Lecture 4

Directed graphs and greedy algorithms

Chinmay Nirkhe | CSE 421 Winter 2026




Depth-first search on directed graphs
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DFS edge nomenclature
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DFS edge nomenclature
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DFS edge nomenclature
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DFS edge nomenclature

Forward edge

Unvisited edge

/ The edges not visited during DFS

Non-tree edge 1
connecting vertex to its 0 Comn-

descendant in DFS tree Ty,
Back edge

Connects vertex to its
ancestor in DFS tree

[ 4
o
o
o®

\\ ,v”’ “\~
Ny ’ /\ Tree edge
ﬂ) ‘4. ] )

lo \

1l The edges in the DFS tree
& —

;; e o K !
N T Cross edge

12,

Connects vertices across branches. Always high — low in DFS tree
6



DFS edge nomGHCIature Unvisited edge

Forward edge
/ The edges not visited during DFS

Non-tree edge
connecting vertex to its
descendant in DFS treeg

Back edge

Connects vertex to its
ancestor in DFS tree

-~ y /\ Tree edge
\ IO \\\
1l The edges in the DFS tree

.

.,Z’

i .--""  Cross edge

Connects vertices across branches. Always high — low in DFS tree

14



Directed acyclic graphs

» A directed graph G is acyclic iff it has no : j
directed cycles ,/ \,
o Also referred to as a “DAG” °/ L\
/ \ T
« Advanced: There is a O(n + m) algorithm ‘ N
(Kosaraju’s or Tarjan’s) for shrinking the v / j :
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Topological sorting of graphs

e Input: a directed acyclic graph DAG G = (V, E)

e Output: An injective numbering N : V < {1,..., n} such that edges only go from lower
numbered to higher numbered vertices.

i.e. for u — v, we must have N(u) < N(v).
 Applications
» \ertices represents tasks and edges represent prerequisites
e Jopological sorts gives a sequential ordering for how to solve the system

e For general graphs, generate DAG by shrinking SCCs and then process SCCs in the order
given by topological sort.



In-degree and out-degree
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In-degree zero vertices

 Claim: Every DAG has at least one vertex of in-degree 0.

* Proof:
« Assume every vertex has in-degree > 1.

o Starting with any vertex v pick an in-edge u — v and go in reverse to u.
Repeat.

e Since there are only n vertices, eventually a vertex will be repeated. This
means there Is a cycle, a contradiction.
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Algorithm for topological sort

* Any vertex v, of in-degree 0 can be numbered as 1

 Can run DFS starting from v,

» Alternative simpler idea:

» If we remove v; and assign N(v;) = 1, then the rest is still a DAG

* Then, there is a new vertex v, of in-degree 0O

 Repeat, until all vertices are exhausted
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Implementing topological sort
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Implementing topological sort

* |ssue is finding the next vertex that has in-degree 0. Can be algorithmically
slow.

« Observe that when we remove the vertex Vi the in-degree of only the out-
neighbors of V; will decrease.
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Implementing topological sort

* Algorithm:

e lterate through all vertices and set d(v) = in-degree of each vertex. Initialize
queue O with vertices such that d(v) = 0. Setj « 1.

« While 0 is non-empty, pop vertex u off queue
e Set N(u) < j.Incrementj «— j+ 1.
e Decrease d(v) « d(v) — 1 forevery nbhr.vs.t.u — v.Ifd(v) =0, add v to Q.

« Runtime: Each edge is visited only once. So O(n + m) time.
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Greedy algorithms



An introduction to algorithms

* (Goal is to understand how to analyze and design algorithms
* Jo understand how small changes have big effects on outcomes
* Build a repertoire of techniques for designing algorithms
* |dentifying when to use which family of algorithms
* Course is structured by teaching various families of algorithms
e Section and problem sets will cover example instantiations pertinent to that week

 Midterms and finals will have problems but won’t say which family of algorithms
to use
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Interval scheduling

e Input: start and end times (s;, ¢,) fori = 1,..., n for n “jobs”

e Output: A maximal set of mutually compatible jobs
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Interval scheduling

e Input: start and end times (s;, ¢,) fori = 1,..., n for n “jobs”

e Output: A maximal set of mutually compatible jobs
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Interval scheduling

e Input: start and end times (s;, ¢,) fori = 1,..., n for n “jobs”

e Output: A maximal set of mutually compatible jobs
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Interval scheduling

e Input: start and end times (s;, ¢,) fori = 1,..., n for n “jobs”
e Output: A maximal set of mutually compatible jobs
e Algorithm:

» Brute-force: Iterate through all 2" possible selections. Check in O(n) time
If selection is (a) feasible and (b) maximal.

