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Previously in CSE 421…

2



Knapsack runtime

• The input for Knapsack is usually written in binary with each item weight  
expressed with  bit numbers and value with  bit numbers


• Total input length is 


• Runtime of Knapsack brute-force alg is , exp in input length


• Runtime of Knapsack DP alg is  also exp in the input length


• DP algorithm is only faster when .

wi
O(log W) O(log V)

Θ(n log V + n log W) = Θ(n log VW)

O(n2n log VW)

O(nW log VW)

W ≪ 2n
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Knapsack approximation algorithm

• Given a Knapsack problem , let  be the optimal 
value of subset of items weighing : 


• An alg.  is an -approximation alg. if  always outputs a subset  such that (a) 
 and (b) .


• Theorem: For every , there exists an -approximation alg. for -item 

Knapsack that runs in time .


• The construction will be another dynamic programming algorithm.

(v1, …, vn, w1, …, wn, W) OPT
≤ W OPT = V(n, W)

𝒜 ϵ 𝒜 S̃
weight(S̃) ≤ W value(S̃) ≥ (1 − ϵ) ⋅ OPT

ϵ > 0 ϵ n

O ( n3 log(VW)
ϵ )
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A different DP algorithm for (exact) Knapsack

• Assume that  for all items.


• Let . Then, 


• Define:  to be the minimum weight of a set  such that 



• Let  if no set  exists of this value.


• Base case of 


• 


•  is monotonically increasing


• Then, Knapsack solution  = max value  s.t. 

0 ≤ wi ≤ W

vmax = max
i

vi vmax ≤ OPT ≤ V

C(V′￼) S
value(S) ≥ V′￼

C(V′￼) = ∞ S

C(0) = 0

C(V′￼) = ∞ for V′￼ > V

C(V′￼)

OPT V′￼ C(V′￼) ≤ W
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A slightly different optimization

•  can be “morally” seen as a dual problem to maximization 


• Define:  as the minimum weight of a set  such that  using items only 


• This new subproblem has a recursive definition similar to our previous example


• 


• The table  consists of  entries


• Observe 


• Observe  = the maximum value  s.t. 

C(V′￼) V(W′￼)

C(i, V′￼) S value(S) ≥ V′￼ {1,…, i}

C(i, V′￼) = min { C(i − 1,V′￼),
C(i − 1,V′￼− vi) + wi}

C( ⋅ , ⋅ ) O(nV)

C(V′￼) = C(n, V′￼)

OPT V′￼ C(n, V′￼) ≤ W
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A different Knapsack algorithm

• This new algorithm has a table of size 


• Each entry of the table can be constructed in  time


• Computing  after table involves binary searching along  as  is monotonic


•  = the maximum value  s.t. 


• Requires  total compute


• Yields a total runtime of  

• No exponential dependence in terms of 


• However, exponential dependence in terms of 

(n + 1) × V

O(log W + log V) = O(log VW)

OPT C(n, ⋅ ) C(n, ⋅ )

OPT V′￼ C(n, V′￼) ≤ W

O(log V(log VW))

O(nV log VW)

log W

log V
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An approximation algorithm

• Yields a total runtime of  

• What if we just replaced each  with  for a large number 


• Would the algorithm now run in  as the sum of values is now ?


• No. Crucially, to run the dynamic programming algorithm we needed all the values to be 
integers.


• However, this suggests an approximation algorithm.


• Approximation algorithm (overview):


• Define . Return  with our second DP algorithm.

O(nV log VW)

vi vi/Z Z?

Õ ( nV log VW
Z ) V/Z

ṽi := ⌊vi/Z⌋ S ← Knapsack({ṽi}, {wi}, W)
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An approximation algorithm

• Idea: Compute  for  & .  
 
Since the weights are reduced, the runtime is shorter!


• Runtime: 


• Claim:  is a feasible solution and .

