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Algorithmic complexity




Measuring algorithmic efficiency
The RAM model

e RAM Model = “Random Access Machine” Model

 Each simple operation (arithmetic, evaluating if loop criteria, call, increment
counter, etc.) takes one time step

* Accessing any one arithmetic number in memory takes one time step
 Measuring algorithm efficiency
e Let input be (x{, ..., x,) with each x; representing one arithmetic number

 Runtime of algorithm is the number of “simple operations” taken to compute
algorithm in RAM model.



Complexity analysis

e Input (xq, ..., x,) of length n.
* Multiple measures of complexity.
 Worst-case: maximum # of steps taken on any input of length n

* Best-case: minimum # of steps taken on any input of length n

 Average-case: average # of steps taken over all input of length n



Complexity analysis

» The complexity of an alg. is a function 7(n) for each input size n € N.

e i.e. Tyor() or T,(n) could be two different functions.
e T:N — N

« We are interested in understanding the overall behavior/shape of 1, not the
exact function.

» Sometimes there is more than one size parameter. 1(n, m) for a n vertex and
m edge graph.



Polynomial time

A notion of efficiency

« A function T(n) is polynomial time if T(n) < cn* + d for some constants

c,k,d> 0.

 Let k be the minimal such value. This is the degree of the dominating
polynomial.

* Polynomial time is known as “efficient” in theoretical CS.



Polynomial time

A notion of efficiency

» A function T(n) is polynomial time if T(n) < cn* + d.

 Why polynomial time?
 Scaling the instance by a constant factor also scales 7(7n) by a constant.
e If T(n) = cn® + dthen T(2n) = c(2n)* + d < 2X(cn* + d) = 2€T(n).

 Church-Turing thesis: Any function computable in polynomial time by a physically realizable model of
computation can also be computed in polynomial time a different physically realizable model.

* |.e. polynomial-time is a notion independent of model of computation.
 |deal for theoretical study of what problems are efficient and which are not.

* Problem size grows by constant, then running time also grows by constant.

- Typically, polynomials for common algorithms are small polynomials cn, cn?, cn?, cn®. Rarely anything higher.



Big-O notation

Let 7, 2 : Nl — N. Then

» [(n)is O(g(n))if 3 ¢,ny > 0 such that T(n) < cg(n) when n > n,.

. .. I(n)
. I(n)iso(g(n))if Iim =
n—oo g(n)

e [(n)is Q(g(n))if 3 €,ny > 0 such that T(n) > eg(n) when n > n,.

0.

e [(n)is®(g(n))if I'(n)is O(g(n))and T(n) is L2(g2(n)).



Big-O notation
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Big-O notation

Cartoon
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Measuring algorithmic efficiency
The RAM model

e RAM Model = “Random Access Machine” Model

 Each simple operation (arithmetic, evaluating if loop criteria, call, increment
counter, etc.) takes one time step

* Accessing any bit of memory takes one time step
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Measuring algorithmic efficiency
The RAM model, Examples

e Sorting a list of integers L = (x, ..., xX,)

* You probably know that sorting can be solved in ®(n1og n) time by algorithms such as merge sort.

- This Is measuring the number of comparisons x; < x; that we are making. RAM model makes this
rigorous.

_ All-pairs shortest path problem: Given a weighted graph G = (V,E) output d,, = min Z w,;, for

p-u~=y (a,b)Ep

every pair of vertices u,v € V.

- Floyd-Warshall alg. Makes O(n°) arithmetic comparisons where n = | V|, m = | E|.

» Requires adjacency matrix access to the graph. Meaning, unit cost to compute w_, forany a,b € V.
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Graph traversal



Graph search and traversal

* Used to discover the structure of a graph

» “Walk” from a fixed starting vertex s (“the source”) to find all the vertices
reachable from s

Reachable( s ):

« Generic traversal algorithm. R < s}

While there exists a (i, V) € R X (V\R)
AddvtoR: R <« RU {v}.
e Find: set R C V reachable from s return R

 Input: Graph G and vertex s € V
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Breadth-first search (BFS)

Used to explore the vertices in R according to their distance from s.

Implemented using the queue data structure.
Assign a bit to every vertex as visited/not visited.

Algorithm:
o Initialize set R < {s} and queue O « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.
* For every neighbor u of v that is not visited,
e« 0 <~ QU {u!} and set u to visited.

e« SetR <« RU {u}.
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Breadth-first search (BFS)

« Used to explore the vertices in R according to their distance from s.

* Implemented using the queue data structure.

gutue GZ
S

e Assign a bit to every vertex as visited/not visited.

