Lecture 15

Dynamic programming IV: The Bellman-Ford algorithm

Chinmay Nirkhe | CSE 421 Winter 2026 w

Dynamic programming patterns

fﬁ\«rSacL
’\’r\'\aovw\c.c} fﬁ\ T
4 | | l 7 -
LT[1<) . a—TH
- 0 - _
-~ W _
CA> Astznee “1RNA Se.c_ov\S S&ftvxo'\ R
T —)
Q | . OCV\’) rec 3w,
l %—\ ") nt]r:l Coll s per ev*l-c7
A]
| [

Top-down vs bottom-up DP algorithms

* So far we have seen that the recursive subproblems in DP algorithms are
always “smaller”. Examples

« Knapsack: f(n, W’) depends on f(n — 1,W”) for W’ < W'
« RNA SS: f(i,j) depends on f(i’,j") where |j'—i'| < |j —i]
* Yields a “bottom-up” ordering for filling the memoization table

* |nstead we could fill up the table “top-down”

Top-down vs bottom-up DP algorithms

e In a “top-down” DP algorithm f(x)
» Conclude that f(x) can be defined recursively based on f(y,), f(,), -..f(V;)

. For each y;, check if f(y;) has been previously calculated
. If yes, use the value of f(yj)

+ If not, recursive compute f(y;)

* Qverall, runtime is asymptotically the same! Each square of the memo is only
computed at most once.

Top-down vs bottom-up DP tradeoffs

* |n top-down approaches, not all squares may get calculated
* Can yield constant factor savings in terms of runtime

 However, the recursion stack usually scales poorly in top-down approaches

« For example, in Tribonacci, recursion stack would be £2(n) in depth

* Recursion stack is often in computer’'s memory while data being manipulated is expressed on the hard
drive

* Can yield memory overflow errors if not carefully programmed
* Top-down is better when the order of filling out squares isn’t well defined
e Occurs in graph DP algorithms like Bellman-Ford which we see soon

* |n such cases, a more sophisticated analysis is needed to argue that recursive defs. are not cyclical

5

Graph dynamic programming

Currency exchange

« USD to BTC: 0.00001

« BTC to EUR: 70,240

+ INR to USD: 0.0127 % “‘\W

+ EUR to INR: 97.01 L

+ EUR to HKD: 9.85 0\ /
#0240

« HKD to INR: 11.31

 USD to HKD: 6.96

Currency exchange

. USD to BTC: 0.00001 Set edge weight to log,(1/r) = — log,(r)

« BTC to EUR: 70,240 o

» INR to USD: 0.0127 / |

* EURto INR: 97.01

» EUR to HKD: 9.85 \ /

« HKD to INR: 11.31

 USD to HKD: 6.96

Currency exchange

Set edge weight to log,(1/r) = — log,(r)

« Apathp : u ~ v of net weight w implies a

currency conversion from 1 unit of u to 27" -m,h
. -6.6
units of v +6.5 35
p
» Finding a path of least weight from u to v @ \ @ -3.3
yields the best seq. of currency exchanges -2.8 ~ < @

* Direct conversion of USD to HKD vyields F14.C
228 HKD per USD 216,

Currency exchange

Set edge weight to log,(1/r) = — log,(r)

« Apathp : u ~ v of net weight w implies a
currency conversion from 1 unit of u to 27"
| -6.6
units of v %S iy
&

* Finding a path of least weight from u to v . 2.3
yields the best seq. of currency exchanges @ 2.8 ~ @ < @

* Direct conversion of USD to HKD vyields F14.C
228 HKD per USD 216,

« USD—BTC—EUR—HKD vyields

10

Currency exchange

Set edge weight to log,(1/r) = — log,(r)

 What happens if HKD to INR rate

changes from /
INR = 23 ~ 11.3 HKD to

INR = 2%0 = 16 HKD? \ /

11

Currency exchange

Set edge weight to log,(1/r) = — log,(r)

 What happens if HKD to INR rate
changes from / \
INR = 23 &~ 11.3 HKD to
INR = 240 = 16 HKD? /

+16.S

12

Currency exchange

Set edge weight to log,(1/r) = — log,(r)

* Consider the highlighted path from USD to
USD:

