
Chinmay Nirkhe | CSE 421 Winter 2026

Lecture 4
Directed graphs and greedy algorithms

1

Depth-first search on directed graphs

• Same as DFS on undirected
graphs except we only add
neighbor if an edge points
from .

• DFS starting from will visit all
vertices reachable by a
directed path .

v
u → v

s
u

s ↝ u

2

DFS edge nomenclature

3

Back edge

Connects vertex to its
ancestor in DFS tree

DFS edge nomenclature

4

Back edge

Connects vertex to its
ancestor in DFS tree

Forward edge

Non-tree edge
connecting vertex to its
descendant in DFS tree

DFS edge nomenclature

5

Back edge

Connects vertex to its
ancestor in DFS tree

Cross edge

Connects vertices across branches. Always high low in DFS tree→

Forward edge

Non-tree edge
connecting vertex to its
descendant in DFS tree

DFS edge nomenclature

6

Back edge

Connects vertex to its
ancestor in DFS tree

Cross edge

Connects vertices across branches. Always high low in DFS tree→

Tree edge

The edges in the DFS tree

Unvisited edge

The edges not visited during DFS
Forward edge

Non-tree edge
connecting vertex to its
descendant in DFS tree

DFS edge nomenclature

7

Back edge

Connects vertex to its
ancestor in DFS tree

Cross edge

Connects vertices across branches. Always high low in DFS tree→

Tree edge

The edges in the DFS tree

Unvisited edge

The edges not visited during DFS

Fact: Every cycle in a directed graph must
contain a back edge.

Forward edge

Non-tree edge
connecting vertex to its
descendant in DFS tree

Directed acyclic graphs

• A directed graph is acyclic iff it has no
directed cycles

• Also referred to as a “DAG”

• Advanced: There is a algorithm
(Kosaraju’s or Tarjan’s) for shrinking the
“strongly connected components” of a
general graph to convert it into a DAG

G

O(n + m)

8

Topological sorting of graphs

• Input: a directed acyclic graph DAG

• Output: An injective numbering such that edges only go from lower
numbered to higher numbered vertices. 
 
i.e. for , we must have .

• Applications

• Vertices represents tasks and edges represent prerequisites

• Topological sorts gives a sequential ordering for how to solve the system

• For general graphs, generate DAG by shrinking SCCs and then process SCCs in the order
given by topological sort.

G = (V, E)

N : V ↪ {1,…, n}

u → v N(u) < N(v)

9

In-degree and out-degree

10

In-degree zero vertices

• Claim: Every DAG has at least one vertex of in-degree 0.

• Proof:

• Assume every vertex has in-degree .

• Starting with any vertex pick an in-edge and go in reverse to .
Repeat.

• Since there are only vertices, eventually a vertex will be repeated. This
means there is a cycle, a contradiction.

≥ 1

v u → v u

n

11

Algorithm for topological sort

• Any vertex of in-degree 0 can be numbered as 1

• Can run DFS starting from

• Alternative simpler idea:

• If we remove and assign , then the rest is still a DAG

• Then, there is a new vertex of in-degree 0

• Repeat, until all vertices are exhausted

v1

v1

v1 N(v1) = 1

v2

12

Implementing topological sort

13

Implementing topological sort

14

Implementing topological sort

15

Implementing topological sort

16

Implementing topological sort

17

Implementing topological sort

18

Implementing topological sort

• Issue is finding the next vertex that has in-degree 0. Can be algorithmically
slow.

• Observe that when we remove the vertex , the in-degree of only the out-
neighbors of will decrease.

vj
vj

19

Implementing topological sort

• Algorithm:

• Iterate through all vertices and set in-degree of each vertex. Initialize
queue with vertices such that . Set .

• While is non-empty, pop vertex off queue

• Set Increment

• Decrease for every nbhr. s.t. If , add to .

• Runtime: Each edge is visited only once. So time.

d(v) =
Q d(v) = 0 j ← 1

Q u

N(u) ← j . j ← j + 1.

d(v) ← d(v) − 1 v u → v . d(v) = 0 v Q

O(n + m)

20

Greedy algorithms

21

An introduction to algorithms

• Goal is to understand how to analyze and design algorithms

• To understand how small changes have big effects on outcomes

• Build a repertoire of techniques for designing algorithms

• Identifying when to use which family of algorithms

• Course is structured by teaching various families of algorithms

• Section and problem sets will cover example instantiations pertinent to that week

• Midterms and finals will have problems but won’t say which family of algorithms
to use

22

Interval scheduling

• Input: start and end times for for “jobs”

• Output: A maximal set of mutually compatible jobs

(si, ti) i = 1,…, n n

23

Interval scheduling

• Input: start and end times for for “jobs”

• Output: A maximal set of mutually compatible jobs

(si, ti) i = 1,…, n n

24

Interval scheduling

• Input: start and end times for for “jobs”

• Output: A maximal set of mutually compatible jobs

(si, ti) i = 1,…, n n

25

Interval scheduling

• Input: start and end times for for “jobs”

• Output: A maximal set of mutually compatible jobs

• Algorithm:

• Brute-force: Iterate through all possible selections. Check in time
if selection is (a) feasible and (b) maximal.

