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Lecture 13
Dynamic Programming II: The Knapsack problem
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If the Seahawks win the Super Bowl, 
everyone gets a free extension on next 

weeks problems (11-13 and 55) till Mon Feb 
16th at 6:00pm so that you can celebrate. 

 
(If so, no late extensions)



Previously in CSE 421…
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General dynamic programming algorithm

• Iterate through subproblems: Starting from the “smallest” and building up to 
the “biggest.” For each one:


• Find the optimal value, using the previously-computed optimal values to 
smaller subproblems.


• Record the choices made to obtain this optimal value. (If many smaller 
subproblems were considered as candidates, record which one was chosen.)


• Compute the solution: We have the value of the optimal solution to this 
optimization problem but we don’t have the actual solution itself. Use the 
recorded information to actually reconstruct the optimal solution.

3



General dynamic programming runtime
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Runtime = (Total number of subproblems) × (Time it takes to solve problems
given solutions to subproblems)



Today
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Edit distance walkthrough
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Proof of correctness

• For dynamic programming, proof of correctness is often the easiest part of the proof!


• Because the problem is recursively defined, the proof should also be recursive — I.e., we prove the correctness 
inductively


• Base cases:  when  or 


• Induction: Argue correctness of  from “smaller” problems


• When computing , either the last chars agree or disagree


• If they agree, then we can edit the  string to the  string


• If they disagree, then we can either delete, insert, or substitute the last char


• In all 4 cases, our problem simplifies to a subproblem


• Since we consider exhaustively all possible choices for the last char, we are guaranteed that our optimization will be 
minimal over all edit distances

d(k, ℓ) k = 0 ℓ = 0

d(k, ℓ)

d(k, ℓ)

k − 1 ℓ − 1
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Proof of correctness

• This proves that the length of the edit distance is minimal.


• Proving that we find the correct sequence of edits follows next.


• Having recorded which subproblem is minimal, we identify a path from the 
 vertex to the root consisting of  edits as each constructed 

edge corresponds to an edit or preservation of the last char.


• This finds a sequence of  edits. We proved this was the optimal 
length so we are done.

(k, ℓ) d(k, ℓ)

d(k, ℓ)
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Knapsack problem
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The Knapsack problem
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The Knapsack problem

• Input: Items with integer weights  and values  
and a max weight 


• Output: Subset  such that  and maximizing .

w1, …wn ∈ ℕ v1, …, vn ∈ ℕ
W ∈ ℕ

S ⊆ [n] ∑
i∈S

wi ≤ W ∑
i∈S

vi
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The Knapsack problem

• Input: Items with integer weights  and values  and 
a max weight 


• Output: Subset  such that  and maximizing .


• Brute force solution: Check all  possible  and choose the optimal  
amongst those satisfying the weight constraint.


• Runtime:  

w1, …wn ∈ ℕ v1, …, vn ∈ ℕ
W ∈ ℕ

S ⊆ [n] ∑
i∈S

wi ≤ W ∑
i∈S

vi

2n S S

O(n ⋅ 2n log VW)
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A better dynamic programming algorithm

• Observation: Either item  is included in  or it is not


• Defining an appropriate subproblem


• Let  be the optimal subset  such that ’s items have net 
weight  and let  be their optimal value


• Base cases: .


• Target problem: 

i S

S(i, W′￼) S ⊆ {1,…, i} S
≤ W′￼ V(i, W)

S(⋅,0) = S(0,⋅) = ∅, V(⋅,0) = V(0,⋅) = 0

S(n, W) and V(n, W)
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A better dynamic programming algorithm

• Let  be the optimal subset  such that ’s items have net weight  
and let  be their optimal value


• To calculate , if we include item 


• Value of bag is at least  and bag now has remainder available weight 


• Need to recursively choose between items 


• Else


• Bag still has remainder available weight 


• Need to recursively choose between items 

S(i, W′￼) S ⊆ {1,…, i} S ≤ W′￼

V(i, W)

S(i, W′￼) i

vi W′￼− wi

{1,…, i − 1}

W′￼

{1,…, i − 1}
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A better dynamic programming algorithm

• Let  be the optimal subset  such that ’s items have net 
weight  and let  be their optimal value


• Depending on maximization,  or 
 respectively.

S(i, W′￼) S ⊆ {1,…, i} S
≤ W′￼ V(i, W′￼)

S(i, W′￼) = S(i − 1,W′￼− wi) ∪ {i}
S(i, W′￼) = S(i − 1,W′￼)
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V(i, W′￼) = max {V(i − 1,W′￼− wi) + vi,
V(i − 1,W′￼) }



Memoization for Knapsack
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Memoization for Knapsack
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V(i, W′￼) = max {V(i − 1,W′￼− wi) + vi,
V(i − 1,W′￼) }



Memoization for Knapsack
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V(i, W′￼) = max {V(i − 1,W′￼− wi) + vi,
V(i − 1,W′￼) }



Knapsack dynamic programming algorithm

• Generate tables: 

• Let  be  sized tables and set .


• For  from  to ,  from  to 


• If 


• Then, set  and set 


• Else, set  and set 

V, Inc (n + 1) × (W + 1) V(0,⋅) = V(⋅,0) ← 0

i 1 n W′￼ 1 W

V(i − 1,W′￼) > V(i − 1,W′￼− wi) + vi

V(i, W′￼) ← V(i − 1,W′￼) Inc(i, W′￼) = false

V(i, W′￼) ← V(i − 1,W′￼− wi) + vi Inc(i, W′￼) = true
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Knapsack dynamic programming algorithm

• Using precomputed  terms, walk from  finding the items to include.


• Find optimal Knapsack: 

• Set . Set .


• While ,


• If ,


• Then,  and .


• Else, .


• Return .

Inc (n, W) to (0,⋅)

(i, W′￼) ← (n, W) S ← ∅

i ≠ 0

Inc(i, W′￼) = true

S ← S ∪ {i} (i, W′￼) ← (i − 1,W′￼− wi)

(i, W′￼) ← (i − 1,W′￼)

S
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Knapsack dynamic programming algorithm
Runtime analysis

• Tables are of size  and computing each entry takes  time 
given past entries


• Total compute time of tables is 


• To find the set , path walks from  to  each step. The path has 
length .


• Computing  takes time .


• Total computation time: .

O(nW) O(log VW)

O(nW log VW)

S (i, ