Lecture 3

Graph traversal. Depth- and breadth-first search

Chinmay Nirkhe | CSE 421 Winter 2026

Previously on CSE 421 ...

A writeup for breadth-first search

* Input: an undirected graph G = (V, E) and a starting root s

» Output: A tree T such that d(s,v) = d(s, v) for any vertex v € G. (For any unreachable
vertex v , by convention, d(s, V) = oo and v is not included in 7.)

e Algorithm:

« Details: Initialize a queue Q with s and empty tree 1. While Q isn’t empty, pop v off and
mark as visited. Then and add all unvisited neighbors w of v to the queue and add edge

(v,w)toT.

» Runtime: Each edge and vertex is visited/referenced at most O(1) times so total
complexity is at most O(| V| + | E|).

Today

A writeup for breadth-first search

Correctness argument

o Claim: A tree T such that d;(s, v) = d(s, v) for any vertex v € G.

» Stronger claim: A tree T such that d(s, v) = d;(s, v) for any vertex v € G and BFS dequeues
vertices in monotonically increasing order of distance.

* Proof: (Induction)

. Base case: s is the only vertex at distance 0 and it is dequeued first. Also d;(s, s) = d;(s,).

» Induction: Assume that for all vertices v with d(s, v) = k, that d;(s,v) = d(s,v) = k and
that they are dequeued before vertices at distance > k.

» Let w be a vertex at distance d;(s, w) = k+ 1 and v its predecessor on the shortest G-path
to 5. Then, d;(s,v) = k.

« When BFS dequeues v, it observes the edge (v, w) with w unvisited (by induction) and adds
(v,w)to T. So,

dr(s,w) =di(s,v)+ 1 =d;(s,v)+ 1 =d;(s,w).

Connected components

» For a undirected graph G, a connected component C C V' is a maximal set
such that

» For all pairs u,v € C, there exists apathu ~ v
» There are no edges between C and V\C.

e Then, u ~ v iff u, v in the same connected component

Connected components

* Algorithm for computing connected components:

e Idea: Let V= 1{1,...,n}.Create an array A(u) =
smallest numbered vertex connected to u. A
canonical name for the connected component.

Taskr whon all ’l>olw.s e

— lau_l\i Co MP&\RCX .

e Then u and v are connected iff A(u) = A(v).
Better than storing all pairs of paths p(u, v).

Connected components

* Algorithm for computing connected components:

e |nitialize all vertex as not visited.
e« Fors « 1 tilln,

o If 5 is not visited, then run subroutine BFS(s) and set A(u) « s for every vertex visited by the BFS and mark
each vertex as visited.

« Correctness: (sketch) Prove by induction on vertex number u, that A(u#) equals the smallest numbered vertex
connected to u.

« Total runtime: O(n + m) because

 Each vertex is visited once by outer routine and the BFS runs are disjoint and observes each edge a constant
number of times.

 Could have run any generic graph traversal actually as long as it is efficient

Depth-first search

* Breadth-first search visits all the neighbors before diving in deeper
 Depth-first search visits as deep as possible
* The trees formed by the visiting order look quite different!

* (Generated by different data structures but similar algorithm!

 BFS: Queue — first in, first out ff.; IHEEE (U]

e DFS: Stack — first in, last out in f\
>]

(1 [L (U]

O\A“' é/- |

Breadth-first search (BFS)

* Assign a bit to every vertex as visited/not visited.

* Algorithm:
o Initialize set R < {s} and queue O « {s}.
« Set all vertices to not visited. Set s as visited.
« While 0 isn’t empty, pop Vv off the queue.
* For every neighbor u of v that is not visited,
e) <« QU {u} and set u to visited.

e« SetR « RU {u}.

10

Depth-first search (BFS)

* Assign a bit to every vertex as visited/not visited.

* Algorithm:

|
e Initialize set R « {s} and stack § <« {s}. / \
e Set all vertices to not visited. O

« While S isn’t empty, pop v off the stack. |
e |f vis not visited, set v to visited
e For every neighbor u of v that is not visited, D

e S <« SuU{ul.

e SetR « RU {u}. N

11

Depth-first search (BFS)

* Assign a bit to every vertex as visited/not visited.

* Algorithm:

e Initialize set R « {s} and stack § <« {s}.

» Set all vertices to not visited.
« While § isn’t empty, pop v off the stack.
e |f vis not visited, set v to visited
e For every neighbor u of v that is not visited,
e S <« SuU{ul.
e SetR « RU {u}.

12

Breadth-first search (BFS)

* Assign a bit to every vertex as visited/not visited.

* Algorithm:
o Initialize set R < {s} and queue O « {s}.
« Set all vertices to not visited. Set s as visited.
« While 0 isn’t empty, pop Vv off the queue.
* For every neighbor u of v that is not visited,
e) <« QU {u} and set u to visited.

e« SetR « RU {u}.

13

Spanning trees

« A spanning tree I C L is a tree (no cycles) for a connected component such
that every vertex in the component touches 7.

 BFS and DFS both generate spanning trees but they are different!

BFS S’Pamm'r\ :3 Tru._ ‘D'FS gihvw\ﬁ -T;u...

14

Understanding the DFS spanning tree

 What do the edges not included in the spanning tree look like?

Understanding the DFS spanning tree

 What do the edges not included in the spanning tree look like?

S
Could ‘Hf\\'s red-

\ &dge, exist in the

AV/ A
vy

Understanding the DFS spanning tree

 What do the edges not included in the spanning tree look like?

