
Chinmay Nirkhe | CSE 421 Winter 2026

Lecture 14
Dynamic programming III

1

Previously in CSE 421…

2

Knapsack runtime

• The input for Knapsack is usually written in binary with each item weight
expressed with bit numbers and value with bit numbers

• Total input length is

• Runtime of Knapsack brute-force alg is , exp in input length

• Runtime of Knapsack DP alg is also exp in the input length

• DP algorithm is only faster when .

wi
O(log W) O(log V)

Θ(n log V + n log W) = Θ(n log VW)

O(n2n log VW)

O(nW log VW)

W ≪ 2n

3

Knapsack approximation algorithm

• Given a Knapsack problem , let be the optimal
value of subset of items weighing :

• An alg. is an -approximation alg. if always outputs a subset such that (a)
 and (b) .

• Theorem: For every , there exists an -approximation alg. for -item

Knapsack that runs in time .

• The construction will be another dynamic programming algorithm.

(v1, …, vn, w1, …, wn, W) OPT
≤ W OPT = V(n, W)

𝒜 ϵ 𝒜 S̃
weight(S̃) ≤ W value(S̃) ≥ (1 − ϵ) ⋅ OPT

ϵ > 0 ϵ n

O (n3 log(VW)
ϵ)

4

A different DP algorithm for (exact) Knapsack

• Assume that for all items.

• Let . Then,

• Define: to be the minimum weight of a set such that

• Let if no set exists of this value.

• Base case of

•

• is monotonically increasing

• Then, Knapsack solution = max value s.t.

0 ≤ wi ≤ W

vmax = max
i

vi vmax ≤ OPT ≤ V

C(V′￼) S
value(S) ≥ V′￼

C(V′￼) = ∞ S

C(0) = 0

C(V′￼) = ∞ for V′￼ > V

C(V′￼)

OPT V′￼ C(V′￼) ≤ W

5

A slightly different optimization

• can be “morally” seen as a dual problem to maximization

• Define: as the minimum weight of a set such that using items only

• This new subproblem has a recursive definition similar to our previous example

•

• The table consists of entries

• Observe

• Observe = the maximum value s.t.

C(V′￼) V(W′￼)

C(i, V′￼) S value(S) ≥ V′￼ {1,…, i}

C(i, V′￼) = min { C(i − 1,V′￼),
C(i − 1,V′￼− vi) + wi}

C(⋅ , ⋅) O(nV)

C(V′￼) = C(n, V′￼)

OPT V′￼ C(n, V′￼) ≤ W

6

A different Knapsack algorithm

• This new algorithm has a table of size

• Each entry of the table can be constructed in time

• Computing after table involves binary searching along as is monotonic

• = the maximum value s.t.

• Requires total compute

• Yields a total runtime of

• No exponential dependence in terms of

• However, exponential dependence in terms of

(n + 1) × V

O(log W + log V) = O(log VW)

OPT C(n, ⋅) C(n, ⋅)

OPT V′￼ C(n, V′￼) ≤ W

O(log V(log VW))

O(nV log VW)

log W

log V

7

An approximation algorithm

• Yields a total runtime of

• What if we just replaced each with for a large number

• Would the algorithm now run in as the sum of values is now ?

• No. Crucially, to run the dynamic programming algorithm we needed all the values to be
integers.

• However, this suggests an approximation algorithm.

• Approximation algorithm (overview):

• Define . Return with our second DP algorithm.

O(nV log VW)

vi vi/Z Z?

Õ (nV log VW
Z) V/Z

ṽi := ⌊vi/Z⌋ S ← Knapsack({ṽi}, {wi}, W)

8

An approximation algorithm

• Idea: Compute for & .  
 
Since the weights are reduced, the runtime is shorter!

• Runtime:

• Claim: is a feasible solution and .