S ← Knapsack({ṽi}, {wi}, W) ṽi = ⌊
vi

Z
⌋ Z =

ϵvmax

n

O ( nV log VW
Z ) = O ( n2V log VW

ϵvmax ) ≤ O ( n3 log VW
ϵ )

S value(S) ≥ (1 − ϵ)OPT
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An approximation algorithm

• Idea: Compute  for  & .


• Since the weights are reduced, the runtime is shorter!

S ← Knapsack({ṽi}, {wi}, W) ṽi = ⌊
vi

Z
⌋ Z =

ϵvmax

n
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An approximation algorithm
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An approximation algorithm
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An approximation algorithm
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Structure of approx. DP algorithm

• We came up with two DP algorithms for exact Knapsack based on the following recursive 
definitions


•  = max value with items  s.t. 


•  = min weight with items  s.t. 


• Approx. alg. by rounding values  and running second alg.


• Is there an approx. alg. by rounding  and running the first alg.?


• Doing this will yield some subset 


• Trouble is that this new set may not be feasible for the original weight constraints

V(i, W′￼) S ⊆ {1,…, i} weight(S) ≤ W′￼

C(i, V′￼) S ⊆ {1,…, i} value(S) ≥ V′￼

ṽi = ⌊vi/Z⌋

w̃i = ⌊wi/Z⌋, W̃ = ⌊W/Z⌋

S ⊆ {1,…, n}
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Knapsack overview

• Input:  items of integer values  and weights  and weight threshold .


• Input length: 


• Output: optimal  maximizing  s.t.  


• Various algorithms:


• Brute force alg: Runtime of 


• DP alg: Runtime  or 


• -approx. alg: Runtime 

n vi wi W

O(n log VW)

S ⊆ [n] value(S) weight(S) ≤ W

O(n2n log VW)

O(nW log VW) O(nV log VW)

ϵ O ( n3 log VW
ϵ )
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RNA secondary structure

• RNA is expressed as a sequence of nucleotides: a string  where 
each  for adenine, cytosine, guanine, and uracil.


• RNA tends to not be linear in a molecule and forms secondary structures 

• Secondary structures cause the molecule to loop back and forth


• These are bonds between the base pairs 

B = b1…bn
bi ∈ {A, C, G, U}
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RNA secondary structure hypothesis

• Definition. A secondary structure for an RNA seq. 
 is a set of pairs  such that


• WC condition:  is a matching and pairs are 
Watson-Crick complements i.e. 




• No sharp bends:  only if 


• Non-crossing: If  and  then the 
intervals  and  are either disjoint or one 
contains the other.

B = b1…bn S = {(bi, bj)}

S

(bi, bj) ∈ WC := {(A, U), (U, A), (G, C), (C, G)}

(bi, bj) ∈ S 4 < | i − j |

(bi, bj) (bk, bℓ)
[i, j] [k, ℓ]
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RNA secondary structure problem

• Input: an RNA seq. 


• Output: a secondary structure  of maximal size for .


• Dynamic programming attempt 1: For  define  as the 
maximal secondary structure using bases only . Let 

. 

B = b1…bn

S B

1 ≤ i ≤ j ≤ n S( j)
b1, b2, …, bj

f( j) = |S( j) |
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RNA secondary structure problem

• Two possibilities: In the optimal solution, either  or 


• Splits problem into smaller problems but they aren’t subproblems.


• Problem: Our choice of subproblem was not expressive enough. 

(bk, bj) ∈ S (bk, bj) ∉ S
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RNA secondary structure problem

• Input: an RNA seq. 


• Output: a secondary structure  of maximal size for .


• Dynamic programming intuition: For  define  as the 
maximal secondary structure using bases only . Let 

. 

B = b1…bn

S B

1 ≤ i ≤ j ≤ n S(i, j)
bi, bi+1, …, bj

f(i, j) = |S(i, j) |
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RNA secondary structure DP algorithm

• Dynamic programming intuition: For  define 
 as the maximal secondary structure using bases only 

. Let . 


