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Previously on CSE 421 ...



A writeup for breadth-first search

* Input: an undirected graph G = (V, E) and a starting root s

» Output: A tree T such that d(s,v) = d(s, v) for any vertex v € G. (For any unreachable
vertex v , by convention, d(s, V) = oo and v is not included in 7.)

e Algorithm:

« Details: Initialize a queue Q with s and empty tree 1. While Q isn’t empty, pop v off and
mark as visited. Then and add all unvisited neighbors w of v to the queue and add edge

(v,w)toT.

» Runtime: Each edge and vertex is visited/referenced at most O(1) times so total
complexity is at most O(| V| + | E|).
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A writeup for breadth-first search

Correctness argument

o Claim: A tree T such that d;(s, v) = d(s, v) for any vertex v € G.

» Stronger claim: A tree T such that d(s, v) = d;(s, v) for any vertex v € G and BFS dequeues
vertices in monotonically increasing order of distance.

* Proof: (Induction)

. Base case: s is the only vertex at distance 0 and it is dequeued first. Also d;(s, s) = d;(s, ).

» Induction: Assume that for all vertices v with d(s, v) = k, that d;(s,v) = d(s,v) = k and
that they are dequeued before vertices at distance > k.

» Let w be a vertex at distance d;(s, w) = k+ 1 and v its predecessor on the shortest G-path
to 5. Then, d;(s,v) = k.

« When BFS dequeues v, it observes the edge (v, w) with w unvisited (by induction) and adds
(v,w)to T. So,

dr(s,w) =di(s,v)+ 1 =d;(s,v)+ 1 =d;(s,w).




Connected components

» For a undirected graph G, a connected component C C V' is a maximal set
such that

» For all pairs u,v € C, there exists apathu ~ v
» There are no edges between C and V\C.

e Then, u ~ v iff u, v in the same connected component



Connected components

* Algorithm for computing connected components:

e Idea: Let V= 1{1,...,n}.Create an array A(u) =
smallest numbered vertex connected to u. A
canonical name for the connected component.

Taskr whon all ’l>olw.s e
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e Then u and v are connected iff A(u) = A(v).
Better than storing all pairs of paths p(u, v).



Connected components

* Algorithm for computing connected components:

e |nitialize all vertex as not visited.
e« Fors « 1 tilln,

o If 5 is not visited, then run subroutine BFS( s ) and set A(u) « s for every vertex visited by the BFS and mark
each vertex as visited.

« Correctness: (sketch) Prove by induction on vertex number u, that A(u#) equals the smallest numbered vertex
connected to u.

« Total runtime: O(n + m) because

 Each vertex is visited once by outer routine and the BFS runs are disjoint and observes each edge a constant
number of times.

 Could have run any generic graph traversal actually as long as it is efficient



Depth-first search

* Breadth-first search visits all the neighbors before diving in deeper
 Depth-first search visits as deep as possible
* The trees formed by the visiting order look quite different!

* (Generated by different data structures but similar algorithm!

 BFS: Queue — first in, first out ff.; IHEEE (U]

e DFS: Stack — first in, last out in f\
> ]
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Breadth-first search (BFS)

* Assign a bit to every vertex as visited/not visited.

* Algorithm:
o Initialize set R < {s} and queue O « {s}.
« Set all vertices to not visited. Set s as visited.
« While 0 isn’t empty, pop Vv off the queue.
* For every neighbor u of v that is not visited,
e ) <« QU {u} and set u to visited.

e« SetR « RU {u}.
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Depth-first search (BFS)

* Assign a bit to every vertex as visited/not visited.

* Algorithm:

|
e Initialize set R « {s} and stack § <« {s}. / \
e Set all vertices to not visited. O

« While S isn’t empty, pop v off the stack. |
e |f vis not visited, set v to visited
e For every neighbor u of v that is not visited, D

e S <« SuU{ul.

e SetR « RU {u}. N
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Depth-first search (BFS)

* Assign a bit to every vertex as visited/not visited.

* Algorithm:

e Initialize set R « {s} and stack § <« {s}.
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Breadth-first search (BFS)

* Assign a bit to every vertex as visited/not visited.

* Algorithm:
o Initialize set R < {s} and queue O « {s}.
« Set all vertices to not visited. Set s as visited.
« While 0 isn’t empty, pop Vv off the queue.
* For every neighbor u of v that is not visited,
e ) <« QU {u} and set u to visited.

e« SetR « RU {u}.
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Spanning trees

« A spanning tree I C L is a tree (no cycles) for a connected component such
that every vertex in the component touches 7.

 BFS and DFS both generate spanning trees but they are different!

