Lecture 2

Writing algorithms and graph traversal

Chinmay Nirkhe | CSE 421 Winter 2026

Algorithmic complexity

Measuring algorithmic efficiency
The RAM model

e RAM Model = “Random Access Machine” Model

 Each simple operation (arithmetic, evaluating if loop criteria, call, increment
counter, etc.) takes one time step

* Accessing any one arithmetic number in memory takes one time step
 Measuring algorithm efficiency
e Let input be (x{, ..., x,) with each x; representing one arithmetic number

 Runtime of algorithm is the number of “simple operations” taken to compute
algorithm in RAM model.

Complexity analysis

e Input (xq, ..., x,) of length n.
* Multiple measures of complexity.
 Worst-case: maximum # of steps taken on any input of length n

* Best-case: minimum # of steps taken on any input of length n

 Average-case: average # of steps taken over all input of length n

Complexity analysis

» The complexity of an alg. is a function 7(n) for each input size n € N.

e i.e. Tyor() or T,(n) could be two different functions.
e T:N — N

« We are interested in understanding the overall behavior/shape of 1, not the
exact function.

» Sometimes there is more than one size parameter. 1(n, m) for a n vertex and
m edge graph.

Polynomial time

A notion of efficiency

« A function T(n) is polynomial time if T(n) < cn* + d for some constants

c,k,d> 0.

 Let k be the minimal such value. This is the degree of the dominating
polynomial.

* Polynomial time is known as “efficient” in theoretical CS.

Polynomial time

A notion of efficiency

» A function T(n) is polynomial time if T(n) < cn* + d.

 Why polynomial time?
 Scaling the instance by a constant factor also scales 7(7n) by a constant.
e If T(n) = cn® + dthen T(2n) = c(2n)* + d < 2X(cn* + d) = 2€T(n).

 Church-Turing thesis: Any function computable in polynomial time by a physically realizable model of
computation can also be computed in polynomial time a different physically realizable model.

* |.e. polynomial-time is a notion independent of model of computation.
 |deal for theoretical study of what problems are efficient and which are not.

* Problem size grows by constant, then running time also grows by constant.

- Typically, polynomials for common algorithms are small polynomials cn, cn?, cn?, cn®. Rarely anything higher.

Big-O notation

Let 7, 2 : Nl — N. Then

» [(n)is O(g(n))if 3 ¢,ny > 0 such that T(n) < cg(n) when n > n,.

. .. I(n)
. I(n)iso(g(n))if Iim =
n—oo g(n)

e [(n)is Q(g(n))if 3 €,ny > 0 such that T(n) > eg(n) when n > n,.

0.

e [(n)is®(g(n))if I'(n)is O(g(n))and T(n) is L2(g2(n)).

Big-O notation

Cartoon

ﬂni/j () 4

N
F\\/L\\/\/‘”

N — oo

Big-O notation

Cartoon

jzni/i () 4

Measuring algorithmic efficiency
The RAM model

e RAM Model = “Random Access Machine” Model

 Each simple operation (arithmetic, evaluating if loop criteria, call, increment
counter, etc.) takes one time step

* Accessing any bit of memory takes one time step

11

Measuring algorithmic efficiency
The RAM model, Examples

e Sorting a list of integers L = (x, ..., xX,)

* You probably know that sorting can be solved in ®(n1og n) time by algorithms such as merge sort.

- This Is measuring the number of comparisons x; < x; that we are making. RAM model makes this
rigorous.

_ All-pairs shortest path problem: Given a weighted graph G = (V,E) output d,, = min Z w,;, for

p-u~=y (a,b)Ep

every pair of vertices u,v € V.

- Floyd-Warshall alg. Makes O(n°) arithmetic comparisons where n = | V|, m = | E|.

» Requires adjacency matrix access to the graph. Meaning, unit cost to compute w_, forany a,b € V.

12

Graph traversal

Graph search and traversal

* Used to discover the structure of a graph

» “Walk” from a fixed starting vertex s (“the source”) to find all the vertices
reachable from s

Reachable(s):

« Generic traversal algorithm. R < s}

While there exists a (i, V) € R X (V\R)
AddvtoR: R <« RU {v}.
e Find: set R C V reachable from s return R

 Input: Graph G and vertex s € V

14

Breadth-first search (BFS)

Used to explore the vertices in R according to their distance from s.

Implemented using the queue data structure.
Assign a bit to every vertex as visited/not visited.

Algorithm:
o Initialize set R < {s} and queue O « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.
* For every neighbor u of v that is not visited,
e« 0 <~ QU {u!} and set u to visited.

e« SetR <« RU {u}.

15

Breadth-first search (BFS)

« Used to explore the vertices in R according to their distance from s.

* Implemented using the queue data structure.

gutue GZ
S

e Assign a bit to every vertex as visited/not visited.