• Recursive definition:


• In optimal solution, either  is not in a SS or  is in 
the SS


• In first case,  and 


• In second case, 


• Optimal solution can be calculated as a recursive 
minimization

1 ≤ i ≤ j ≤ n
S(i, j)
bi, bi+1, …, bj f(i, j) = |S(i, j) |

bj (bk, bj)

f(i, j) = f(i, j − 1) S(i, j) = S(i, j − 1)

f(i, j) = 1 + f(i, k − 1) + f(k + 1,j − 1)
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RNA secondary structure DP algorithm

• Recursive definition:


• In optimal solution, either  is not in a SS or  is in the SS


• In first case,  and 


• In second case,  

• Observation: The recursive definition of  only depends on  for 
.


• Therefore, we fill memo from bottom-to-top w.r.t .

bj (bk, bj)

f(i, j) = f(i, j − 1) S(i, j) = S(i, j − 1)

f(i, j) = 1 + f(i, k − 1) + f(k + 1,j − 1)

f(i, j) f(i′￼, j′￼)
| j′￼− i′￼| < | j − i |

| j − i |
22



RNA secondary structure DP algorithm

• Filling memoization tables: 

• Construct  tables  and  initialized as 


• Set  for all .


• For  to  and  to 


• Let 


• Compute  and let  be its argmin. 


• If , set  and set  


• Else, set  and keep .

n × n M f ⊥

f(i, i) ← 0 i

z ← 0 n − 1 i ← 1 n − z

j ← i + z

V ← max
k∈{i,…,j−5}∧(bj,bk)∈WC

1 + f(i, k − 1) + f(k + 1,j − 1) k

V > f(i, j − 1) f(i, j) ← V M(i, j) ← k

f(i, j) ← f(i, j − 1) M(i, j) = ⊥
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RNA secondary structure DP algorithm

• Computing optimal secondary structure:


• If  this means that . Else  is not included in .


• To calculate optimal secondary structure run  where


• : 

• If  output 


• Else, output 


• Can be made to run faster in practice using DFS or BFS instead of recursion


• Runtime:  sized table with each recursive computation taking  time. Print runs in  time after 
the table is computed. Total runtime: .

M(i, j) = k (bk, bj) ∈ S j S

Print(1,n)

Print(i, j)

M(i, j) ← k (k, j) ∪ Print(i, k − 1) ∪ Print(k + 1,j − 1)

Print(i, j − 1)

O(n2) O(n) O(n)
O(n3)
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Dynamic programming patterns
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Top-down vs bottom-up DP algorithms

• So far we have seen that the recursive subproblems in DP algorithms are 
always smaller. Examples


• Knapsack:  depends on  for 


• RNA SS:  depends on  where 


• Yields a “bottom-up” ordering for filling the memoization table


• Instead we could fill up the table “top-down” 

f(n, W′￼) f(n − 1,W′￼′￼) W′￼′￼ ≤ W′￼

f(i, j) f(i′￼, j′￼) | j′￼− i′￼| < | j − i |
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Top-down vs bottom-up DP algorithms

• In a “top-down” DP algorithm 


• Conclude that  can be defined recursively based on 


• For each , check if  has been previously calculated


• If yes, use the value of 


• If not, recursive compute 


• Overall, runtime is asymptotically the same! Each square of the memo is only 
computed once.

f(x)

f(x) f(y1), f(y2), …f(yk)

yj f(yj)

f(yj)

f(yj)
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Top-down vs bottom-up DP tradeoffs

• In top-down approaches, not all squares may get calculated


• Can yield constant factor savings in terms of runtime


• However, the recursion stack usually scales poorly in top-down approaches


• For example, in Tribonacci, recursion stack would be  in depth


• Recursion stack is often in computer’s memory while data being manipulated is expressed on the hard 
drive


• Can yield memory overflow errors if not carefully programmed


• Top-down is better when the order of filling out squares isn’t well defined


• Occurs in graph DP algorithms like Bellman-Ford which we see soon


• In such cases, a more sophisticated analysis is needed to argue that recursive defs. are not cyclical 

Ω(n)
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Graph dynamic programming
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Currency exchange

