Lecture 14

Dynamic programming ll|

Chinmay Nirkhe | CSE 421 Winter 2026

Previously in CSE 421...

Knapsack runtime

The input for Knapsack is usually written in binary with each item weight w.
expressed with O(log W) bit numbers and value with O(log V') bit numbers

Total input length is ®(nlog V+ nlog W) = O(nlog VW)
Runtime of Knapsack brute-force alg is O(n2" log VW), exp in input length
Runtime of Knapsack DP alg is O(nW log VW) also exp in the input length

DP algorithm is only faster when W < 2".

Knapsack approximation algorithm

» Given a Knapsack problem (v{, ..., v ,wy, ..., w,, W), let OPT be the optimal
value of subset of items weighing < W: OPT = V(n, W)

* An alg. Qg is an e-approximation alg. if 2 always outputs a subset S such that (a)
welght(S) < Wand (b) value($) > (1 —€) - OPT.

« Theorem: For every € > 0, there exists an e-approximation alg. for n-item

n°log(VW)

€

Knapsack that runs in time O

* [he construction will be another dynamic programming algorithm.

4

A different DP algorithm for (exact) Knapsack

« Assume that 0 < w; < W for all items.

. Let v, = maxv; Then, v, < OPT <V

l

e Define: C(V’) to be the minimum weight of a set .S such that
value($S) >V’

e Let C(V') = oo if no set S exists of this value.
e Base case of C(0) =0
e C(V)=o0forV' >V

« C(V’)is monotonically increasing

e Then, Knapsack solution OPT = max value V's.t. C(V') < W

A slightly different optimization

e C(V") can be “morally” seen as a dual problem to maximization V(W’)

» Define: C(i, V') as the minimum weight of a set S such that value(S) > V' usingitemsonly {1,...,1}

* This new subproblem has a recursive definition similar to our previous example

C(; V,) . C(l o 19V/)9
CEVI=EMINY G vy 4w,
» The table C(-, -) consists of O(nV) entries
» Observe C(V') = C(n, V')

« Observe OPT = the maximum value V's.t. C(n, V') < W

A different Knapsack algorithm

» This new algorithm has a table of size(n + 1) X V
» Each entry of the table can be constructed in O(log W + log V) = O(log VW) time

« Computing OPT after table involves binary searching along C(n, -) as C(n, -) is monotonic

e OPT =the maximum value V's.t. C(n, V') < W
 Requires O(log V(log VW)) total compute

» Yields a total runtime of O(nV log VW)
» No exponential dependence in terms of log W

» However, exponential dependence in terms of log V

14

An approximation algorithm

» Yields a total runtime of O(nV log VW)

 What if we just replaced each v; with v./Z for a large number Z?

nVlog VW
Z

_ Would the algorithm now run in O () as the sum of values is now V/Z?

* No. Crucially, to run the dynamic programming algorithm we needed all the values to be
integers.

 However, this suggests an approximation algorithm.

* Approximation algorithm (overview):

o Define v, := |v./Z]|. Return § < Knapsack({V;}, {w;}, W) with our second DP algorithm.

8

An approximation algorithm

€Vmax

V.
. ldea: Compute § < Knapsack({V.}, {w.}, W) for v, = LEZJ & 2 =
n

Since the weights are reduced, the runtime is shorter!

| nVlog VW n°Vlog VW n°log VW
Runtime: O —, =0 ———m | 0| ——
* €V max €

e Claim: S is a feasible solution and value($) > (1 — ¢)OPT.

An approximation algorithm

€Vmax

V.
. ldea: Compute § < Knapsack({V.}, {w.}, W) for v, = LEZJ & 2 =
n

e Since the weights are reduced, the runtime is shorter!

o 'm-\ul-]rfov\l 347/ = =9\|f 3\0" s KK

Then F e express Vg ‘O*M*T'- v; |ajo]alelo|d|e o |o|a |14

L

N i
T el

= - K l

e W He ol guiticest digats., -Tl;l's ala. | I\ »3\
ep 0 S - S Wl Tou |
i 3 T 3 X) e

10

An approximation algorithm

[t (\\/i = ‘ llzﬁ-& 'PO' A= € Voo Ou‘]")w\’ 8 & Kvlal)sac]c<i’\7&, Zwi'g, W>

I

Cloim: S is a Pacbe solubion to the o qinal 'Pnblam.