* Algorithm:

e Initialize set R « {s} and queue O « {s}.

e Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.

e For every neighbor u of v that is not visited, O
|
e O « QU {u} and set u to visited. O D\ / /
e« SetR <« RU {u}. O
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Breadth-first search (BFS)

« Used to explore the vertices in R according to their distance from s.

* Implemented using the queue data structure. Gueme @
e Assign a bit to every vertex as visited/not visited. s
* Algorithm: Z
e Initialize set R « {s} and queue O « {s}. c})
« Set all vertices to not visited. Set s as visited. 3
« While Q isn’t empty, pop v off the queue.
* For every neighbor u of v that is not visited, O

O
e 0 < QU {u} and set u to visited. /
e« SetR <« RU {u}. O \O /

17



Breadth-first search (BFS)

« Used to explore the vertices in R according to their distance from s.

* Implemented using the queue data structure. Gueme @
e Assign a bit to every vertex as visited/not visited. s
* Algorithm: -z
e Initialize set R « {s} and queue O « {s}. c})
« Set all vertices to not visited. Set s as visited. Z
« While Q isn’t empty, pop v off the queue. 7
* For every neighbor u of v that is not visited, ’ @

L
e 0 < QU {u} and set u to visited. /
e« SetR <« RU {u}. @ \O /

18



Breadth-first search (BFS)

« Used to explore the vertices in R according to their distance from s.

* Implemented using the queue data structure. Gueme @
e Assign a bit to every vertex as visited/not visited.
e Algorithm: =
——
e Initialize set R < {s} and queue QO « {s}. q
Y
o Set all vertices to not visited. Set s as visited. .
« While Q isn’t empty, pop v off the queue. 7
¥
e For every neighbor u of v that is not visited, @

L
e 0 < QU {u} and set u to visited. /
e« SetR <« RU {u}. @ \O /
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Breadth-first search (BFS)

Used to explore the vertices in R according to their distance from s.

Implemented using the queue data structure.
Assign a bit to every vertex as visited/not visited.

Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.
e For every neighbor u of v that is not visited,
e O <« QU {u} and set u to visited.

e« SetR <« RU {u}.
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Breadth-first search (BFS)

Used to explore the vertices in R according to their distance from s.

Implemented using the queue data structure.
Assign a bit to every vertex as visited/not visited.

Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.
e For every neighbor u of v that is not visited,
e O <« QU {u} and set u to visited.

« SetR « RU {u}.
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Breadth-first search (BFS)

Used to explore the vertices in R according to their distance from s.

Implemented using the queue data structure.
Assign a bit to every vertex as visited/not visited.

Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.
e For every neighbor u of v that is not visited,
e O <« QU {u} and set u to visited.

« SetR « RU {u}.
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Breadth-first search (BFS)

« Used to explore the vertices in R according to their distance from s.

* Implemented using the queue data structure.
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e Assign a bit to every vertex as visited/not visited.

* Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.

e For every neighbor u of v that is not visited,

otk

e O <« QU {u) and set u to visited. ) O




Breadth-first search (BFS)

« Used to explore the vertices in R according to their distance from s.

* Implemented using the queue data structure.

gutue Q

e Assign a bit to every vertex as visited/not visited.

* Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.

e For every neighbor u of v that is not visited,

* ) < QU {u} and set u to visited.

« SetR « RU {u}.
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Breadth-first search (BFS)

Used to explore the vertices in R according to their distance from s.

Implemented using the queue data structure.
Assign a bit to every vertex as visited/not visited.

Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.
e For every neighbor u of v that is not visited,
e O <« QU {u} and set u to visited.

« SetR « RU {u}.
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Breadth-first search (BFS)

Used to explore the vertices in R according to their distance from s.

Implemented using the queue data structure.
Assign a bit to every vertex as visited/not visited.

Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.
e For every neighbor u of v that is not visited,
e O <« QU {u} and set u to visited.

« SetR « RU {u}.
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Breadth-first search (BFS)

Used to explore the vertices in R according to their distance from s.

Implemented using the queue data structure.
Assign a bit to every vertex as visited/not visited.

Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.
e For every neighbor u of v that is not visited,
e O <« QU {u} and set u to visited.

« SetR « RU {u}.
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Breadth-first search (BFS)

Used to explore the vertices in R according to their distance from s.

Implemented using the queue data structure.
Assign a bit to every vertex as visited/not visited.

Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.
e For every neighbor u of v that is not visited,
e O <« QU {u} and set u to visited.

« SetR « RU {u}.
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Breadth-first search (BFS)

Used to explore the vertices in R according to their distance from s.