• USD to BTC: 0.00001


• BTC to EUR: 70,240


• INR to USD: 0.0127


• EUR to INR: 97.01


• EUR to HKD: 9.85


• HKD to INR: 11.31


• USD to HKD: 6.96
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Currency exchange

• USD to BTC: 0.00001


• BTC to EUR: 70,240


• INR to USD: 0.0127


• EUR to INR: 97.01


• EUR to HKD: 9.85


• HKD to INR: 11.31


• USD to HKD: 6.96
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Currency exchange

• A path  of net weight  implies a 
currency conversion from 1 unit of  to  
units of 


• Finding a path of least weight from  to  
yields the best seq.  of currency exchanges


• Direct conversion of USD to HKD yields 
 HKD per USD


•  USD BTC EUR HKD yields 
 HKD per USD

p : u ↝ v w
u 2−w

v

u v

22.8

→ → →
2−(16.5−16.1−3.3) = 22.9
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Currency exchange

• A path  of net weight  implies a 
currency conversion from 1 unit of  to  
units of 


• Finding a path of least weight from  to  
yields the best seq.  of currency exchanges


• Direct conversion of USD to HKD yields 
 HKD per USD


•  USD BTC EUR HKD yields 
 HKD per USD

p : u ↝ v w
u 2−w

v

u v

22.8

→ → →
2−(16.5−16.1−3.3) = 22.9
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Currency exchange

• What happens if HKD to INR rate 
changes from  to ?23.5 24.0

34

Set edge weight to log2(1/r) = − log2(r)



Currency exchange

• What happens if HKD to INR rate 
changes from  to ?23.5 24.0
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Currency exchange

• Consider the highlighted path from USD to 
USD:


• Converts 1 USD to  USD


• Constitutes a negative cycle in the graph


• In the currency exchange problem, negative 
cycles represent arbitrage 

• Since there is a negative cycle, any currency 
can be converted into any other for 
arbitrarily cheap as the graph is strongly 
connected 

20.8 > 1

36
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Negative weights shortest paths

• Input: A directed graph  with weights  and a vertex 


• Output: For every vertex , the distance of the lightest directed path  
where a path’s weight is the sum of its weights


• Why not just run Dijkstra’s?


• Dijkstra’s will incorrectly calculate distances  
when negative weights are involved

G = (V, E) w : E → ℝ r

v r ↝ v
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Negative weights shortest paths

• Dijkstra’s property: Once a vertex  is visited, the distance 
 never needs updating again


• This does not hold with negative weights


• Need a slower but more careful algorithm that accounts for 
negative weights


• In this example, 


• Dijkstra’s would set distance of  as  with path  in 
its first step


• However, need to update the distance of  to  after  is 
visited.

v
d(r, v)

u 2 r → v

u −5 v
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Negative weights shortest paths
Applications

• Trade routes: each vertex is a commodity and edge  of weight  means  unit of  can be 
exchanged for  units of 


• Multiplicative gains can be converted to linear gains by taking logarithms


• Negative weights imply multiplicative losses  


• Chemical networks: cost represent the excess energy required or released when a transformation 
is made


• Subsidies offered by governments for certain trades being performed


• Example, US Govt. subsides flights from Portland, Oreg. to Pendleton, Oreg. to incentive airlines 
to fly to this market. (Annually, about $4 million for just this route) 


• How can an airline design its route network to maximize revenue in light of subsidies?

x → y w 1 x
2−w y
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The Bellman-Ford algorithm

• Dijkstra’s is a greedy algorithm and suffices to calculate shortest/lightest paths when 
all weights are non-negative


• Distances will never need to be recalculated once set


• Bellman-Ford is a dynamic programming algorithm for computing shortest path in 
directed graphs


• Will run slower than Dijkstra’s:  time versus  time


• Will involve “resetting” distances as the algorithm goes along


• Bellman-Ford will detect negative cycles as shortest paths are undefined if there 
are negative cycles

O(mn) O(n + m)log n)

40


