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Lecture 4
Directed graphs and greedy algorithms
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Depth-first search on directed graphs

• Same as DFS on undirected 
graphs except we only add 
neighbor  if an edge points 
from .


• DFS starting from  will visit all 
vertices  reachable by a 
directed path .

v
u → v

s
u

s ↝ u
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DFS edge nomenclature
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Back edge 

Connects vertex to its 
ancestor in DFS tree



DFS edge nomenclature

4

Back edge 

Connects vertex to its 
ancestor in DFS tree

Forward edge 

Non-tree edge 
connecting vertex to its 
descendant in DFS tree



DFS edge nomenclature

5

Back edge 

Connects vertex to its 
ancestor in DFS tree

Cross edge 

Connects vertices across branches. Always high  low in DFS tree→

Forward edge 

Non-tree edge 
connecting vertex to its 
descendant in DFS tree



DFS edge nomenclature
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Back edge 

Connects vertex to its 
ancestor in DFS tree

Cross edge 

Connects vertices across branches. Always high  low in DFS tree→

Tree edge 

The edges in the DFS tree

Unvisited edge 

The edges not visited during DFS
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Back edge 

Connects vertex to its 
ancestor in DFS tree

Cross edge 

Connects vertices across branches. Always high  low in DFS tree→

Tree edge 

The edges in the DFS tree

Unvisited edge 

The edges not visited during DFS

Fact: Every cycle in a directed graph must 
contain a back edge.

Forward edge 

Non-tree edge 
connecting vertex to its 
descendant in DFS tree



Directed acyclic graphs

• A directed graph  is acyclic iff it has no 
directed cycles


• Also referred to as a “DAG”


• Advanced: There is a  algorithm 
(Kosaraju’s or Tarjan’s) for shrinking the 
“strongly connected components” of a 
general graph to convert it into a DAG 

G

O(n + m)
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Topological sorting of graphs

• Input: a directed acyclic graph DAG 


• Output: An injective numbering  such that edges only go from lower 
numbered to higher numbered vertices. 
 
i.e. for , we must have .


• Applications


• Vertices represents tasks and edges represent prerequisites


• Topological sorts gives a sequential ordering for how to solve the system


• For general graphs, generate DAG by shrinking SCCs and then process SCCs in the order 
given by topological sort.

G = (V, E)

N : V ↪ {1,…, n}

u → v N(u) < N(v)
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In-degree and out-degree
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In-degree zero vertices

• Claim: Every DAG has at least one vertex of in-degree 0.


• Proof:


• Assume every vertex has in-degree .


• Starting with any vertex  pick an in-edge  and go in reverse to . 
Repeat.


• Since there are only  vertices, eventually a vertex will be repeated. This 
means there is a cycle, a contradiction.

≥ 1

v u → v u

n
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Algorithm for topological sort

• Any vertex  of in-degree 0 can be numbered as 1


• Can run DFS starting from 


• Alternative simpler idea:


• If we remove  and assign , then the rest is still a DAG


• Then, there is a new vertex  of in-degree 0


• Repeat, until all vertices are exhausted 

v1

v1

v1 N(v1) = 1

v2
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Implementing topological sort
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Implementing topological sort
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Implementing topological sort

• Issue is finding the next vertex that has in-degree 0. Can be algorithmically 
slow.


• Observe that when we remove the vertex , the in-degree of only the out-
neighbors of  will decrease.

vj
vj
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Implementing topological sort

• Algorithm: 

• Iterate through all vertices and set in-degree of each vertex. Initialize 
queue  with vertices such that . Set . 


• While  is non-empty, pop vertex  off queue


• Set Increment 


• Decrease  for every nbhr.  s.t. If , add  to .


• Runtime: Each edge is visited only once. So  time.

d(v) =
Q d(v) = 0 j ← 1

Q u

N(u) ← j . j ← j + 1.

d(v) ← d(v) − 1 v u → v . d(v) = 0 v Q

O(n + m)
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Greedy algorithms
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An introduction to algorithms

• Goal is to understand how to analyze and design algorithms


• To understand how small changes have big effects on outcomes


• Build a repertoire of techniques for designing algorithms


• Identifying when to use which family of algorithms


• Course is structured by teaching various families of algorithms


• Section and problem sets will cover example instantiations pertinent to that week


• Midterms and finals will have problems but won’t say which family of algorithms 
to use
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Interval scheduling

• Input: start and end times  for  for  “jobs”


• Output: A maximal set of mutually compatible jobs

(si, ti) i = 1,…, n n
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Interval scheduling

• Input: start and end times  for  for  “jobs”


• Output: A maximal set of mutually compatible jobs


• Algorithm: 

• Brute-force: Iterate through all  possible selections. Check in  time 
if selection is (a) feasible and (b) maximal.


• Greedy: Decide a selection criteria and select jobs accordingly.

