Lecture 4

Directed graphs and greedy algorithms

Chinmay Nirkhe | CSE 421 Winter 2026

Depth-first search on directed graphs

@ Grommmr s e e O
* Same as DFS on undirected / 3 ““““
graphs except we only add EXh ‘,
neighbor v if an edge points R
fromu — v. / \ T /
- DFS starting from s will visit all /3 N o T,
vertices u reachable by a S /
directed path s ~ u. e 7 ’ R /
N
¢

DFS edge nomenclature

@ Sooor T T T T T e L
q /, '~\$°
Back edge
2 . 9

. 'I' ‘\ /" ’.\
Connects vertex to its g
ancestor in DFS tree e
'_/ \\ ,”,’,

DFS edge nomenclature

Forward edge

Non-tree edge 1

connecting vertex to its @ Goommmim e e O

descendant in DFS tree / S
Back edge

Connects vertex to its
ancestor in DFS tree

[J
o
o
°®

DFS edge nomenclature

Forward edge

Non-tree edge 1
connecting vertex to its @ Grommmmrm s sem e b
descendant in DFS tree/s . Ty,
Back edge]L."
[
,?‘?

Connects vertex to its
ancestor in DFS tree

.]Z'

Connects vertices across branches. Always high — low in DFS tree
5

DFS edge nomenclature

Forward edge

Unvisited edge

/ The edges not visited during DFS

Non-tree edge 1
connecting vertex to its 0 Comn-

descendant in DFS tree Ty,
Back edge

Connects vertex to its
ancestor in DFS tree

[4
o
o
o®

\\ ,v”’ “\~
Ny ’ /\ Tree edge
ﬂ) ‘4.])

lo \

1l The edges in the DFS tree
& —

;; e o K !
N T Cross edge

12,

Connects vertices across branches. Always high — low in DFS tree
6

DFS edge nomGHCIature Unvisited edge

Forward edge
/ The edges not visited during DFS

Non-tree edge
connecting vertex to its
descendant in DFS treeg

Back edge

Connects vertex to its
ancestor in DFS tree

-~ y /\ Tree edge
\ IO \\\
1l The edges in the DFS tree

.

.,Z’

i .--"" Cross edge

Connects vertices across branches. Always high — low in DFS tree

14

Directed acyclic graphs

» A directed graph G is acyclic iff it has no : j
directed cycles ,/ \,
o Also referred to as a “DAG” °/ L\
/ \ T
« Advanced: There is a O(n + m) algorithm ‘ N
(Kosaraju’s or Tarjan’s) for shrinking the v / j :
“strongly connected components” of a N

eneral graph to convert it into a DAG)
g grap J //

&

Topological sorting of graphs

e Input: a directed acyclic graph DAG G = (V, E)

e Output: An injective numbering N : V < {1,..., n} such that edges only go from lower
numbered to higher numbered vertices.

i.e. for u — v, we must have N(u) < N(v).
 Applications
» \ertices represents tasks and edges represent prerequisites
e Jopological sorts gives a sequential ordering for how to solve the system

e For general graphs, generate DAG by shrinking SCCs and then process SCCs in the order
given by topological sort.

In-degree and out-degree

e btgvu_ \ . / put §r.
_—— '\/\
Y

In-degree zero vertices

 Claim: Every DAG has at least one vertex of in-degree 0.

* Proof:
« Assume every vertex has in-degree > 1.

o Starting with any vertex v pick an in-edge u — v and go in reverse to u.
Repeat.

e Since there are only n vertices, eventually a vertex will be repeated. This
means there Is a cycle, a contradiction.

11

Algorithm for topological sort

* Any vertex v, of in-degree 0 can be numbered as 1

 Can run DFS starting from v,

» Alternative simpler idea:

» If we remove v; and assign N(v;) = 1, then the rest is still a DAG

* Then, there is a new vertex v, of in-degree 0O

 Repeat, until all vertices are exhausted

12

Implementing topological sort

P

~/ | :

Implementing topological sort

1

/./ ~.
/f\y/ =
/) | :

Implementing topological sort

Implementing topological sort

Implementing topological sort

' rt
Implementing topological so

~/

Implementing topological sort

* |ssue is finding the next vertex that has in-degree 0. Can be algorithmically
slow.

