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Lecture 3
Graph traversal. Depth- and breadth-first search
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Previously on CSE 421 …
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A writeup for breadth-first search

• Input: an undirected graph  and a starting root  


• Output: A tree  such that  for any vertex . (For any unreachable 
vertex  , by convention,  and  is not included in .)


• Algorithm:


• Details: Initialize a queue  with  and empty tree . While  isn’t empty, pop  off and 
mark as visited. Then and add all unvisited neighbors  of  to the queue and add edge 

 to .


• Runtime: Each edge and vertex is visited/referenced at most  times so total 
complexity is at most .

G = (V, E) s

T dT(s, v) = dG(s, v) v ∈ G
v dG(s, v) = ∞ v T

Q s T Q v
w v

(v, w) T

O(1)
O( |V | + |E | )
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Today
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A writeup for breadth-first search
Correctness argument

• Claim: A tree  such that  for any vertex .


• Stronger claim: A tree  such that  for any vertex  and BFS dequeues 
vertices in monotonically increasing order of distance.


• Proof: (Induction)


• Base case:  is the only vertex at distance 0 and it is dequeued first. Also .


• Induction: Assume that for all vertices  with , that  and 
that they are dequeued before vertices at distance .


• Let  be a vertex at distance  and  its predecessor on the shortest -path 
to . Then, .


• When BFS dequeues , it observes the edge  with  unvisited (by induction) and adds 
 to . So,  

 
. 

T dT(s, v) = dG(s, v) v ∈ G

T dT(s, v) = dG(s, v) v ∈ G

s dT(s, s) = dG(s, s)

v dG(s, v) = k dT(s, v) = dG(s, v) = k
> k

w dG(s, w) = k + 1 v G
s dG(s, v) = k

v (v, w) w
(v, w) T

dT(s, w) = dT(s, v) + 1 = dG(s, v) + 1 = dG(s, w)
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Connected components 

• For a undirected graph , a connected component  is a maximal set 
such that


• For all pairs , there exists a path 


• There are no edges between  and .


• Then,  iff  in the same connected component

G C ⊆ V

u, v ∈ C u ↝ v

C V∖C

u ↝ v u, v
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Connected components 

• Algorithm for computing connected components:


• Idea: Let Create an array 
smallest numbered vertex connected to . A 
canonical name for the connected component.


• Then  and  are connected iff . 
Better than storing all pairs of paths .

V = {1,…, n} . A(u) =
u

u v A(u) = A(v)
p(u, v)
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Connected components 

• Algorithm for computing connected components:


• Initialize all vertex as not visited.


• For  till ,


• If  is not visited, then run subroutine BFS(  ) and set  for every vertex visited by the BFS and mark 
each vertex as visited.


• Correctness: (sketch) Prove by induction on vertex number , that  equals the smallest numbered vertex 
connected to .


• Total runtime:  because


• Each vertex is visited once by outer routine and the BFS runs are disjoint and observes each edge a constant 
number of times.


• Could have run any generic graph traversal actually as long as it is efficient

s ← 1 n

s s A(u) ← s

u A(u)
u

O(n + m)
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Depth-first search

• Breadth-first search visits all the neighbors before diving in deeper


• Depth-first search visits as deep as possible


• The trees formed by the visiting order look quite different!


• Generated by different data structures but similar algorithm!


• BFS: Queue — first in, first out 

• DFS: Stack — first in, last out
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Breadth-first search (BFS)

• Assign a bit to every vertex as visited/not visited.


• Algorithm:


• Initialize set  and queue 


• Set all vertices to not visited. Set  as visited.


• While  isn’t empty, pop  off the queue.


• For every neighbor  of  that is not visited,


•  and set  to visited.


• Set .

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}
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Depth-first search (BFS)

• Assign a bit to every vertex as visited/not visited.


• Algorithm:


• Initialize set  and stack 


• Set all vertices to not visited.