(si, ti) i = 1,…, n n

2n O(n)
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The principle of greedy algorithms

• Solving the optimization problem will require making many decisions (such as 
whether to include or not a job in the schedule)


• In a greedy algorithm, we make each decision locally without looking as to 
how it will effect future decisions


• Not every greedy criteria for making decisions works


• It’s not obvious which criteria will work


• We will focus on methods for proving that greedy algorithms do work


• When a greedy decision is made, it will be provably optimal
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Greedy algorithms for interval scheduling

• Algorithm: Select the job with earliest start time  of jobs not selected.


• Counterexample:

si
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Greedy algorithms for interval scheduling

• Algorithm: Select the job with earliest start time  of jobs not selected.


• Counterexample:

si

29



Greedy algorithms for interval scheduling

• Algorithm: Select the job with shortest duration  of jobs not selected.


• Counterexample:

ti − si
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Greedy algorithms for interval scheduling

• Algorithm: Select the job with shortest duration  of jobs not selected.


• Counterexample:

ti − si
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Greedy algorithms for interval scheduling

• Algorithm: Select the job with earliest ending  of jobs not selected and 
feasible.


• Proof of


• Example:

ti
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Greedy algorithms for interval scheduling

• Algorithm: Select the job with earliest ending  of jobs not selected and 
feasible.


• Proof of correctness:


• Let  be the set of jobs selected by algorithm and  be any 
other feasible set of jobs.


• Claim: The -th job in  ends at least before the -th job in  ends.

ti

ℰ ⊆ [n] ℱ ⊆ [n]

j ℰ j ℱ
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Greedy algorithms for interval scheduling

• Claim: The -th job in  ends at least before the -th job in  ends. 

• Proof: 

j ℰ j ℱ
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Greedy algorithms for interval scheduling

• Algorithm: Select the job with earliest ending  of jobs not selected.


• Proof of correctness:


• Let  be the set of jobs selected by algorithm and  be any other 
feasible set of jobs.


• Claim: The -th job in  ends at least before the -th job in  ends.


• If  had more jobs than , we could have added the final job of  to , a 
contradiction to the def. of . 


• So,  has at least as many jobs as . True for all feasible , proving optimality.

ti

ℰ ⊆ [n] ℱ ⊆ [n]

j ℰ j ℱ

ℱ ℰ ℱ ℰ
ℰ

ℰ ℱ ℱ
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Greedy algorithms for interval scheduling

• Input: start and end times  for  for  “jobs”


• Output: A maximal set of mutually compatible jobs


• Algorithm: Select the job with earliest ending  of jobs not selected.


• Details: Sort the jobs by earliest end time . Keep track of  the current end 
time over all selected jobs. Add new job  if  and update .


• Runtime: Sorting + linear time to create list of jobs. 
.

(si, ti) i = 1,…, n n

ti

ti T
(si, ti) si ≥ T T ← ti

O(n log n) + O(n) = O(n log n)
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The principle of greedy algorithms

• Solving the optimization problem will require making many decisions (such as 
whether to include or not a job in the schedule)


• In a greedy algorithm, we make each decision locally without looking as to 
how it will effect future decisions


• Not every greedy criteria for making decisions works


• It’s not obvious which criteria will work


• We will focus on methods for proving that greedy algorithms do work


• When a greedy decision is made, it will be provably optimal
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A writeup for Interval Scheduling

• Input: start and end times  for  for  “jobs”


• Output: A maximal set of mutually compatible jobs


• Algorithm: Select the job with earliest ending  of jobs not selected.


• Details: Sort the jobs by earliest end time . Keep track of  the current end 
time over all selected jobs. Add new job  if  and update .


• Runtime: Sorting + linear time to create list of jobs. 
.

(si, ti) i = 1,…, n n

ti

ti T
(si, ti) si ≥ T T ← ti

O(n log n) + O(n) = O(n log n)
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A writeup for Interval Scheduling
Correctness argument

• Feasibility: When a new job  is added by our algorithm, we require that 
 where  is the latest end-time over all previously selected jobs. 

Therefore, the new job doesn’t overlap with any previously selected jobs. By 
induction, the solution is feasible.


• Remarks: 

• We use the phrase ‘by induction’ liberally. It’s implicit that the property 
being preserved is ‘feasibility’. The induction is over the jobs selected.


• This is more relaxed than your previous algorithm writing tasks in 300-level 
courses!

(si, ti)
si ≥ T T
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A writeup for Interval Scheduling
Correctness argument

• Optimality:   

• Let  be the jobs selected by our greedy algorithm. Consider any other choice of jobs  that 
has more jobs than . We claim that the -th job in  ends at least before the -th job in  
ends. 


• To prove this, assume that the claim is false and let  be the smallest counterexample. The the 
end-time of the first  jobs of  is  than the end-time of the first  jobs of . So, the 
job selected by  will end before that of  as our greedy choice is earliest selection.


• Then, if  has more jobs than , our greedy algorithm would have added the final job of  
to , a contradiction to the definition of .


• Remarks: The assumption that  is the smallest counterexample is a type of induction argument! 

ℰ ℱ
ℰ j ℰ j ℱ

j
j − 1 ℰ ≤ j − 1 ℱ

ℰ ℱ

ℱ ℰ ℱ
ℰ ℰ

j
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