* Algorithm:

e Initialize set R « {s} and queue O « {s}.

e Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.

e For every neighbor u of v that is not visited, O
|
e O « QU {u} and set u to visited. O D\ / /
e« SetR <« RU {u}. O

16

Breadth-first search (BFS)

« Used to explore the vertices in R according to their distance from s.

* Implemented using the queue data structure. Gueme @
e Assign a bit to every vertex as visited/not visited. s
* Algorithm: Z
e Initialize set R « {s} and queue O « {s}. c})
« Set all vertices to not visited. Set s as visited. 3
« While Q isn’t empty, pop v off the queue.
* For every neighbor u of v that is not visited, O

O
e 0 < QU {u} and set u to visited. /
e« SetR <« RU {u}. O \O /

17

Breadth-first search (BFS)

« Used to explore the vertices in R according to their distance from s.

* Implemented using the queue data structure. Gueme @
e Assign a bit to every vertex as visited/not visited. s
* Algorithm: -z
e Initialize set R « {s} and queue O « {s}. c})
« Set all vertices to not visited. Set s as visited. Z
« While Q isn’t empty, pop v off the queue. 7
* For every neighbor u of v that is not visited, ’ @

L
e 0 < QU {u} and set u to visited. /
e« SetR <« RU {u}. @ \O /

18

Breadth-first search (BFS)

« Used to explore the vertices in R according to their distance from s.

* Implemented using the queue data structure. Gueme @
e Assign a bit to every vertex as visited/not visited.
e Algorithm: =
——
e Initialize set R < {s} and queue QO « {s}. q
Y
o Set all vertices to not visited. Set s as visited. .
« While Q isn’t empty, pop v off the queue. 7
¥
e For every neighbor u of v that is not visited, @

L
e 0 < QU {u} and set u to visited. /
e« SetR <« RU {u}. @ \O /

19

Breadth-first search (BFS)

Used to explore the vertices in R according to their distance from s.

Implemented using the queue data structure.
Assign a bit to every vertex as visited/not visited.

Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.
e For every neighbor u of v that is not visited,
e O <« QU {u} and set u to visited.

e« SetR <« RU {u}.

gutue GZ

——
—

23—

._L)_-
s
s

7

¥

T

| O

20

Breadth-first search (BFS)

Used to explore the vertices in R according to their distance from s.

Implemented using the queue data structure.
Assign a bit to every vertex as visited/not visited.

Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.
e For every neighbor u of v that is not visited,
e O <« QU {u} and set u to visited.

« SetR « RU {u}.

S
&
S
o
53

Frdg

_Q—Dwﬂg\‘{\

o

21

&

/@);

Q

O,
/
©,

N\
@

&

Breadth-first search (BFS)

Used to explore the vertices in R according to their distance from s.

Implemented using the queue data structure.
Assign a bit to every vertex as visited/not visited.

Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.
e For every neighbor u of v that is not visited,
e O <« QU {u} and set u to visited.

« SetR « RU {u}.

S
&
S
o
53

UEEREE

Z o =9 0 4

/@);

Q

O,
/
©,

N\
@

&

Breadth-first search (BFS)

« Used to explore the vertices in R according to their distance from s.

* Implemented using the queue data structure.

S
&
S
o
53

e Assign a bit to every vertex as visited/not visited.

* Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.

e For every neighbor u of v that is not visited,

otk

e O <« QU {u) and set u to visited.) O

Breadth-first search (BFS)

« Used to explore the vertices in R according to their distance from s.

* Implemented using the queue data structure.

gutue Q

e Assign a bit to every vertex as visited/not visited.

* Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.

e For every neighbor u of v that is not visited,

*) < QU {u} and set u to visited.

« SetR « RU {u}.

S X AR

Breadth-first search (BFS)

Used to explore the vertices in R according to their distance from s.

Implemented using the queue data structure.
Assign a bit to every vertex as visited/not visited.

Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.
e For every neighbor u of v that is not visited,
e O <« QU {u} and set u to visited.

« SetR « RU {u}.

S
&
S
o
53

RAERERAR,

| U

® _
/

0/‘
\

&
®

@

Breadth-first search (BFS)

Used to explore the vertices in R according to their distance from s.

Implemented using the queue data structure.
Assign a bit to every vertex as visited/not visited.

Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.
e For every neighbor u of v that is not visited,
e O <« QU {u} and set u to visited.

« SetR « RU {u}.

S
&
S
o
53

FPeddagvayd

5 =

/.;
®
®

C
@

S
N

Breadth-first search (BFS)

Used to explore the vertices in R according to their distance from s.

Implemented using the queue data structure.
Assign a bit to every vertex as visited/not visited.

Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.
e For every neighbor u of v that is not visited,
e O <« QU {u} and set u to visited.

« SetR « RU {u}.

S
&
S
o
53

FEPdbd4bvad

.

/Q;
®
®

C
@

S
N

Breadth-first search (BFS)

Used to explore the vertices in R according to their distance from s.

Implemented using the queue data structure.
Assign a bit to every vertex as visited/not visited.

Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.
e For every neighbor u of v that is not visited,
e O <« QU {u} and set u to visited.

« SetR « RU {u}.

S
&
S
o
53

3P oedqpaad

® _
/
&
®

C
@

S
N

Breadth-first search (BFS)

Used to explore the vertices in R according to their distance from s.

Implemented using the queue data structure.
Assign a bit to every vertex as visited/not visited.

Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.
e For every neighbor u of v that is not visited,
e O <« QU {u} and set u to visited.

« SetR « RU {u}.

29

BFS tree jmmkd 57 ‘fmcé..':r
whicl. cdam are used

Breadth-first search (BFS)

« Used to explore the vertices in R according to their distance from s. L

O
* Implemented using the queue data structure. @

. . - - |
* Assign a bit to every vertex as visited/not visited. / L,

* Algorithm: Q

e Initialize set R < {s} and queue QO « {s}. ’ O Q
« Set all vertices to not visited. Set s as visited. /
« While Q isn’t empty, pop v off the queue. O L

* For every neighbor u of v that is not visited, O Q 2

O
e 0 < QU {u} and set u to visited. /
e« SetR <« RU {u}. O \Q /

30

Graph search and traversal

* Used to discover the structure of a graph

» “Walk” from a fixed starting vertex s (“the source”) to find all the vertices
reachable from s

Reachable(s):

« Generic traversal algorithm. R < s}

While there exists a (i, V) € R X (V\R)
AddvtoR: R <« RU {v}.
e Find: set R C V reachable from s return R

 Input: Graph G and vertex s € V

31

Reachable(s):

Generic graph traversal r < (s
While there exists a (1, v) € R X (V\R)
AddvitoR: R <« RU {v}.

return R

« Claim: R is exactly the set of reachable vertices.
* Proof: We show both directions. (1): every vertex in R is reachable. (2): every reachable is in R .

* Direction 1. For v € R, there is a path s ~ v. Proved by induction on the generic graph

traversal algorithm: If we added v by edge (u,v) € R X (V\R) thens ~ u — v. .S
» Direction 2. Assume (for 1), there is a vertex v that is reachable but not v & R. (K
« Let p = the path s ~» v and let v’ be the first vertex on p such that v’ & R.. .
 Then u, the predecessor of V', satisfies u € R and (u,v") € R X (V\R). \,v/
e Contradicts the definition of the generic graph traversal. 1..‘
P!

32

How to write algorithms and proofs

* The goal of writing an algorithm is to explain to another computer scientist
how to algorithnmically solve a particular problem and why the algorithm is
correct/works.

* The goal is not to write pseudocode for the algorithm.

* A competent programmer should be able to take your answer and have an
exercise in programming to generate an implementation in any programming
paradigm.

* Your answer will also include a proof of correctness. More on this soon.

33

The three steps to an algorithm
Step 1: The algorithm

 Explain the steps necessary to implement the algorithm but not all the detalls

* This is similar to how you would right a lab report in a chemistry or physics
lab today compared to what you would write in grade school.

* The level of precision is different because you are writing to a different
audience.

* You are writing for a human audience. Don’t write C code, Java code,
Python code, or any code for that matter. Write plain, technical English.

34

The three steps to an algorithm
Step 1: The algorithm

» For example, if you want to set m as the max of an array A,

* do not write a for loop to find the max.

, Instead use math notation: m <« max x
xEA

 Don’t spend an inordinate time trying to find ‘off-by-one’ errors.

» Use simplifications such as ‘apply X here’ or ‘modify X by doing (...)’

35

The three steps to an algorithm
Step 2: The runtime

* Runtime analysis will be the easiest step of your solution.
* Use big-O notation when analyzing the runtime.

 Don’t forget that data structures don’t magically whisk away complexity!

» For example, min heaps have O(1) time to find the minimum and O(log n)
to add an element.

 Make sure to analyze any novel data structures you construct!

36

The three steps to an algorithm

Step 3: Correctness

* This will be the hardest step for most of you.

 When proving the correctness of an optimization algorithm, you need to prove
* (a) why the output is feasible — ex. a valid assignment/schedule/etc.
* (b) why no other output is better.

* Proving (b) is often much harder than (a). We will see how to do this with
induction proofs, proofs by contradiction, and much more.

* | et’s see more via example.

37

A writeup for breadth-first search

* Input: an undirected graph G = (V, E) and a starting root s

» Output: A tree T such that d(s,v) = d(s, v) for any vertex v € G. (For any unreachable
vertex v , by convention, d(s, V) = oo and v is not included in 7.)

e Algorithm:

« Details: Initialize a queue Q with s and empty tree 1. While Q isn’t empty, pop v off and
mark as visited. Then and add all unvisited neighbors w of v to the queue and add edge

(v,w)toT.

» Runtime: Each edge and vertex is visited/referenced at most O(1) times so total
complexity is at most O(| V| + | E|).

38