. Converts 1 USD to 2% > 1 USD
* Constitutes a negative cycle in the graph

* |In the currency exchange problem, negative
cycles represent arbitrage

e Since there is a negative cycle, any currency
can be converted into any other for
arbitrarily cheap as the graph is strongly
connected

[S
: -2.3
°
®.
‘™
o
oy

13

«f/ .um
¥
o
ko

/%6.5

3
R
™ i o
%
.
N
N
o
. By
.
X
”* .

Negative weights shortest paths

o Input: A directed graph G = (V, E) with weights w : E — R and a vertex r

e Output: For every vertex v, the distance of the lightest directed path r ~ v
where a path’s weight is the sum of its weights

 Why not just run Dijkstra’s?

e Dijkstra’s will incorrectly calculate distances
when negative weights are involved

14

Negative weights shortest paths

e Dijkstra’s property: Once a vertex v is visited, the distance
d(r, v) never needs updating again

e This does not hold with negative weights

 Need a slower but more careful algorithm that accounts for
negative weights

e |n this example,

» Dijkstra’s would set distance of u as 2 with path r — v in
its first step

» However, need to update the distance of u to —35 after v is
visited.

15

Negative weights shortest paths

Applications

 Trade routes: each vertex is a commodity and edge x — y of weight w means 1 unit of x can be
exchanged for 27" units of y

 Multiplicative gains can be converted to linear gains by taking logarithms
* Negative weights imply multiplicative losses

 Chemical networks: cost represent the excess energy required or released when a transformation
IS made

e Subsidies offered by governments for certain trades being performed

 Example, US Govt. subsides flights from Portland, Oreg. to Pendleton, Oreg. to incentive airlines
to fly to this market. (Annually, about $4 million for just this route)

* How can an airline design its route network to maximize revenue in light of subsidies”?

16

The Bellman-Ford algorithm

* Dijkstra’s is a greedy algorithm and suffices to calculate shortest/lightest paths when
all weights are non-negative

e Distances will never need to be recalculated once set

* Bellman-Ford is a dynamic programming algorithm for computing shortest path in
directed graphs

» Will run slower than Dijkstra’s: O(mn) time versus O(n + m)log n) time

* Will involve “resetting” distances as the algorithm goes along

* Bellman-Ford will detect negative cycles as shortest paths are undefined if there
are negative cycles

17

Failed attempt #1

. If a graph has negative weights, let w_. . = min w(e)
eck

» What if we adjusted every edge weight to w'(e) = w(e) —w_ ;. > 07?

1n

 Can we just run standard Dijkstra’s on the adjusted graph?

 No. Path weights adjust variably.
* W,(p) — W(p) — Whin |# of edges In p‘

 Why can we run MST algorithms with negative weights?

18

Negative weight shortest path

e Input: Directed graph G = (V, E) and weights w : E — R and a vertex ¢
» Output: For all vertices s, the weight of the shortest path d(s, 1)

 Note, we are considering shortest paths with respect to the endpoint ¢

* |ts easy enough to convert it to an algorithm for shortest paths with respect to
the source

19

Negative weight shortest path

¢ Input: Directed graph G = (V, E) and weights w : £ — R and a
vertex 1

» Output: For all vertices s, the weight of the shortest path d(s, 1)

 Observation: If a path s ~ 7 contains a negative weight cycle, then
a shortest path doesn’t exist.

« Observation: If G has no negative cycles then the shortest path
s ~ tis of length <n — 1.

 Proof: A path of length > n exists, it has a repeated vertex (i.e. a S
cycle). That cycle has weight > 0, so removing it only decreases
weight. Repeat till path is of length < n — 1.

20

./>.\"'%’/\\

Dynamic programming algorithm

e Definition. Fori € {0,...,n—1},5 € V, letd(i, s) be the length of the
shortest path s ~ t consisting of at most 1 edges

» Case 1: The shortest path uses <1 — 1 edges. Then
d(i,s) =d(i — 1,)

« Case 2: The shortest path uses exactly 1 edges. Let 1 be the first vertex on
the path. Then

d(i,s) =w(s,u)+d@i— 1,u)

21

Dynamic programming algorithm

» Definition. Fori € {0,....n—1},5 € V, let d(i, s) be the length of the
shortest path s ~ t consisting of at most 1 edges

e DP recursive definition:

O fi=0and s =1t
00 ifi=0and s # ¢

d(i,s) =
min {d(i — 1,5), min w(s, u) + d(i — l,u)} otherwise

u.s—u

22

Dynamic programming implementation

(Assuming no negative cycles)

 Table generation:
» Generate table d of size (n — 1) X n and table next of size n
e Set d(0,s) « oo fors # tand d(0,r) < 0
e Fori « lton
e Setd(i,s) « d(i —1,s).
 Foreachedge (s »> u) € E
e fw(s,u)+di—1,u) <d(i-1,s),
e Setd(i,s) <« w(s,u)+ d(i — 1,u) and next(s) < u
« Path recovery: Follow next(-) from s until it reaches .