« Observe that when we remove the vertex Vi the in-degree of only the out-
neighbors of V; will decrease.

19

Implementing topological sort

* Algorithm:

e lterate through all vertices and set d(v) = in-degree of each vertex. Initialize
queue O with vertices such that d(v) = 0. Setj « 1.

« While 0 is non-empty, pop vertex u off queue
e Set N(u) < j.Incrementj «— j+ 1.
e Decrease d(v) « d(v) — 1 forevery nbhr.vs.t.u — v.Ifd(v) =0, add v to Q.

« Runtime: Each edge is visited only once. So O(n + m) time.

20

Greedy algorithms

An introduction to algorithms

* (Goal is to understand how to analyze and design algorithms
* Jo understand how small changes have big effects on outcomes
* Build a repertoire of techniques for designing algorithms
* |dentifying when to use which family of algorithms
* Course is structured by teaching various families of algorithms
e Section and problem sets will cover example instantiations pertinent to that week

 Midterms and finals will have problems but won’t say which family of algorithms
to use

22

Interval scheduling

e Input: start and end times (s;, ¢,) fori = 1,..., n for n “jobs”

e Output: A maximal set of mutually compatible jobs

. >
0 1 2 3 4 5 6 7 8 9 10 1 Time

Interval scheduling

e Input: start and end times (s;, ¢,) fori = 1,..., n for n “jobs”

e Output: A maximal set of mutually compatible jobs

11 Time

Interval scheduling

e Input: start and end times (s;, ¢,) fori = 1,..., n for n “jobs”

e Output: A maximal set of mutually compatible jobs

a

0] 1 2 3 4 5 6 7/ 8 9 10 11 Time

Interval scheduling

e Input: start and end times (s;, ¢,) fori = 1,..., n for n “jobs”
e Output: A maximal set of mutually compatible jobs
e Algorithm:

» Brute-force: Iterate through all 2" possible selections. Check in O(n) time
If selection is (a) feasible and (b) maximal.

 Greedy: Decide a selection criteria and select jobs accordingly.

26

The principle of greedy algorithms

» Solving the optimization problem will require making many decisions (such as
whether to include or not a job in the schedule)

* |n a greedy algorithm, we make each decision locally without looking as to
how it will effect future decisions

* Not every greedy criteria for making decisions works
* |t’s not obvious which criteria will work
* We will focus on methods for proving that greedy algorithms do work

 When a greedy decision is made, it will be provably optimal

27

Greedy algorithms for interval scheduling

 Algorithm: Select the job with earliest start time s, of jobs not selected.

 Counterexample: whet gefs Scheckesl by Hhis stradeser .
/ 7 ¢

. 7 Y 5 - P
= & = Vit A= ey S . T G e,
B B RFE I iR FH N S e 5
» £ o & g [£, ¥ L/ 8 S & s e - o Ay B ERD Sl NLag ai
= LI 4l P A L%) e et 5 X S *x‘. B % 4 B LT T O Y S
3 3 e B o o 4 3 (8 SN AT S B Y b X A -
3 > 4 s = -, 53 N R % 4 . 5 A 4 o) S S 5 A >
2 FLihd” £ 4P R R & b e by % .
G 4 i X N | b e N
S A% 2
i

28

Greedy algorithms for interval scheduling

 Algorithm: Select the job with earliest start time s, of jobs not selected.

 Counterexample:

Greedy algorithms for interval scheduling

 Algorithm: Select the job with shortest duration #; — . of jobs not selected.

 Counterexample: sk Ha ﬁ“*“%’”‘

i ¥ 2 Y

B N 57 LA

LR D S
2P & ¢
S >

30

Greedy algorithms for interval scheduling

 Algorithm: Select the job with shortest duration #; — . of jobs not selected.