S ← Knapsack({ṽi}, {wi}, W) ṽi = ⌊
vi

Z
⌋ Z =

ϵvmax

n

O (nV log VW
Z) = O (n2V log VW

ϵvmax) ≤ O (n3 log VW
ϵ)

S value(S) ≥ (1 − ϵ)OPT

9

An approximation algorithm

• Idea: Compute for & .

• Since the weights are reduced, the runtime is shorter!

S ← Knapsack({ṽi}, {wi}, W) ṽi = ⌊
vi

Z
⌋ Z =

ϵvmax

n

10

An approximation algorithm

11

An approximation algorithm

12

An approximation algorithm

13

Structure of approx. DP algorithm

• We came up with two DP algorithms for exact Knapsack based on the following recursive
definitions

• = max value with items s.t.

• = min weight with items s.t.

• Approx. alg. by rounding values and running second alg.

• Is there an approx. alg. by rounding and running the first alg.?

• Doing this will yield some subset

• Trouble is that this new set may not be feasible for the original weight constraints

V(i, W′￼) S ⊆ {1,…, i} weight(S) ≤ W′￼

C(i, V′￼) S ⊆ {1,…, i} value(S) ≥ V′￼

ṽi = ⌊vi/Z⌋

w̃i = ⌊wi/Z⌋, W̃ = ⌊W/Z⌋

S ⊆ {1,…, n}

14

Knapsack overview

• Input: items of integer values and weights and weight threshold .

• Input length:

• Output: optimal maximizing s.t.

• Various algorithms:

• Brute force alg: Runtime of

• DP alg: Runtime or

• -approx. alg: Runtime

n vi wi W

O(n log VW)

S ⊆ [n] value(S) weight(S) ≤ W

O(n2n log VW)

O(nW log VW) O(nV log VW)

ϵ O (n3 log VW
ϵ)

15

RNA secondary structure

• RNA is expressed as a sequence of nucleotides: a string where
each for adenine, cytosine, guanine, and uracil.

• RNA tends to not be linear in a molecule and forms secondary structures

• Secondary structures cause the molecule to loop back and forth

• These are bonds between the base pairs

B = b1…bn
bi ∈ {A, C, G, U}

16

RNA secondary structure hypothesis

• Definition. A secondary structure for an RNA seq.
 is a set of pairs such that

• WC condition: is a matching and pairs are
Watson-Crick complements i.e.

• No sharp bends: only if

• Non-crossing: If and then the
intervals and are either disjoint or one
contains the other.

B = b1…bn S = {(bi, bj)}

S

(bi, bj) ∈ WC := {(A, U), (U, A), (G, C), (C, G)}

(bi, bj) ∈ S 4 < | i − j |

(bi, bj) (bk, bℓ)
[i, j] [k, ℓ]

17

RNA secondary structure problem

• Input: an RNA seq.

• Output: a secondary structure of maximal size for .

• Dynamic programming attempt 1: For define as the
maximal secondary structure using bases only . Let

.

B = b1…bn

S B

1 ≤ i ≤ j ≤ n S(j)
b1, b2, …, bj

f(j) = |S(j) |

18

RNA secondary structure problem

• Two possibilities: In the optimal solution, either or

• Splits problem into smaller problems but they aren’t subproblems.

• Problem: Our choice of subproblem was not expressive enough.

(bk, bj) ∈ S (bk, bj) ∉ S

19

RNA secondary structure problem

• Input: an RNA seq.

• Output: a secondary structure of maximal size for .

• Dynamic programming intuition: For define as the
maximal secondary structure using bases only . Let

.

B = b1…bn

S B

1 ≤ i ≤ j ≤ n S(i, j)
bi, bi+1, …, bj

f(i, j) = |S(i, j) |

20

RNA secondary structure DP algorithm

• Dynamic programming intuition: For define
 as the maximal secondary structure using bases only

. Let .