23

0 INf Inf Inf Inf

Bellman-Ford example

O 4/ \ b
®\ s @\
1 =) . 2 s

0 INf Inf Inf Inf

Bellman-Ford example

1 Inf Inf Inf Inf

0 INf Inf Inf Inf

Bellman-Ford example

1 Inf 6 Inf /

a b C d t
Bellman-Ford example . . - o+ 7 &
2 INf 6 Inf / 0

)N 4/ \ b

@\ 2 /7@\
_ , . .

2

Bellman-Ford example

a b C d t
0 inf inf inf inf 0
1 inf 6 inf 14 0
2 11 6 2 / 0

Bellman-Ford example

)N 4/- \5
OO
N

2

a b C d t
0 inf inf inf inf 0
1 inf 6 inf 14 0
2 11 6 2 / 0
3 11 6 2 / 0

Bellman-Ford example

a b C d t
0 inf inf inf inf 0
1 inf 6 inf 14 0
2 11 6 2 / 0
3 4 6 2 / 0

)N 4/ \ b
ONGFIO
N 6
1 -2 f %\>
/
WV S g
(1) — >(3)
A

Inf
/

Inf
Inf

Inf
6

Inf
Inf
11

Bellman-Ford example

b
©
N

3

4/.. TN
~_ 5 7

®

-4

-3

Inf
/

Inf
Inf

Inf
6

Inf
Inf

11

Bellman-Ford example

Inf
/

Inf
Inf

Inf
6

Inf
Inf
11

Bellman-Ford example

33

Inf
/

Inf
Inf

Inf
6

Inf
Inf
11

Bellman-Ford example

34

Space saving techniques

 The end result is a DAG mapping paths from every vertex s to the sink ¢
» The entries of next(-) list the edges in the path

» d(i,s) only depends on entries d(i — 1,-). Rows i — 2,...,1 can be discarded.

 Computation should only keep track of

the current and previous row.

35

a

b

C

d

Inf

Inf

Inf

Inf

Inf

Inf

11

o~ WO DN =0

N O oo o

N DD DN

N NN NN

O O O O O O |t

Better “Iin-place” DP implementation

(Assuming no negative cycles)

 Table generation:
» Generate table d of size n and table next of size n
e Setd(s) « oofors #tandd(t) « O
e« Fori « ltonandedge (s - u) € E
o If w(s,u)+d(u) < d(s),
e Set d(s) « w(s,u)+d(u)and next(s) <« u

» Path recovery: Follow next(-) from s until it reaches .

36

Even more trimming

 If d(u) doesn’t decrease in round i, then we don’t need to consider any edges

s — uinround i + 1 as the best paths through © have already been
considered

» Keep a list O of vertices updated in the previous round and only update edge
s — uif u wasin Q

37

Even better DP implementation

(Assuming no negative cycles)

« Compute the reverse adjacency list: Foreveryu € V,pre(u) = {s : s — uj}.
» Generate tables d, next of size n with d(s) < oo V s # rand d(t) « O

e Initialize counter i « O and generate a queue Q « {¢, L }.

« Whilei <n

« Pop u off the queue O. ‘—"‘1‘7‘]""“' L s seenin 9{'“’“1
/ WeVe done one itetion o"\ BF,

e fu=_1,incrementi « i+ 1 and push 1L to Q. W A b o v-1
L Whee N-L.

» Else, for each s € pre(u),
o Ifw(s,u)+d(u) < d(s), setd(s) <« w(s,u)+d(u) and next(s) <« u

» Push s into queue Q.

38

Bellman-Ford properties

« Theorem: Throughout the algorithm, d(s) is the length of some path and that

path has weight less than the lightest path of < 17 edges after 1 rounds of
updates

» Impact: Space decreases to O(n + m) but runtime is still O(nm) in the worst
case. In practice, the runtime is much faster!