• Greedy: Decide a selection criteria and select jobs accordingly.

(si, ti) i = 1,…, n n

2n O(n)

26

The principle of greedy algorithms

• Solving the optimization problem will require making many decisions (such as
whether to include or not a job in the schedule)

• In a greedy algorithm, we make each decision locally without looking as to
how it will effect future decisions

• Not every greedy criteria for making decisions works

• It’s not obvious which criteria will work

• We will focus on methods for proving that greedy algorithms do work

• When a greedy decision is made, it will be provably optimal
27

Greedy algorithms for interval scheduling

• Algorithm: Select the job with earliest start time of jobs not selected.

• Counterexample:

si

28

Greedy algorithms for interval scheduling

• Algorithm: Select the job with earliest start time of jobs not selected.

• Counterexample:

si

29

Greedy algorithms for interval scheduling

• Algorithm: Select the job with shortest duration of jobs not selected.

• Counterexample:

ti − si

30

Greedy algorithms for interval scheduling

• Algorithm: Select the job with shortest duration of jobs not selected.

• Counterexample:

ti − si

31

Greedy algorithms for interval scheduling

• Algorithm: Select the job with earliest ending of jobs not selected and
feasible.

• Proof of

• Example:

ti

32

Greedy algorithms for interval scheduling

• Algorithm: Select the job with earliest ending of jobs not selected and
feasible.

• Proof of correctness:

• Let be the set of jobs selected by algorithm and be any
other feasible set of jobs.

• Claim: The -th job in ends at least before the -th job in ends.

ti

ℰ ⊆ [n] ℱ ⊆ [n]

j ℰ j ℱ

33

Greedy algorithms for interval scheduling

• Claim: The -th job in ends at least before the -th job in ends.

• Proof:

j ℰ j ℱ

34

Greedy algorithms for interval scheduling

• Algorithm: Select the job with earliest ending of jobs not selected.

• Proof of correctness:

• Let be the set of jobs selected by algorithm and be any other
feasible set of jobs.

• Claim: The -th job in ends at least before the -th job in ends.

• If had more jobs than , we could have added the final job of to , a
contradiction to the def. of .

• So, has at least as many jobs as . True for all feasible , proving optimality.

ti

ℰ ⊆ [n] ℱ ⊆ [n]

j ℰ j ℱ

ℱ ℰ ℱ ℰ
ℰ

ℰ ℱ ℱ
35

Greedy algorithms for interval scheduling

• Input: start and end times for for “jobs”

• Output: A maximal set of mutually compatible jobs

• Algorithm: Select the job with earliest ending of jobs not selected.

• Details: Sort the jobs by earliest end time . Keep track of the current end
time over all selected jobs. Add new job if and update .

• Runtime: Sorting + linear time to create list of jobs.
.

(si, ti) i = 1,…, n n

ti

ti T
(si, ti) si ≥ T T ← ti

O(n log n) + O(n) = O(n log n)

36

The principle of greedy algorithms

• Solving the optimization problem will require making many decisions (such as
whether to include or not a job in the schedule)

• In a greedy algorithm, we make each decision locally without looking as to
how it will effect future decisions

• Not every greedy criteria for making decisions works

• It’s not obvious which criteria will work

• We will focus on methods for proving that greedy algorithms do work

• When a greedy decision is made, it will be provably optimal
37

A writeup for Interval Scheduling

• Input: start and end times for for “jobs”

• Output: A maximal set of mutually compatible jobs

• Algorithm: Select the job with earliest ending of jobs not selected.

• Details: Sort the jobs by earliest end time . Keep track of the current end
time over all selected jobs. Add new job if and update .

• Runtime: Sorting + linear time to create list of jobs.
.

(si, ti) i = 1,…, n n

ti

ti T
(si, ti) si ≥ T T ← ti

O(n log n) + O(n) = O(n log n)

38

A writeup for Interval Scheduling
Correctness argument

• Feasibility: When a new job is added by our algorithm, we require that
 where is the latest end-time over all previously selected jobs.

Therefore, the new job doesn’t overlap with any previously selected jobs. By
induction, the solution is feasible.

• Remarks:

• We use the phrase ‘by induction’ liberally. It’s implicit that the property
being preserved is ‘feasibility’. The induction is over the jobs selected.

• This is more relaxed than your previous algorithm writing tasks in 300-level
courses!

(si, ti)
si ≥ T T

39

A writeup for Interval Scheduling
Correctness argument

• Optimality:

• Let be the jobs selected by our greedy algorithm. Consider any other choice of jobs that
has more jobs than . We claim that the -th job in ends at least before the -th job in
ends.

• To prove this, assume that the claim is false and let be the smallest counterexample. The the
end-time of the first jobs of is than the end-time of the first jobs of . So, the
job selected by will end before that of as our greedy choice is earliest selection.

• Then, if has more jobs than , our greedy algorithm would have added the final job of
to , a contradiction to the definition of .

• Remarks: The assumption that is the smallest counterexample is a type of induction argument!

ℰ ℱ
ℰ j ℰ j ℱ

j
j − 1 ℰ ≤ j − 1 ℱ

ℰ ℱ

ℱ ℰ ℱ
ℰ ℰ

j

40