F‘P\’Do&\l g\f\% +l’\'- ’V\U'J\'\’\S ZW‘QS &'\3) RM\Jr \/\/ ore ’H’\L SaMe I QO&‘\'\/ 'be&o]b\"/\-s'

bn D, Wi W,

€S

11

An approximation algorithm

o %= 3] e S Oope S Mok (], Pl W),

LedX O be the o‘ﬁ‘?w\a\ sol. o

Khaf)sack(? 'Vl-‘gl §Wi%, \/\/>

So) OPT = '\/a\% (O> |

Lc;\’ Va\\mg<g> = Z V‘L ‘ '\m (SB =Z VL- .
LeS e

Cloin: "alue, CS> 2 Ci— €> OPT.

An approximation algorithm

C,\H\N\J '\/0\\“\(. Cg> 2 (_j-— €> OPT. Sinee,

- , . ~ Vi V; ,
('Proo&\: 1?){‘ é.f\\/ \‘\‘tW\. 1, VL ’-Z(v(- 2(*2--’|:§'—l> - Z /
S O ban 2w Hews, OPT - 2 Wl (0) = 2 V-V, 2 M2 = €V
Led
Z value(O) 2 OPT - €V > (I-€) OPT,

ch\‘) W{g) > @&:(DB e, S 1S o?“*wa\ 2ol. o Kmmk<§“7§§,iwii,\/\/>

So Vol ()2 Zalue(S) 2 Z Uit (0) 2 (I-€) OPT, o

13

€ Vi

-
- Gae——

Structure of approx. DP algorithm

 We came up with two DP algorithms for exact Knapsack based on the following recursive
definitions

» V(i, W) = max value with items § C {1,...,1} s.t. weight($) < W
e C(1, V') = min weight with items § C {1,...,i} s.t. value(§) > V’
 Approx. alg. by rounding values v; = Lvl-/ZJ and running second alg.
- Is there an approx. alg. by rounding w; = |w./Z|, W = | W/Z] and running the first alg.?

» Doing this will yield some subset § C {1,...,n}
* Trouble is that this new set may not be feasible for the original weight constraints

14

Knapsack overview

e Input: n items of integer values v; and weights w; and weight threshold W.
e Input length: O(nlog VW)

e Output: optimal § C [n] maximizing value(S) s.t. weight(S) < W

* Various algorithms:

» Brute force alg: Runtime of O(n2" log VW)
» DP alg: Runtime O(nW log VW) or O(nV log VW)

n°log VW)

c-approx. alg: Runtime O (
€

15

RNA secondary structure

» RNA is expressed as a sequence of nucleotides: a string B = b,...b, where
each b, € {A, C, G, U} for adenine, cytosine, guanine, and uracil.

* RNA tends to not be linear in a molecule and forms secondary structures
 Secondary structures cause the molecule to loop back and forth

cC— A

 These are bonds between the base pairs NS

16

RNA secondary structure hypothesis

hot auoww[:
» Definition. A secondary structure for an RNA seq. ¢ —

B =b,...b,is asetof pairs S = {(b;, b))} such that g

\

« WC condition: § is a matching and pairs are A{‘“:,f:'.'-
Watson-Crick complements i.e. ""
(b.b) € WC := {(A, U). (U, A).(G.C).(C.G))

. No sharp bends: (b, bj) eSonlyifd < |i—j] "(A

|

» Non-crossing: If (b;, b;) and (b, b,) then the) a
intervals [i, j] and [k, £'] are either disjoint or one ?/ Ne—e—c—u
contains the other. c. 6—C—6—A—6

N |
G

17

RNA secondary structure problem

o Input:an RNAseq. B = b,...b,

e Output: a secondary structure S of maximal size for B.

« Dynamic programming attempt 1: For 1 <1 < j < n define §(j) as the
maximal secondary structure using bases only by, b,, ..., bj. Let

SO =15 1.

18

RNA secondary structure problem

- Two possibilities: In the optimal solution, either (b, b;) € 5 or (b, b)) & S

» Splits problem into smaller problems but they aren’t subproblems.

 Problem: Our choice of subproblem was not expressive enough.

19

RNA secondary structure problem

o Input:an RNAseq. B = b,...b,

e Output: a secondary structure S of maximal size for B.

