
Chinmay Nirkhe | CSE 421 Winter 2026

Lecture 2
Writing algorithms and graph traversal

1

Algorithmic complexity

2

Measuring algorithmic efficiency
The RAM model

• RAM Model = “Random Access Machine” Model

• Each simple operation (arithmetic, evaluating if loop criteria, call, increment
counter, etc.) takes one time step

• Accessing any one arithmetic number in memory takes one time step

• Measuring algorithm efficiency

• Let input be with each representing one arithmetic number

• Runtime of algorithm is the number of “simple operations” taken to compute
algorithm in RAM model.

(x1, …, xn) xi

3

Complexity analysis

• Input of length .

• Multiple measures of complexity.

• Worst-case: maximum # of steps taken on any input of length

• Best-case: minimum # of steps taken on any input of length

• Average-case: average # of steps taken over all input of length

(x1, …, xn) n

n

n

n

4

Complexity analysis

• The complexity of an alg. is a function for each input size .

• i.e. or could be two different functions.

•

• We are interested in understanding the overall behavior/shape of , not the
exact function.

• Sometimes there is more than one size parameter. for a vertex and
 edge graph.

T(n) n ∈ ℕ

Tworst(n) Tavg(n)

T : ℕ → ℕ

T

T(n, m) n
m

5

Polynomial time
A notion of efficiency

• A function is polynomial time if for some constants

• Let be the minimal such value. This is the degree of the dominating
polynomial.

• Polynomial time is known as “efficient” in theoretical CS.

T(n) T(n) ≤ cnk + d
c, k, d > 0.

k

6

Polynomial time
A notion of efficiency

• A function is polynomial time if .

• Why polynomial time?

• Scaling the instance by a constant factor also scales by a constant.

• If then .

• Church-Turing thesis: Any function computable in polynomial time by a physically realizable model of
computation can also be computed in polynomial time a different physically realizable model.

• I.e. polynomial-time is a notion independent of model of computation.

• Ideal for theoretical study of what problems are efficient and which are not.

• Problem size grows by constant, then running time also grows by constant.

• Typically, polynomials for common algorithms are small polynomials . Rarely anything higher.

T(n) T(n) ≤ cnk + d

T(n)

T(n) = cnk + d T(2n) = c(2n)k + d ≤ 2k(cnk + d) = 2kT(n)

cn, cn2, cn3, cn4

7

Big-O notation

Let . Then

• is if such that when .

• is if

• is if such that when .

• is if is and is .

T, g : ℕ → ℕ

T(n) O(g(n)) ∃ c, n0 > 0 T(n) ≤ cg(n) n ≥ n0

T(n) o(g(n)) lim
n→∞

T(n)
g(n)

= 0.

T(n) Ω(g(n)) ∃ ϵ, n0 > 0 T(n) ≥ ϵg(n) n ≥ n0

T(n) Θ(g(n)) T(n) O(g(n)) T(n) Ω(g(n))

8

Big-O notation
Cartoon

9

Big-O notation
Cartoon

10

Measuring algorithmic efficiency
The RAM model

• RAM Model = “Random Access Machine” Model

• Each simple operation (arithmetic, evaluating if loop criteria, call, increment
counter, etc.) takes one time step

• Accessing any bit of memory takes one time step

11

Measuring algorithmic efficiency
The RAM model, Examples

• Sorting a list of integers

• You probably know that sorting can be solved in time by algorithms such as merge sort.

• This is measuring the number of comparisons that we are making. RAM model makes this
rigorous.

• All-pairs shortest path problem: Given a weighted graph output for

every pair of vertices .

• Floyd-Warshall alg. Makes arithmetic comparisons where .

• Requires adjacency matrix access to the graph. Meaning, unit cost to compute for any

L = (x1, …, xn)

Θ(n log n)

xi < xj

G = (V, E) duv = min
p:u↝v ∑

(a,b)∈p

wab

u, v ∈ V

O(n3) n = |V | , m = |E |

wab a, b ∈ V .

12

Graph traversal

13

Graph search and traversal

• Used to discover the structure of a graph

• “Walk” from a fixed starting vertex (“the source”) to find all the vertices
reachable from

• Generic traversal algorithm.