39

Bellman-Ford example

O 4/ \ b
®\ s @\
1 =) . 2 s

Bellman-Ford example

O 4/ \ b
®\ s @\
1 =) . 2 s

Bellman-Ford example

O 4/ \ b
®\ s @\
1 =) . 2 .

Bellman-Ford example

O 4/ \ b
®\ s @\
1 =) . 2 .

Bellman-Ford example

O 4/ \ b
®\ s @\
1 =) . 2 .

Bellman-Ford example

Rueue

P o
@\ s A @4\) 6 /Z/
o < ‘3\>@t :I
C

Bellman-Ford example

(Ruewe

Bellman-Ford example

O 4/ \ b
®\ s @\
1 =) o 2 .

Bellman-Ford example

(Ruewe

Bellman-Ford example

(Ruewe

Bellman-Ford example

Bellman-Ford example

(Ruewe

o B AR R b

Bellman-Ford example

Detecting negative cycles

 Lemma: If every vertex s can reach 7, and G has a negative cycle, then there is some edge

u — vsothatd(n — 1,u) > d(n — 1,v) + w(u, v). If G has no negative cycles, then output of
Bellman-Ford is correct on final iteration.

* Proof: By contradiction.

Assiona. (Pe L) e ¥ s w2, Afn-13u) £ d(n-1)+ W(wy)

p e,
A,,u_ﬂs up Toone cquadions for dhe ycle,

-

T;"‘uz Vo ™ \/|> 2 0((’,4 \\'\IL) Z dQ’\ |+\\ zﬂ W(‘V\ |’\I,H
Vi _) 2 SRy) -
. UL\ . 4_/ L Same. Term " ;> O < i W (‘\/'\ VVie

'O
« =0

Cl\d Are 'l/\QOI\S.\S\'E.Y\’\-, ?ﬂm
53 Hra. Canbradichon .

Detecting negative cycles

« Lemma: If every vertex s can reach 7, and G has a negative cycle, then there is some edge

u — vsothatd(n — 1,u) > d(n — 1,v) + w(u, v). If G has no negative cycles, then output of
Bellman-Ford is correct on final iteration.

* Proof: The previous slide proves the first part of the statement.

 |f there are no negative cycles, the shortest path s ~ ¢ consists of unique vertices and has
length < n — 1.

 We previously proved that d(i, s) was optimal length of path s ~ ¢ of length < i.

* Jogether, concludes proof.

54

Negative cycle detection

 Negative cycle detection algorithm:

 Run Bellman-Ford assuming there are no negative cycles

e For each edge u — v, verify that d(u) < d(v) + w(u, v). Else,
report “negative cycle detected”.

* This will only detective negative cycles amongst vertices that
have paths to 7. Will not detect negative cycles in the entire
graph for a poorly connected choice of 7.

e Solution: Add a new “sink” f to the graph and add edge v — 1 of
weight O for all vertices. Run detection algorithm w.r.t this sink.

55

Bellman-Ford with negative cycles example

> ®

Bellman-Ford with negative cycles example

Bellman-Ford with negative cycles example

Bellman-Ford with negative cycles example

Bellman-Ford with negative cycles example

Bellman-Ford with negative cycles example

Bellman-Ford with negative cycles example

Bellman-Ford with negative cycles example

Bellman-Ford with negative cycles example

3R s -

Bellman-Ford with negative cycles example

Sl cen e

Bellman-Ford with negative cycles example

M RO NN

Bellman-Ford with negative cycles example

M RO N M e o

O
)/
b@ﬁoo @oﬂ

Bellm
an-Ford
wit
h negative cycle
S exam
ple

|

R Q
SRR R R R P

Bellman-Ford with negative cycles example

/ 0 @uﬁwg
-
o/ ~_ jf: Obsene. What woulel
D O R ve vl
\ > /7 T 2 //g N, wre
S -3 2 Y g '
-4 S @ £ &
7 3
AT
l 9 >? 0 f;
\ A
e
L
a

Shortest paths with negative weights on a DAG

* No cycles by definition
 Under topological sort, edges only go from low to high numbered vertices

* One pass through the vertices in reverse topological order suffices

» Runtime: O(n + m) @‘@ @
D O
D) &
@ -------------

- ‘4 A

