
Chinmay Nirkhe | CSE 421 Winter 2026

Lecture 3
Graph traversal. Depth- and breadth-first search

1

Previously on CSE 421 …

2

A writeup for breadth-first search

• Input: an undirected graph and a starting root

• Output: A tree such that for any vertex . (For any unreachable
vertex , by convention, and is not included in .)

• Algorithm:

• Details: Initialize a queue with and empty tree . While isn’t empty, pop off and
mark as visited. Then and add all unvisited neighbors of to the queue and add edge

 to .

• Runtime: Each edge and vertex is visited/referenced at most times so total
complexity is at most .

G = (V, E) s

T dT(s, v) = dG(s, v) v ∈ G
v dG(s, v) = ∞ v T

Q s T Q v
w v

(v, w) T

O(1)
O(|V | + |E |)

3

Today

4

A writeup for breadth-first search
Correctness argument

• Claim: A tree such that for any vertex .

• Stronger claim: A tree such that for any vertex and BFS dequeues
vertices in monotonically increasing order of distance.

• Proof: (Induction)

• Base case: is the only vertex at distance 0 and it is dequeued first. Also .

• Induction: Assume that for all vertices with , that and
that they are dequeued before vertices at distance .

• Let be a vertex at distance and its predecessor on the shortest -path
to . Then, .

• When BFS dequeues , it observes the edge with unvisited (by induction) and adds
 to . So,  

 
.

T dT(s, v) = dG(s, v) v ∈ G

T dT(s, v) = dG(s, v) v ∈ G

s dT(s, s) = dG(s, s)

v dG(s, v) = k dT(s, v) = dG(s, v) = k
> k

w dG(s, w) = k + 1 v G
s dG(s, v) = k

v (v, w) w
(v, w) T

dT(s, w) = dT(s, v) + 1 = dG(s, v) + 1 = dG(s, w)

5

Connected components

• For a undirected graph , a connected component is a maximal set
such that

• For all pairs , there exists a path

• There are no edges between and .

• Then, iff in the same connected component

G C ⊆ V

u, v ∈ C u ↝ v

C V∖C

u ↝ v u, v

6

Connected components

• Algorithm for computing connected components:

• Idea: Let Create an array
smallest numbered vertex connected to . A
canonical name for the connected component.

• Then and are connected iff .
Better than storing all pairs of paths .

V = {1,…, n} . A(u) =
u

u v A(u) = A(v)
p(u, v)

7

Connected components

• Algorithm for computing connected components:

• Initialize all vertex as not visited.

• For till ,

• If is not visited, then run subroutine BFS() and set for every vertex visited by the BFS and mark
each vertex as visited.

• Correctness: (sketch) Prove by induction on vertex number , that equals the smallest numbered vertex
connected to .

• Total runtime: because

• Each vertex is visited once by outer routine and the BFS runs are disjoint and observes each edge a constant
number of times.

• Could have run any generic graph traversal actually as long as it is efficient

s ← 1 n

s s A(u) ← s

u A(u)
u

O(n + m)

8

Depth-first search

• Breadth-first search visits all the neighbors before diving in deeper

• Depth-first search visits as deep as possible

• The trees formed by the visiting order look quite different!

• Generated by different data structures but similar algorithm!

• BFS: Queue — first in, first out

• DFS: Stack — first in, last out

9

Breadth-first search (BFS)

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

10

Depth-first search (BFS)

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and stack

• Set all vertices to not visited.

• While isn’t empty, pop off the stack.

• If is not visited, set to visited

• For every neighbor of that is not visited,

• .

• Set .

R ← {s} S ← {s} .

S v

v v

u v

S ← S ∪ {u}

R ← R ∪ {u}

11

Depth-first search (BFS)

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and stack

• Set all vertices to not visited.

• While isn’t empty, pop off the stack.

• If is not visited, set to visited

• For every neighbor of that is not visited,

• .

• Set .

R ← {s} S ← {s} .

S v

v v

u v

S ← S ∪ {u}

R ← R ∪ {u}

12

Breadth-first search (BFS)

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

13

Spanning trees

• A spanning tree is a tree (no cycles) for a connected component such
that every vertex in the component touches .

• BFS and DFS both generate spanning trees but they are different!

T ⊆ E
T

14

Understanding the DFS spanning tree

• What do the edges not included in the spanning tree look like?

15

Understanding the DFS spanning tree

• What do the edges not included in the spanning tree look like?