Implemented using the queue data structure.
Assign a bit to every vertex as visited/not visited.

Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.
e For every neighbor u of v that is not visited,
e O <« QU {u} and set u to visited.

« SetR « RU {u}.
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Breadth-first search (BFS)

« Used to explore the vertices in R according to their distance from s. L

O
* Implemented using the queue data structure. @

. . - - |
* Assign a bit to every vertex as visited/not visited. / L,

* Algorithm: Q

e Initialize set R < {s} and queue QO « {s}. ’ O Q
« Set all vertices to not visited. Set s as visited. /
« While Q isn’t empty, pop v off the queue. O L

* For every neighbor u of v that is not visited, O Q 2

O
e 0 < QU {u} and set u to visited. /
e« SetR <« RU {u}. O \Q /
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Graph search and traversal

* Used to discover the structure of a graph

» “Walk” from a fixed starting vertex s (“the source”) to find all the vertices
reachable from s

Reachable( s ):

« Generic traversal algorithm. R < s}

While there exists a (i, V) € R X (V\R)
AddvtoR: R <« RU {v}.
e Find: set R C V reachable from s return R

 Input: Graph G and vertex s € V
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Reachable( s ):

Generic graph traversal r < (s
While there exists a (1, v) € R X (V\R)
AddvitoR: R <« RU {v}.

return R

« Claim: R is exactly the set of reachable vertices.
* Proof: We show both directions. (1): every vertex in R is reachable. (2): every reachable is in R .

* Direction 1. For v € R, there is a path s ~ v. Proved by induction on the generic graph

traversal algorithm: If we added v by edge (u,v) € R X (V\R) thens ~ u — v. .S
» Direction 2. Assume (for 1), there is a vertex v that is reachable but not v & R. ( K
« Let p = the path s ~» v and let v’ be the first vertex on p such that v’ & R.. .
 Then u, the predecessor of V', satisfies u € R and (u,v") € R X (V\R). \,v/
e Contradicts the definition of the generic graph traversal. 1..‘
P!
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How to write algorithms and proofs

* The goal of writing an algorithm is to explain to another computer scientist
how to algorithnmically solve a particular problem and why the algorithm is
correct/works.

* The goal is not to write pseudocode for the algorithm.

* A competent programmer should be able to take your answer and have an
exercise in programming to generate an implementation in any programming
paradigm.

* Your answer will also include a proof of correctness. More on this soon.
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The three steps to an algorithm
Step 1: The algorithm

 Explain the steps necessary to implement the algorithm but not all the detalls

* This is similar to how you would right a lab report in a chemistry or physics
lab today compared to what you would write in grade school.

* The level of precision is different because you are writing to a different
audience.

* You are writing for a human audience. Don’t write C code, Java code,
Python code, or any code for that matter. Write plain, technical English.
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The three steps to an algorithm
Step 1: The algorithm

» For example, if you want to set m as the max of an array A,

* do not write a for loop to find the max.

, Instead use math notation: m <« max x
xEA

 Don’t spend an inordinate time trying to find ‘off-by-one’ errors.

» Use simplifications such as ‘apply X here’ or ‘modify X by doing (...)’
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The three steps to an algorithm
Step 2: The runtime

* Runtime analysis will be the easiest step of your solution.
* Use big-O notation when analyzing the runtime.

 Don’t forget that data structures don’t magically whisk away complexity!

» For example, min heaps have O(1) time to find the minimum and O(log n)
to add an element.

 Make sure to analyze any novel data structures you construct!
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The three steps to an algorithm

Step 3: Correctness

* This will be the hardest step for most of you.

 When proving the correctness of an optimization algorithm, you need to prove
* (a) why the output is feasible — ex. a valid assignment/schedule/etc.
* (b) why no other output is better.

* Proving (b) is often much harder than (a). We will see how to do this with
induction proofs, proofs by contradiction, and much more.

* | et’s see more via example.
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A writeup for breadth-first search

* Input: an undirected graph G = (V, E) and a starting root s

» Output: A tree T such that d(s,v) = d(s, v) for any vertex v € G. (For any unreachable
vertex v , by convention, d(s, V) = oo and v is not included in 7.)

e Algorithm:

« Details: Initialize a queue Q with s and empty tree 1. While Q isn’t empty, pop v off and
mark as visited. Then and add all unvisited neighbors w of v to the queue and add edge

(v,w)toT.

» Runtime: Each edge and vertex is visited/referenced at most O(1) times so total
complexity is at most O(| V| + | E|).
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