
Chinmay Nirkhe | CSE 421 Winter 2026

Lecture 2
Writing algorithms and graph traversal
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Algorithmic complexity
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Measuring algorithmic efficiency
The RAM model

• RAM Model = “Random Access Machine” Model


• Each simple operation (arithmetic, evaluating if loop criteria, call, increment 
counter, etc.) takes one time step


• Accessing any one arithmetic number in memory takes one time step


• Measuring algorithm efficiency


• Let input be  with each  representing one arithmetic number


• Runtime of algorithm is the number of “simple operations” taken to compute 
algorithm in RAM model.

(x1, …, xn) xi
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Complexity analysis

• Input  of length .


• Multiple measures of complexity.


• Worst-case: maximum # of steps taken on any input of length 


• Best-case: minimum # of steps taken on any input of length 


• Average-case: average # of steps taken over all input of length 

(x1, …, xn) n

n

n

n
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Complexity analysis

• The complexity of an alg. is a function  for each input size .


• i.e.  or  could be two different functions.


• 


• We are interested in understanding the overall behavior/shape of , not the 
exact function.


• Sometimes there is more than one size parameter.  for a  vertex and 
 edge graph.

T(n) n ∈ ℕ

Tworst(n) Tavg(n)

T : ℕ → ℕ

T

T(n, m) n
m
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Polynomial time
A notion of efficiency

• A function  is polynomial time if  for some constants 



• Let  be the minimal such value. This is the degree of the dominating 
polynomial.


• Polynomial time is known as “efficient” in theoretical CS.

T(n) T(n) ≤ cnk + d
c, k, d > 0.

k
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Polynomial time
A notion of efficiency

• A function  is polynomial time if .


• Why polynomial time?


• Scaling the instance by a constant factor also scales  by a constant.


• If  then .


• Church-Turing thesis: Any function computable in polynomial time by a physically realizable model of 
computation can also be computed in polynomial time a different physically realizable model.


• I.e. polynomial-time is a notion independent of model of computation.


• Ideal for theoretical study of what problems are efficient and which are not.


• Problem size grows by constant, then running time also grows by constant. 


• Typically, polynomials for common algorithms are small polynomials . Rarely anything higher.

T(n) T(n) ≤ cnk + d

T(n)

T(n) = cnk + d T(2n) = c(2n)k + d ≤ 2k(cnk + d) = 2kT(n)

cn, cn2, cn3, cn4
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Big-O notation

Let . Then


•  is  if  such that  when .


•  is  if 


•  is  if  such that  when .


•  is  if  is  and  is .

T, g : ℕ → ℕ

T(n) O(g(n)) ∃ c, n0 > 0 T(n) ≤ cg(n) n ≥ n0

T(n) o(g(n)) lim
n→∞

T(n)
g(n)

= 0.

T(n) Ω(g(n)) ∃ ϵ, n0 > 0 T(n) ≥ ϵg(n) n ≥ n0

T(n) Θ(g(n)) T(n) O(g(n)) T(n) Ω(g(n))
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Big-O notation
Cartoon
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Big-O notation
Cartoon

10



Measuring algorithmic efficiency
The RAM model

• RAM Model = “Random Access Machine” Model


• Each simple operation (arithmetic, evaluating if loop criteria, call, increment 
counter, etc.) takes one time step


• Accessing any bit of memory takes one time step
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Measuring algorithmic efficiency
The RAM model, Examples

• Sorting a list of integers 


• You probably know that sorting can be solved in  time by algorithms such as merge sort. 


• This is measuring the number of comparisons  that we are making. RAM model makes this 
rigorous.


• All-pairs shortest path problem: Given a weighted graph  output  for 

every pair of vertices .


• Floyd-Warshall alg. Makes  arithmetic comparisons where . 


• Requires adjacency matrix access to the graph. Meaning, unit cost to compute  for any 

L = (x1, …, xn)

Θ(n log n)

xi < xj

G = (V, E) duv = min
p:u↝v ∑

(a,b)∈p

wab

u, v ∈ V

O(n3) n = |V | , m = |E |

wab a, b ∈ V .
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Graph traversal
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Graph search and traversal

• Used to discover the structure of a graph


• “Walk” from a fixed starting vertex  (“the source”) to find all the vertices 
reachable from 


• Generic traversal algorithm. 