« Dynamic programming intuition: For 1 <1 < j < n define 5(i,) as the
maximal secondary structure using bases only b;, b, y, ..., b;. Let

J@,) =153,)1

20

RNA secondary structure DP algorithm

» Dynamic programming intuition: For 1 <1 < j < n define
S5(i,) as the maximal secondary structure using bases only

bi’ bi-l—l’ ceos b] Letf(l,]) —_ |S(l,]) ‘ .

e Recursive definition:

umatched
+ In optimal solution, either b; is not in a SS or (b, b;) is in b; b, b ... b, b.
i+ +2

the SS
e Infirstcase, f(i,j) =f(i,j— 1)and S(,j) = S, 7 — 1) /
e Insecondcase, f(i,j) =1+ fi,k—1)+f(k+1,j—1) /\

 Optimal solution can be calculated as a recursive (
minimization g

21

RNA secondary structure DP algorithm

e Recursive definition:

. In optimal solution, either bj is not in a SS or (b,, bj) is in the SS

o Infirst case, f(i,7) = f(i,j— 1) and 5(i,7) = 5@, 7 — 1)
e Insecondcase, f(i,7)) =1+fi,k—1)+f(k+17—1)

« Observation: The recursive definition of f(i, 7) only depends on f(i’, j) for
=i <lj—il.

» Therefore, we fill memo from bottom-to-top w.r.t [j —i].

22

RNA secondary structure DP algorithm

* Filling memoization tables:

« Construct n X n tables M and f initialized as L

e Set f(1,1) « O for all i. terole Over \ﬂn\cﬁk of inteni| 2

rd

e Forz <~ Qton—1landi < lton—7

¢ let] «— 142 valid ‘Fm’\Mf L vl We ond S\AAC‘F conner Condidions

s

. Compute V « max 1 +f(i,k—1)+f(k+1,j — 1) and let k be its argmin.
keli,....j=3iADb,b)eWC

e fV>f(i,j—1),setf(i,j) <« Vandset M(i,j) « k

L/\F —

 Else, set f(i,j) <« f(i,j — 1) and keep M(i,j) = L .
— <\'\ Necorsl s«cconob«x/ struGuce, o?‘\‘?m\ Sl

RNA secondary structure DP algorithm

« Computing optimal secondary structure:

« It M(i, j) = k this means that (b, b;) € S. Else j is not included in S.

 To calculate optimal secondary structure run Print(1,7n) where
e Print(i, j):
« IfM(i,j) < koutput (k,j) UPrint(i,k — 1)U Print(k + 1,/ — 1)
* Else, output Print(i,j — 1)
 Can be made to run faster in practice using DFS or BFS instead of recursion

. Runtime: O(n?) sized table with each recursive computation taking O(n) time. Print runs in O(n) time after
the table is computed. Total runtime: O(n°).

24

Dynamic programming patterns

fﬁ\«rSacL
’\’r\'\aovw\c.c} fﬁ\ T
4 | | l 7 -
LT[1<) . a—TH
- 0 - _
-~ W _
CA> Astznee “1RNA Se.c_ov\S S&ftvxo'\ R
T —)
Q | . OCV\’) rec 3w,
l %—\ ") nt]r:l Coll s per ev*l-c7
A]
| [

Top-down vs bottom-up DP algorithms

* So far we have seen that the recursive subproblems in DP algorithms are
always smaller. Examples

« Knapsack: f(n, W’) depends on f(n — 1,W”) for W’ < W'
« RNA SS: f(i,j) depends on f(i’,j") where |j'—i'| < |j —i]
* Yields a “bottom-up” ordering for filling the memoization table

* |nstead we could fill up the table “top-down”

26

Top-down vs bottom-up DP algorithms

e In a “top-down” DP algorithm f(x)
» Conclude that f(x) can be defined recursively based on f(y,), f(,), -..f(V;)

. For each y;, check if f(y;) has been previously calculated
. If yes, use the value of f(yj)

+ If not, recursive compute f(y;)

* Qverall, runtime is asymptotically the same! Each square of the memo is only
computed once.