• Recursive definition:

• In optimal solution, either is not in a SS or is in
the SS

• In first case, and

• In second case,

• Optimal solution can be calculated as a recursive
minimization

1 ≤ i ≤ j ≤ n
S(i, j)
bi, bi+1, …, bj f(i, j) = |S(i, j) |

bj (bk, bj)

f(i, j) = f(i, j − 1) S(i, j) = S(i, j − 1)

f(i, j) = 1 + f(i, k − 1) + f(k + 1,j − 1)

21

RNA secondary structure DP algorithm

• Recursive definition:

• In optimal solution, either is not in a SS or is in the SS

• In first case, and

• In second case,

• Observation: The recursive definition of only depends on for
.

• Therefore, we fill memo from bottom-to-top w.r.t .

bj (bk, bj)

f(i, j) = f(i, j − 1) S(i, j) = S(i, j − 1)

f(i, j) = 1 + f(i, k − 1) + f(k + 1,j − 1)

f(i, j) f(i′￼, j′￼)
| j′￼− i′￼| < | j − i |

| j − i |
22

RNA secondary structure DP algorithm

• Filling memoization tables:

• Construct tables and initialized as

• Set for all .

• For to and to

• Let

• Compute and let be its argmin.

• If , set and set

• Else, set and keep .

n × n M f ⊥

f(i, i) ← 0 i

z ← 0 n − 1 i ← 1 n − z

j ← i + z

V ← max
k∈{i,…,j−5}∧(bj,bk)∈WC

1 + f(i, k − 1) + f(k + 1,j − 1) k

V > f(i, j − 1) f(i, j) ← V M(i, j) ← k

f(i, j) ← f(i, j − 1) M(i, j) = ⊥

23

RNA secondary structure DP algorithm

• Computing optimal secondary structure:

• If this means that . Else is not included in .

• To calculate optimal secondary structure run where

• :

• If output

• Else, output

• Can be made to run faster in practice using DFS or BFS instead of recursion

• Runtime: sized table with each recursive computation taking time. Print runs in time after
the table is computed. Total runtime: .

M(i, j) = k (bk, bj) ∈ S j S

Print(1,n)

Print(i, j)

M(i, j) ← k (k, j) ∪ Print(i, k − 1) ∪ Print(k + 1,j − 1)

Print(i, j − 1)

O(n2) O(n) O(n)
O(n3)

24

Dynamic programming patterns

25

Top-down vs bottom-up DP algorithms

• So far we have seen that the recursive subproblems in DP algorithms are
always smaller. Examples

• Knapsack: depends on for

• RNA SS: depends on where

• Yields a “bottom-up” ordering for filling the memoization table

• Instead we could fill up the table “top-down”

f(n, W′￼) f(n − 1,W′￼′￼) W′￼′￼ ≤ W′￼

f(i, j) f(i′￼, j′￼) | j′￼− i′￼| < | j − i |

26

Top-down vs bottom-up DP algorithms

• In a “top-down” DP algorithm

• Conclude that can be defined recursively based on

• For each , check if has been previously calculated

• If yes, use the value of

• If not, recursive compute

• Overall, runtime is asymptotically the same! Each square of the memo is only
computed once.

f(x)

f(x) f(y1), f(y2), …f(yk)

yj f(yj)

f(yj)

f(yj)

27

Top-down vs bottom-up DP tradeoffs

• In top-down approaches, not all squares may get calculated

• Can yield constant factor savings in terms of runtime

• However, the recursion stack usually scales poorly in top-down approaches

• For example, in Tribonacci, recursion stack would be in depth

• Recursion stack is often in computer’s memory while data being manipulated is expressed on the hard
drive

• Can yield memory overflow errors if not carefully programmed

• Top-down is better when the order of filling out squares isn’t well defined

• Occurs in graph DP algorithms like Bellman-Ford which we see soon

• In such cases, a more sophisticated analysis is needed to argue that recursive defs. are not cyclical

Ω(n)