 Counterexample:

31

Greedy algorithms for interval scheduling

 Algorithm: Select the job with earliest ending ; of jobs not selected and
feasible.

e Proof of

« Example:

L d S
0 1 2 3 4 5 6 7 8 9 10 11 Time

Greedy algorithms for interval scheduling

 Algorithm: Select the job with earliest ending ; of jobs not selected and
feasible.

* Proof of correctness:

« Let & C [n] be the set of jobs selected by algorithm and &# C [n] be any
other feasible set of jobs.

 Claim: The j-th job in & ends at least before the j-th job in & ends.

33

Greedy algorithms for interval scheduling

 Claim: The j-th job in & ends at least before the j-th job in & ends.

 Proof: |
Assima CJ&’V CINT\‘QWI\C.HOA’) That ’H’\U V) AQ’"" ool le:}d be (A
Sl ot QUVV\\'C(L\(&"v\r e . QIC\\A"C .\
A B _
& A‘obg —> [yl 1 | r} Jl
pbs > [
T c [I

Codmadich o & o & e b D st selecked bk onds locpre b B

34

Greedy algorithms for interval scheduling

« Algorithm: Select the job with earliest ending 7. of jobs not selected.

e Proof of correctness:

e Let & C [n] be the set of jobs selected by algorithm and & C [n] be any other
feasible set of jobs.

 Claim: The j-th job in & ends at least before the j-th job in & ends.

 If # had more jobs than &, we could have added the final job of & to &, a
contradiction to the def. of &.

e So, é has at least as many jobs as #. True for all feasible &, proving optimality.

35

Greedy algorithms for interval scheduling

» Input: start and end times (s,,1;) fori = 1,..., n for n “jobs”

e Output: A maximal set of mutually compatible jobs

« Algorithm: Select the job with earliest ending #; of jobs not selected.

» Details: Sort the jobs by earliest end time ¢,. Keep track of 1 the current end
time over all selected jobs. Add new job (s;, 1,) if s, > T and update T" « ..

 Runtime: Sorting + linear time to create list of jobs.

Onlogn) + O(n) = O(nlogn).

36

The principle of greedy algorithms

» Solving the optimization problem will require making many decisions (such as
whether to include or not a job in the schedule)

* |n a greedy algorithm, we make each decision locally without looking as to
how it will effect future decisions

* Not every greedy criteria for making decisions works
* |t’s not obvious which criteria will work
* We will focus on methods for proving that greedy algorithms do work

 When a greedy decision is made, it will be provably optimal

37

A writeup for Interval Scheduling

» Input: start and end times (s,,1;) fori = 1,..., n for n “jobs”

e Output: A maximal set of mutually compatible jobs

« Algorithm: Select the job with earliest ending #; of jobs not selected.

» Details: Sort the jobs by earliest end time ¢,. Keep track of 1 the current end
time over all selected jobs. Add new job (s;, 1,) if s, > T and update T" « ..

 Runtime: Sorting + linear time to create list of jobs.

Onlogn) + O(n) = O(nlogn).

38

A writeup for Interval Scheduling

Correctness argument

- Feasibility: When a new job (s;, #,) is added by our algorithm, we require that

s; > 1 where 1 is the latest end-time over all previously selected jobs.

Therefore, the new job doesn’t overlap with any previously selected jobs. By
induction, the solution is feasible.

 Remarks:

 We use the phrase ‘by induction’ liberally. It’'s implicit that the property
being preserved is ‘feasibility’. The induction is over the jobs selected.

* This Is more relaxed than your previous algorithm writing tasks in 300-level
courses!

39

A writeup for Interval Scheduling

Correctness argument

 Optimality:

» Let & be the jobs selected by our greedy algorithm. Consider any other choice of jobs & that

has more jobs than &. We claim that the j-th job in & ends at least before the j-th job in F
ends.

 To prove this, assume that the claim is false and let j be the smallest counterexample. The the
end-time of the first] — 1 jobs of & is < than the end-time of the first j — 1 jobs of &. So, the
job selected by & will end before that of & as our greedy choice is earliest selection.

» Then, if # has more jobs than &, our greedy algorithm would have added the final job of F#
to &, a contradiction to the definition of &.

« Remarks: The assumption that j is the smallest counterexample is a type of induction argument!

40