S
Could ‘Hf\\'s red-

\ &dga exist in the

/ /\ jrqfh?
/\ [] i

Hg red c&a,e,.

Understanding the DFS spanning tree

 What do the edges not included in the spanning tree look like?

S
Could ‘Hf\\'s red-

\. &olge, exist i thy
/ \ jro«{)‘:\?
Sucla an adcdp. s /

C_c\.\lc;aQ O— ’ M. \/\})’\QJV\ W/\j O |
ovss c°(/ we. must have added
the red c&a,e,.

Understanding the DFS spanning tree

 What do the edges not included in the spanning tree look like?

S

. / \ What coout fuis
Y B
/ \.\. N

Understanding the DFS spanning tree

 What do the edges not included in the spanning tree look like?

S

/ \ Ut 3 |
Def. For undirected : , : hat cloout his
graphs, a back edge purple. ed 3"?
IS an edge that

connects a vertex to e

’ eet
a (proper) ancestor in /\ / Yes. Edges can com
/ Lo, Tree .

the tree.

No cross edges in DFS

(for undirected graphs)

« Claim: For every edge (x,y) € E, either (x, y) is an edge in T (tree
edge), or else x or y is an ancestor of the other in 1" (back edge).

* Prooft:

 DFS is called recursively as we explore. Wlog, assume DFS(x) is
called before DFS(y).

« Case 1: y was marked “not visited” when (x, y) edge is examined.
Then (x, y) € T (see figure).

« Case 2: y was marked “visited” when (x, y) edge is examined. Was
visited in some other branch of the DFS(x) call. So y is a descendant
of x.

21

Applications of graph traversal

-) _ .]
Bipartiteness testing M/M
Application of graph traversal .) y / \

« Recall, a graph is bipartite iff we can split V = X U Y such that every edge is
between (x,y) € X X Y.

O

 Equivalently, a graph is bipartite if we can color every vertex either red or blue
such that each edge is between a red and a blue vertex.

 |Input: Undirected graph G

e Output: A coloring ¢ : V — {red, bluel}if G is bipartite; else “not bipartite”

23

Bipartite graph property /@\
con’ . Oolo! O)’“" [

. o o eer . Ass—'ﬂ\/\ Coloc
 Claim: A graph is bipartite iff it contains no odd cycles. 3 é

®

e Proof:

e |f it contains an odd cycle, we can’t color the cycle let alone the
rest of the graph.

 |f it contains no odd cycles, run BFS starting from some vertex s.

e Color according to length from s in BFS tree with even = red,
odd = blue.

 |f there exists an edge between colors, we found an odd
cycle, (a L to our assumption).

24

Bipartiteness testing

e Claim: A graph is bipartite iff it contains no odd cycles.

Algorithm:

o Start BFS from some vertex s. Instead of marking vertices as visited or not, marked
them as “red”, “blue”, or “not visited”. Mark s as red and add s to queue Q.

* Pop vertex u from queue Q.

e Check all neighbors v of u and make sure they are either “not visited” or the
opposite color of u.

* |If not, abort and output “not bipartite”.

* If so, add the “not visited” neighbors v to the queue O and color them with
opposite color.

\

ye”o'«l c.d%o.,
* Runtime: Same as BFS, O(n + m). mMmakes -Hr\'sjm])k
\

not b, Faf':l""“}(,

 If queue Q is empty, output coloring generated.

25

Bipartiteness testing

e Claim: A graph is bipartite iff it contains no odd cycles.

Algorithm:

o Start BFS from some vertex s. Instead of marking vertices as visited or not, marked
them as “red”, “blue”, or “not visited”. Mark s as red and add s to queue Q.

* Pop vertex u from queue Q.

_ [\

e Check all neighbors v of u and make sure they are either “not visited” or the
opposite color of u.

* |If not, abort and output “not bipartite”.

* If so, add the “not visited” neighbors v to the queue O and color them with
opposite color.

(od d c7c |e.>

 If queue Q is empty, output coloring generated.
ye”ow c.da,o.,
e Runtime: Same as BFS, O(n + m). .
mokes Hai jm]:k
not b;‘)af‘r"'}(,

26

BFS edge property

« The BFS algorithm generates a tree 1 starting from root s.

« Let layer L; C V be the set of vertices distance i from s in 7.

« Claim: The edges E only occur between adjacent layers or the same
layer.

» Proof: If there is an edge (u,v) € L; X L., ,, then v should have
been in L, | because it was added to the queue after u was analyzed.

* Therefore, “bad edges” for bipartite testing only occur within the same
layer. This finds an odd cycle.

27

Directed graphs

PN O

e e |
e R h
\/> \QA/>'

Depth-first search on directed graphs

e Same as DFS on undirected
graphs except we only add

neighbor v if an edge points
fromu — v.

e DFS starting from s will visit all
vertices u reachable by a
directed path s ~ u.

Depth-first search on directed graphs

e Same as DFS on undirected
graphs except we only add

neighbor v if an edge points
fromu — v.

e DFS starting from s will visit all
vertices u reachable by a
directed path s ~ u.

Depth-first search on directed graphs

@ Grommmr s e e O
* Same as DFS on undirected / 3 ““““
graphs except we only add EXh ‘,
neighbor v if an edge points R
fromu — v. / \ T /
- DFS starting from s will visit all /3 N o T,
vertices u reachable by a S /
directed path s ~ u. e 7 ’ R /
N
¢

31