• Input: Graph and vertex

• Find: set reachable from

s
s

G s ∈ V

R ⊆ V s
14

Reachable():

 
While there exists a  
 Add to : . 
return

s

R ← {s}
(u, v) ∈ R × (V∖R)

v R R ← R ∪ {v}
R

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

15

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

16

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

17

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

18

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

19

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

20

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

21

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

22

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

23

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

24

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

25

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

26

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

27

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

28

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

29

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

30

Graph search and traversal

• Used to discover the structure of a graph

• “Walk” from a fixed starting vertex (“the source”) to find all the vertices
reachable from

• Generic traversal algorithm.

• Input: Graph and vertex

• Find: set reachable from

s
s

G s ∈ V

R ⊆ V s
31

Reachable():

 
While there exists a  
 Add to : . 
return

s

R ← {s}
(u, v) ∈ R × (V∖R)

v R R ← R ∪ {v}
R

Generic graph traversal finds correct R

• Claim: is exactly the set of reachable vertices.

• Proof: We show both directions. (1): every vertex in is reachable. (2): every reachable is in

• Direction 1. For , there is a path . Proved by induction on the generic graph
traversal algorithm: If we added by edge then .

• Direction 2. Assume (for), there is a vertex that is reachable but not .

• Let the path and let be the first vertex on such that

• Then , the predecessor of , satisfies and .

• Contradicts the definition of the generic graph traversal.

R

R R .

v ∈ R s ↝ v
v (u, v) ∈ R × (V∖R) s ↝ u → v

⊥ v v ∉ R

p = s ↝ v v′￼ p v′￼ ∉ R .

u v′￼ u ∈ R (u, v′￼) ∈ R × (V∖R)

32

Reachable():

 
While there exists a  
 Add to : . 
return

s

R ← {s}
(u, v) ∈ R × (V∖R)

v R R ← R ∪ {v}
R

How to write algorithms and proofs

• The goal of writing an algorithm is to explain to another computer scientist
how to algorithmically solve a particular problem and why the algorithm is
correct/works.

• The goal is not to write pseudocode for the algorithm.

• A competent programmer should be able to take your answer and have an
exercise in programming to generate an implementation in any programming
paradigm.

• Your answer will also include a proof of correctness. More on this soon.

33

The three steps to an algorithm
Step 1: The algorithm

• Explain the steps necessary to implement the algorithm but not all the details

• This is similar to how you would right a lab report in a chemistry or physics
lab today compared to what you would write in grade school.

• The level of precision is different because you are writing to a different
audience.

• You are writing for a human audience. Don’t write C code, Java code,
Python code, or any code for that matter. Write plain, technical English.

34

The three steps to an algorithm
Step 1: The algorithm

• For example, if you want to set as the max of an array ,

• do not write a for loop to find the max.

• Instead use math notation:

• Don’t spend an inordinate time trying to find ‘off-by-one’ errors.

• Use simplifications such as ‘apply here’ or ‘modify by doing (…)’

m A

m ← max
x∈A

x

X X

35

The three steps to an algorithm
Step 2: The runtime

• Runtime analysis will be the easiest step of your solution.

• Use big-O notation when analyzing the runtime.

• Don’t forget that data structures don’t magically whisk away complexity!

• For example, min heaps have time to find the minimum and
to add an element.

• Make sure to analyze any novel data structures you construct!

O(1) O(log n)

36

The three steps to an algorithm
Step 3: Correctness

• This will be the hardest step for most of you.

• When proving the correctness of an optimization algorithm, you need to prove

• (a) why the output is feasible — ex. a valid assignment/schedule/etc.

• (b) why no other output is better.

• Proving (b) is often much harder than (a). We will see how to do this with
induction proofs, proofs by contradiction, and much more.

• Let’s see more via example.

37

A writeup for breadth-first search

• Input: an undirected graph and a starting root

• Output: A tree such that for any vertex . (For any unreachable
vertex , by convention, and is not included in .)

• Algorithm:

• Details: Initialize a queue with and empty tree . While isn’t empty, pop off and
mark as visited. Then and add all unvisited neighbors of to the queue and add edge

 to .

• Runtime: Each edge and vertex is visited/referenced at most times so total
complexity is at most .

G = (V, E) s

T dT(s, v) = dG(s, v) v ∈ G
v dG(s, v) = ∞ v T

Q s T Q v
w v

(v, w) T

O(1)
O(|V | + |E |)

38

