keep track of the minimum as we go along

• Runtime is

• Can we do better?

min
u∈V′￼

d(s, u) + d(u, t)

u ∈ V′￼

d(s, u) + d(u, t)

O(|V′￼|) ⋅ Runtime(Dijkstra′￼s) = O(|V′￼|m log n)

38

Johnny’s birthday present

• The key will be finding a better graph.

• Consider a graph with vertex set
with a vertex indicating location x
[whether store has been visited]

• Starting vertex: since item isn’t acquired

• End vertex: since item is acquired

• Now we are looking for shortest path from
to in graph . But what is ?

V2 = V × {0,1}
(v, b) ∈ V2

(s,0)

(t,1)

(s,0)
(t,1) G2 = (V2, E2) E2

39

Johnny’s birthday present

• Algorithm:

• Let .

• Construct edge set by including
and whenever in . Set the
weight of the new edges to be that of

• For every , include edge of
weight 0.

• Run Dijkstra’s on from to .

• Runtime:

V2 = V × {0,1}

E2 (u,0) → (v,0)
(u,1) → (v,1) u → v E

u → v

v ∈ V′￼ (v,0) → (v,1)

G2 (s,0) (t,1)

O((2m + n)log(2n)) = O(m log n)

40

Johnny’s birthday present

• Correctness:

• There is a 1-to-1 correspondence between

• paths for in .

• And paths in .

• This is because any path in must descend in the second
coordinate once and this can only happen at a vertex . No
edges allow ascending in the second coordinate.

• In particular, both paths in the correspondence have the same
length.

• Therefore, optimizing over the second set of paths is equivalent to
the optimizing over the first.

• Dijkstra’s algorithm optimizes over the second set of paths.

s ↝ v ↝ t v ∈ V′￼ G

(s,0) ↝ (t,1) G2

G2
v ∈ V′￼

41