16

Understanding the DFS spanning tree

• What do the edges not included in the spanning tree look like?

17

Understanding the DFS spanning tree

• What do the edges not included in the spanning tree look like?

18

Understanding the DFS spanning tree

• What do the edges not included in the spanning tree look like?

19

Understanding the DFS spanning tree

• What do the edges not included in the spanning tree look like?

20

Def. For undirected
graphs, a back edge
is an edge that
connects a vertex to
a (proper) ancestor in
the tree.

No cross edges in DFS
(for undirected graphs)

• Claim: For every edge , either is an edge in (tree
edge), or else or is an ancestor of the other in (back edge).

• Proof:

• DFS is called recursively as we explore. Wlog, assume DFS() is
called before DFS().

• Case 1: was marked “not visited” when edge is examined.
Then (see figure).

• Case 2: was marked “visited” when edge is examined. Was
visited in some other branch of the DFS() call. So is a descendant
of .

(x, y) ∈ E (x, y) T
x y T

x
y

y (x, y)
(x, y) ∈ T

y (x, y)
x y

x

21

Applications of graph traversal

22

Bipartiteness testing
Application of graph traversal

• Recall, a graph is bipartite iff we can split such that every edge is
between .

• Equivalently, a graph is bipartite if we can color every vertex either red or blue
such that each edge is between a red and a blue vertex.

• Input: Undirected graph

• Output: A coloring if is bipartite; else “not bipartite”

V = X ⊔ Y
(x, y) ∈ X × Y

G

c : V → {red, blue} G

23

Bipartite graph property

• Claim: A graph is bipartite iff it contains no odd cycles.

• Proof:

• If it contains an odd cycle, we can’t color the cycle let alone the
rest of the graph.

• If it contains no odd cycles, run BFS starting from some vertex .

• Color according to length from in BFS tree with even = red,
odd = blue.

• If there exists an edge between colors, we found an odd
cycle, (a to our assumption).

s

s

⊥

24

Bipartiteness testing

• Claim: A graph is bipartite iff it contains no odd cycles.

• Algorithm:

• Start BFS from some vertex . Instead of marking vertices as visited or not, marked
them as “red”, “blue”, or “not visited”. Mark as red and add to queue .

• Pop vertex from queue .

• Check all neighbors of and make sure they are either “not visited” or the
opposite color of .

• If not, abort and output “not bipartite”.

• If so, add the “not visited” neighbors to the queue and color them with
opposite color.

• If queue is empty, output coloring generated.

• Runtime: Same as BFS, .

s
s s Q

u Q

v u
u

v Q

Q

O(n + m)

25

Bipartiteness testing

• Claim: A graph is bipartite iff it contains no odd cycles.

• Algorithm:

• Start BFS from some vertex . Instead of marking vertices as visited or not, marked
them as “red”, “blue”, or “not visited”. Mark as red and add to queue .

• Pop vertex from queue .

• Check all neighbors of and make sure they are either “not visited” or the
opposite color of .

• If not, abort and output “not bipartite”.

• If so, add the “not visited” neighbors to the queue and color them with
opposite color.

• If queue is empty, output coloring generated.

• Runtime: Same as BFS, .

s
s s Q

u Q

v u
u

v Q

Q

O(n + m)

26

BFS edge property

• The BFS algorithm generates a tree starting from root .

• Let layer be the set of vertices distance from in .

• Claim: The edges only occur between adjacent layers or the same
layer.

• Proof: If there is an edge , then should have
been in because it was added to the queue after was analyzed.

• Therefore, “bad edges” for bipartite testing only occur within the same
layer. This finds an odd cycle.

T s

Li ⊆ V i s T

E

(u, v) ∈ Li × L≥i+2 v
Li+1 u

27

Directed graphs

28

Depth-first search on directed graphs

• Same as DFS on undirected
graphs except we only add
neighbor if an edge points
from .

• DFS starting from will visit all
vertices reachable by a
directed path .

v
u → v

s
u

s ↝ u

29

Depth-first search on directed graphs

• Same as DFS on undirected
graphs except we only add
neighbor if an edge points
from .

• DFS starting from will visit all
vertices reachable by a
directed path .

v
u → v

s
u

s ↝ u

30

Depth-first search on directed graphs

• Same as DFS on undirected
graphs except we only add
neighbor if an edge points
from .

• DFS starting from will visit all
vertices reachable by a
directed path .

v
u → v

s
u

s ↝ u

31