27

Top-down vs bottom-up DP tradeoffs

* |n top-down approaches, not all squares may get calculated
* Can yield constant factor savings in terms of runtime

 However, the recursion stack usually scales poorly in top-down approaches

« For example, in Tribonacci, recursion stack would be £2(n) in depth

* Recursion stack is often in computer’'s memory while data being manipulated is expressed on the hard
drive

* Can yield memory overflow errors if not carefully programmed
* Top-down is better when the order of filling out squares isn’t well defined
e Occurs in graph DP algorithms like Bellman-Ford which we see soon

* |n such cases, a more sophisticated analysis is needed to argue that recursive defs. are not cyclical

28

Graph dynamic programming

Currency exchange

« USD to BTC: 0.00001

« BTC to EUR: 70,240

+ INR to USD: 0.0127 % “‘\W

+ EUR to INR: 97.01 L

+ EUR to HKD: 9.85 0\ /
#0240

« HKD to INR: 11.31

 USD to HKD: 6.96

30

Currency exchange

. USD to BTC: 0.00001 Set edge weight to log,(1/r) = — log,(r)

« BTC to EUR: 70,240 o

» INR to USD: 0.0127 / |

* EURto INR: 97.01

» EUR to HKD: 9.85 \ /

« HKD to INR: 11.31

 USD to HKD: 6.96

31

Currency exchange

Set edge weight to log,(1/r) = — log,(r)

« Apathp : u ~ v of net weight w implies a

currency conversion from 1 unit of u to 27" -m,h
. -6.6
units of v +6.5 35
p
» Finding a path of least weight from u to v @ \ @ -3.3
yields the best seq. of currency exchanges -2.8 ~ < @

* Direct conversion of USD to HKD vyields F14.C
228 HKD per USD 216,

32

Currency exchange

Set edge weight to log,(1/r) = — log,(r)

« Apathp : u ~ v of net weight w implies a
currency conversion from 1 unit of u to 27"
| -6.6
units of v %S iy
&

* Finding a path of least weight from u to v . 2.3
yields the best seq. of currency exchanges @ 2.8 ~ @ < @

* Direct conversion of USD to HKD vyields F14.C
228 HKD per USD 216,

« USD—BTC—EUR—HKD vyields

33

Currency exchange

Set edge weight to log,(1/r) = — log,(r)

 What happens if HKD to INR rate

changes from 2 to 2+92 / A \
+\ /

34

Currency exchange

Set edge weight to log,(1/r) = — log,(r)

 What happens if HKD to INR rate

changes from 23~ to 2497 / A \
+16.S /

35

Currency exchange

Set edge weight to log,(1/r) = — log,(r)

* Consider the highlighted path from USD to
USD:

. Converts 1 USD to 2% > 1 USD
* Constitutes a negative cycle in the graph

* |In the currency exchange problem, negative
cycles represent arbitrage

e Since there is a negative cycle, any currency
can be converted into any other for
arbitrarily cheap as the graph is strongly
connected

[S
: -2.3
°
®.
‘™
o
oy

36

«f/ .um
¥
o
ko

/%6.5

3
R
™ i o
%
.
N
N
o
. By
.
X
”* .

Negative weights shortest paths

o Input: A directed graph G = (V, E) with weights w : E — R and a vertex r

e Output: For every vertex v, the distance of the lightest directed path r ~ v
where a path’s weight is the sum of its weights

 Why not just run Dijkstra’s?

e Dijkstra’s will incorrectly calculate distances
when negative weights are involved

37

Negative weights shortest paths

e Dijkstra’s property: Once a vertex v is visited, the distance
d(r, v) never needs updating again

e This does not hold with negative weights

 Need a slower but more careful algorithm that accounts for
negative weights

e |n this example,

» Dijkstra’s would set distance of u as 2 with path r — v in
its first step

» However, need to update the distance of u to —35 after v is
visited.

38

Negative weights shortest paths

Applications

 Trade routes: each vertex is a commodity and edge x — y of weight w means 1 unit of x can be
exchanged for 27" units of y

 Multiplicative gains can be converted to linear gains by taking logarithms
* Negative weights imply multiplicative losses

 Chemical networks: cost represent the excess energy required or released when a transformation
IS made

e Subsidies offered by governments for certain trades being performed

 Example, US Govt. subsides flights from Portland, Oreg. to Pendleton, Oreg. to incentive airlines
to fly to this market. (Annually, about $4 million for just this route)

* How can an airline design its route network to maximize revenue in light of subsidies”?

39

The Bellman-Ford algorithm

* Dijkstra’s is a greedy algorithm and suffices to calculate shortest/lightest paths when
all weights are non-negative

e Distances will never need to be recalculated once set

* Bellman-Ford is a dynamic programming algorithm for computing shortest path in
directed graphs

» Will run slower than Dijkstra’s: O(mn) time versus O(n + m)log n) time

* Will involve “resetting” distances as the algorithm goes along

* Bellman-Ford will detect negative cycles as shortest paths are undefined if there
are negative cycles

40