28

Graph dynamic programming

29

Currency exchange

• USD to BTC: 0.00001

• BTC to EUR: 70,240

• INR to USD: 0.0127

• EUR to INR: 97.01

• EUR to HKD: 9.85

• HKD to INR: 11.31

• USD to HKD: 6.96

30

Currency exchange

• USD to BTC: 0.00001

• BTC to EUR: 70,240

• INR to USD: 0.0127

• EUR to INR: 97.01

• EUR to HKD: 9.85

• HKD to INR: 11.31

• USD to HKD: 6.96

31

Set edge weight to log2(1/r) = − log2(r)

Currency exchange

• A path of net weight implies a
currency conversion from 1 unit of to
units of

• Finding a path of least weight from to
yields the best seq. of currency exchanges

• Direct conversion of USD to HKD yields
 HKD per USD

• USD BTC EUR HKD yields
 HKD per USD

p : u ↝ v w
u 2−w

v

u v

22.8

→ → →
2−(16.5−16.1−3.3) = 22.9

32

Set edge weight to log2(1/r) = − log2(r)

Currency exchange

• A path of net weight implies a
currency conversion from 1 unit of to
units of

• Finding a path of least weight from to
yields the best seq. of currency exchanges

• Direct conversion of USD to HKD yields
 HKD per USD

• USD BTC EUR HKD yields
 HKD per USD

p : u ↝ v w
u 2−w

v

u v

22.8

→ → →
2−(16.5−16.1−3.3) = 22.9

33

Set edge weight to log2(1/r) = − log2(r)

Currency exchange

• What happens if HKD to INR rate
changes from to ?23.5 24.0

34

Set edge weight to log2(1/r) = − log2(r)

Currency exchange

• What happens if HKD to INR rate
changes from to ?23.5 24.0

35

Set edge weight to log2(1/r) = − log2(r)

Currency exchange

• Consider the highlighted path from USD to
USD:

• Converts 1 USD to USD

• Constitutes a negative cycle in the graph

• In the currency exchange problem, negative
cycles represent arbitrage

• Since there is a negative cycle, any currency
can be converted into any other for
arbitrarily cheap as the graph is strongly
connected

20.8 > 1

36

Set edge weight to log2(1/r) = − log2(r)

Negative weights shortest paths

• Input: A directed graph with weights and a vertex

• Output: For every vertex , the distance of the lightest directed path
where a path’s weight is the sum of its weights

• Why not just run Dijkstra’s?

• Dijkstra’s will incorrectly calculate distances  
when negative weights are involved

G = (V, E) w : E → ℝ r

v r ↝ v

37

Negative weights shortest paths

• Dijkstra’s property: Once a vertex is visited, the distance
 never needs updating again

• This does not hold with negative weights

• Need a slower but more careful algorithm that accounts for
negative weights

• In this example,

• Dijkstra’s would set distance of as with path in
its first step

• However, need to update the distance of to after is
visited.

v
d(r, v)

u 2 r → v

u −5 v

38

Negative weights shortest paths
Applications

• Trade routes: each vertex is a commodity and edge of weight means unit of can be
exchanged for units of

• Multiplicative gains can be converted to linear gains by taking logarithms

• Negative weights imply multiplicative losses

• Chemical networks: cost represent the excess energy required or released when a transformation
is made

• Subsidies offered by governments for certain trades being performed

• Example, US Govt. subsides flights from Portland, Oreg. to Pendleton, Oreg. to incentive airlines
to fly to this market. (Annually, about $4 million for just this route)

• How can an airline design its route network to maximize revenue in light of subsidies?

x → y w 1 x
2−w y

39

The Bellman-Ford algorithm

• Dijkstra’s is a greedy algorithm and suffices to calculate shortest/lightest paths when
all weights are non-negative

• Distances will never need to be recalculated once set

• Bellman-Ford is a dynamic programming algorithm for computing shortest path in
directed graphs

• Will run slower than Dijkstra’s: time versus time

• Will involve “resetting” distances as the algorithm goes along

• Bellman-Ford will detect negative cycles as shortest paths are undefined if there
are negative cycles

O(mn) O(n + m)log n)

40