BFS S’Pamm'r\ :3 Tru._ ‘D'FS gihvw\ﬁ -T;u...
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Understanding the DFS spanning tree

 What do the edges not included in the spanning tree look like?
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Understanding the DFS spanning tree

 What do the edges not included in the spanning tree look like?
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Understanding the DFS spanning tree

 What do the edges not included in the spanning tree look like?
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Understanding the DFS spanning tree

 What do the edges not included in the spanning tree look like?
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No cross edges in DFS

(for undirected graphs)

« Claim: For every edge (x,y) € E, either (x, y) is an edge in T (tree
edge), or else x or y is an ancestor of the other in 1" (back edge).

* Prooft:

 DFS is called recursively as we explore. Wlog, assume DFS(x) is
called before DFS(y).

« Case 1: y was marked “not visited” when (x, y) edge is examined.
Then (x, y) € T (see figure).

« Case 2: y was marked “visited” when (x, y) edge is examined. Was
visited in some other branch of the DFS(x) call. So y is a descendant
of x.
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Applications of graph traversal



- ) _ . ]
Bipartiteness testing M/M
Application of graph traversal . ) y / \

« Recall, a graph is bipartite iff we can split V = X U Y such that every edge is
between (x,y) € X X Y.

O

 Equivalently, a graph is bipartite if we can color every vertex either red or blue
such that each edge is between a red and a blue vertex.

 |Input: Undirected graph G

e Output: A coloring ¢ : V — {red, bluel}if G is bipartite; else “not bipartite”
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Bipartite graph property /@\
con’ . Oolo! O)’“" [

. o o eer . Ass—'ﬂ\/\ Coloc
 Claim: A graph is bipartite iff it contains no odd cycles. 3 é

®

e Proof:

e |f it contains an odd cycle, we can’t color the cycle let alone the
rest of the graph.

 |f it contains no odd cycles, run BFS starting from some vertex s.

e Color according to length from s in BFS tree with even = red,
odd = blue.

 |f there exists an edge between colors, we found an odd
cycle, (a L to our assumption).
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Bipartiteness testing

e Claim: A graph is bipartite iff it contains no odd cycles.

Algorithm:

o Start BFS from some vertex s. Instead of marking vertices as visited or not, marked
them as “red”, “blue”, or “not visited”. Mark s as red and add s to queue Q.

* Pop vertex u from queue Q.

e Check all neighbors v of u and make sure they are either “not visited” or the
opposite color of u.

* |If not, abort and output “not bipartite”.

* If so, add the “not visited” neighbors v to the queue O and color them with
opposite color.

\

ye”o'«l c.d%o.,
* Runtime: Same as BFS, O(n + m). mMmakes -Hr\'sjm])k
\

not b, Faf':l""“}(,

 If queue Q is empty, output coloring generated.
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Bipartiteness testing

e Claim: A graph is bipartite iff it contains no odd cycles.

Algorithm:

o Start BFS from some vertex s. Instead of marking vertices as visited or not, marked
them as “red”, “blue”, or “not visited”. Mark s as red and add s to queue Q.

* Pop vertex u from queue Q.

_ [\

e Check all neighbors v of u and make sure they are either “not visited” or the
opposite color of u.

* |If not, abort and output “not bipartite”.

* If so, add the “not visited” neighbors v to the queue O and color them with
opposite color.

( od d c7c |e.>

 If queue Q is empty, output coloring generated.
ye”ow c.da,o.,
e Runtime: Same as BFS, O(n + m). .
mokes Hai jm]:k
not b;‘)af‘r"'}(,
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BFS edge property

« The BFS algorithm generates a tree 1 starting from root s.

« Let layer L; C V be the set of vertices distance i from s in 7.

« Claim: The edges E only occur between adjacent layers or the same
layer.

» Proof: If there is an edge (u,v) € L; X L., ,, then v should have
been in L, | because it was added to the queue after u was analyzed.

* Therefore, “bad edges” for bipartite testing only occur within the same
layer. This finds an odd cycle.
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Directed graphs
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Depth-first search on directed graphs

e Same as DFS on undirected
graphs except we only add

neighbor v if an edge points
fromu — v.

e DFS starting from s will visit all
vertices u reachable by a
directed path s ~ u.
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Depth-first search on directed graphs

@ Grommmr s e e O
* Same as DFS on undirected / 3 ““““
graphs except we only add EXh ‘,
neighbor v if an edge points R
fromu — v. / \ T /
- DFS starting from s will visit all /3 N o T,
vertices u reachable by a S /
directed path s ~ u. e 7 ’ R /
N
¢

31