 Greedy: Decide a selection criteria and select jobs accordingly.
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The principle of greedy algorithms

» Solving the optimization problem will require making many decisions (such as
whether to include or not a job in the schedule)

* |n a greedy algorithm, we make each decision locally without looking as to
how it will effect future decisions

* Not every greedy criteria for making decisions works
* |t’s not obvious which criteria will work
* We will focus on methods for proving that greedy algorithms do work

 When a greedy decision is made, it will be provably optimal
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Greedy algorithms for interval scheduling

 Algorithm: Select the job with earliest start time s, of jobs not selected.
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Greedy algorithms for interval scheduling

 Algorithm: Select the job with earliest start time s, of jobs not selected.

 Counterexample:




Greedy algorithms for interval scheduling

 Algorithm: Select the job with shortest duration #; — . of jobs not selected.
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Greedy algorithms for interval scheduling

 Algorithm: Select the job with shortest duration #; — . of jobs not selected.

 Counterexample:
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Greedy algorithms for interval scheduling

 Algorithm: Select the job with earliest ending ; of jobs not selected and
feasible.

e Proof of

« Example:
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Greedy algorithms for interval scheduling

 Algorithm: Select the job with earliest ending ; of jobs not selected and
feasible.

* Proof of correctness:

« Let & C [n] be the set of jobs selected by algorithm and &# C [n] be any
other feasible set of jobs.

 Claim: The j-th job in & ends at least before the j-th job in & ends.

33



Greedy algorithms for interval scheduling

 Claim: The j-th job in & ends at least before the j-th job in & ends.
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Greedy algorithms for interval scheduling

« Algorithm: Select the job with earliest ending 7. of jobs not selected.

e Proof of correctness:

e Let & C [n] be the set of jobs selected by algorithm and & C [n] be any other
feasible set of jobs.

 Claim: The j-th job in & ends at least before the j-th job in & ends.

 If # had more jobs than &, we could have added the final job of & to &, a
contradiction to the def. of &.

e So, é has at least as many jobs as #. True for all feasible &, proving optimality.
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Greedy algorithms for interval scheduling

» Input: start and end times (s,,1;) fori = 1,..., n for n “jobs”

e Output: A maximal set of mutually compatible jobs

« Algorithm: Select the job with earliest ending #; of jobs not selected.

» Details: Sort the jobs by earliest end time ¢,. Keep track of 1 the current end
time over all selected jobs. Add new job (s;, 1,) if s, > T and update T" « ..

 Runtime: Sorting + linear time to create list of jobs.

Onlogn) + O(n) = O(nlogn).
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The principle of greedy algorithms

» Solving the optimization problem will require making many decisions (such as
whether to include or not a job in the schedule)

* |n a greedy algorithm, we make each decision locally without looking as to
how it will effect future decisions

* Not every greedy criteria for making decisions works
* |t’s not obvious which criteria will work
* We will focus on methods for proving that greedy algorithms do work

 When a greedy decision is made, it will be provably optimal
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A writeup for Interval Scheduling

» Input: start and end times (s,,1;) fori = 1,..., n for n “jobs”

e Output: A maximal set of mutually compatible jobs

« Algorithm: Select the job with earliest ending #; of jobs not selected.

» Details: Sort the jobs by earliest end time ¢,. Keep track of 1 the current end
time over all selected jobs. Add new job (s;, 1,) if s, > T and update T" « ..

 Runtime: Sorting + linear time to create list of jobs.

Onlogn) + O(n) = O(nlogn).
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A writeup for Interval Scheduling

Correctness argument

- Feasibility: When a new job (s;, #,) is added by our algorithm, we require that

s; > 1 where 1 is the latest end-time over all previously selected jobs.

Therefore, the new job doesn’t overlap with any previously selected jobs. By
induction, the solution is feasible.

 Remarks:

 We use the phrase ‘by induction’ liberally. It’'s implicit that the property
being preserved is ‘feasibility’. The induction is over the jobs selected.

* This Is more relaxed than your previous algorithm writing tasks in 300-level
courses!
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A writeup for Interval Scheduling

Correctness argument

 Optimality:

» Let & be the jobs selected by our greedy algorithm. Consider any other choice of jobs & that

has more jobs than &. We claim that the j-th job in & ends at least before the j-th job in F
ends.

 To prove this, assume that the claim is false and let j be the smallest counterexample. The the
end-time of the first ] — 1 jobs of & is < than the end-time of the first j — 1 jobs of &. So, the
job selected by & will end before that of & as our greedy choice is earliest selection.

» Then, if # has more jobs than &, our greedy algorithm would have added the final job of F#
to &, a contradiction to the definition of &.

« Remarks: The assumption that j is the smallest counterexample is a type of induction argument!
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