• While  isn’t empty, pop  off the stack.


• If  is not visited, set  to visited


• For every neighbor  of  that is not visited,


• .


• Set .

R ← {s} S ← {s} .

S v

v v

u v

S ← S ∪ {u}

R ← R ∪ {u}
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Spanning trees

• A spanning tree  is a tree (no cycles) for a connected component such 
that every vertex in the component touches .


• BFS and DFS both generate spanning trees but they are different!

T ⊆ E
T
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Understanding the DFS spanning tree

• What do the edges not included in the spanning tree look like?
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Understanding the DFS spanning tree

• What do the edges not included in the spanning tree look like?

20

Def. For undirected 
graphs, a back edge 
is an edge that 
connects a vertex to 
a (proper) ancestor in 
the tree.



No cross edges in DFS
(for undirected graphs) 

• Claim: For every edge , either  is an edge in  (tree 
edge), or else  or  is an ancestor of the other in  (back edge).


• Proof:


• DFS is called recursively as we explore. Wlog, assume DFS( ) is 
called before DFS( ).


• Case 1:  was marked “not visited” when  edge is examined. 
Then  (see figure).


• Case 2:  was marked “visited” when  edge is examined. Was 
visited in some other branch of the DFS( ) call. So  is a descendant 
of .  

(x, y) ∈ E (x, y) T
x y T

x
y

y (x, y)
(x, y) ∈ T

y (x, y)
x y

x
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Applications of graph traversal
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Bipartiteness testing
Application of graph traversal

• Recall, a graph is bipartite iff we can split  such that every edge is 
between .


• Equivalently, a graph is bipartite if we can color every vertex either red or blue 
such that each edge is between a red and a blue vertex.


• Input: Undirected graph 


• Output: A coloring if  is bipartite; else “not bipartite” 

V = X ⊔ Y
(x, y) ∈ X × Y

G

c : V → {red, blue} G
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Bipartite graph property

• Claim: A graph is bipartite iff it contains no odd cycles.


• Proof:


• If it contains an odd cycle, we can’t color the cycle let alone the 
rest of the graph.


• If it contains no odd cycles, run BFS starting from some vertex . 


• Color according to length from  in BFS tree with even = red, 
odd = blue.


• If there exists an edge between colors, we found an odd 
cycle, (a  to our assumption).

s

s

⊥
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Bipartiteness testing 

• Claim: A graph is bipartite iff it contains no odd cycles.


• Algorithm:


• Start BFS from some vertex . Instead of marking vertices as visited or not, marked 
them as “red”, “blue”, or “not visited”. Mark  as red and add  to queue .


• Pop vertex  from queue . 


• Check all neighbors  of  and make sure they are either “not visited” or the 
opposite color of . 


• If not, abort and output “not bipartite”.


• If so, add the “not visited” neighbors  to the queue  and color them with 
opposite color.


• If queue  is empty, output coloring generated.


• Runtime: Same as BFS, .

s
s s Q

u Q

v u
u

v Q

Q

O(n + m)
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s
s s Q

u Q

v u
u

v Q

Q

O(n + m)
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BFS edge property

• The BFS algorithm generates a tree  starting from root .


• Let layer  be the set of vertices distance  from  in .


• Claim: The edges  only occur between adjacent layers or the same 
layer.


• Proof: If there is an edge , then  should have 
been in  because it was added to the queue after  was analyzed. 


• Therefore, “bad edges” for bipartite testing only occur within the same 
layer. This finds an odd cycle.

T s

Li ⊆ V i s T

E

(u, v) ∈ Li × L≥i+2 v
Li+1 u
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Directed graphs
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Depth-first search on directed graphs

• Same as DFS on undirected 
graphs except we only add 
neighbor  if an edge points 
from .


• DFS starting from  will visit all 
vertices  reachable by a 
directed path .

v
u → v

s
u

s ↝ u
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