• Input: Graph  and vertex 


• Find: set  reachable from 

s
s

G s ∈ V

R ⊆ V s
14

Reachable(  ): 

 
While there exists a  
    Add  to : . 
return 

s

R ← {s}
(u, v) ∈ R × (V∖R)

v R R ← R ∪ {v}
R



Breadth-first search (BFS)

• Used to explore the vertices in  according to their distance from .


• Implemented using the queue data structure.


• Assign a bit to every vertex as visited/not visited.


• Algorithm:


• Initialize set  and queue 


• Set all vertices to not visited. Set  as visited.


• While  isn’t empty, pop  off the queue.


• For every neighbor  of  that is not visited,


•  and set  to visited.


• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}
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Generic graph traversal finds correct R

• Claim:  is exactly the set of reachable vertices.


• Proof: We show both directions. (1): every vertex in  is reachable. (2): every reachable is in 


• Direction 1. For , there is a path . Proved by induction on the generic graph 
traversal algorithm: If we added  by edge  then .


• Direction 2. Assume (for ), there is a vertex  that is reachable but not . 


• Let the path  and let  be the first vertex on  such that 


• Then , the predecessor of , satisfies  and .


• Contradicts the definition of the generic graph traversal.

R

R R .

v ∈ R s ↝ v
v (u, v) ∈ R × (V∖R) s ↝ u → v

⊥ v v ∉ R

p = s ↝ v v′￼ p v′￼ ∉ R .

u v′￼ u ∈ R (u, v′￼) ∈ R × (V∖R)
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How to write algorithms and proofs

• The goal of writing an algorithm is to explain to another computer scientist 
how to algorithmically solve a particular problem and why the algorithm is 
correct/works.


• The goal is not to write pseudocode for the algorithm.


• A competent programmer should be able to take your answer and have an 
exercise in programming to generate an implementation in any programming 
paradigm.


• Your answer will also include a proof of correctness. More on this soon.
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The three steps to an algorithm
Step 1: The algorithm

• Explain the steps necessary to implement the algorithm but not all the details


• This is similar to how you would right a lab report in a chemistry or physics 
lab today compared to what you would write in grade school.


• The level of precision is different because you are writing to a different 
audience.


• You are writing for a human audience. Don’t write C code, Java code, 
Python code, or any code for that matter. Write plain, technical English.
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The three steps to an algorithm
Step 1: The algorithm

• For example, if you want to set  as the max of an array , 


• do not write a for loop to find the max.


• Instead use math notation: 


• Don’t spend an inordinate time trying to find ‘off-by-one’ errors.


• Use simplifications such as ‘apply  here’ or ‘modify  by doing (…)’

m A

m ← max
x∈A

x

X X
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The three steps to an algorithm
Step 2: The runtime

• Runtime analysis will be the easiest step of your solution.


• Use big-O notation when analyzing the runtime.


• Don’t forget that data structures don’t magically whisk away complexity!


• For example, min heaps have  time to find the minimum and  
to add an element.


• Make sure to analyze any novel data structures you construct!

O(1) O(log n)
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The three steps to an algorithm
Step 3: Correctness

• This will be the hardest step for most of you.


• When proving the correctness of an optimization algorithm, you need to prove


• (a) why the output is feasible — ex. a valid assignment/schedule/etc.


• (b) why no other output is better.


• Proving (b) is often much harder than (a). We will see how to do this with 
induction proofs, proofs by contradiction, and much more.


• Let’s see more via example. 
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A writeup for breadth-first search

• Input: an undirected graph  and a starting root  


• Output: A tree  such that  for any vertex . (For any unreachable 
vertex  , by convention,  and  is not included in .)


• Algorithm:


• Details: Initialize a queue  with  and empty tree . While  isn’t empty, pop  off and 
mark as visited. Then and add all unvisited neighbors  of  to the queue and add edge 

 to .


• Runtime: Each edge and vertex is visited/referenced at most  times so total 
complexity is at most .

G = (V, E) s

T dT(s, v) = dG(s, v) v ∈ G
v dG(s, v) = ∞ v T

Q s T Q v
w v

(v, w) T

O(1)
O( |V | + |E | )
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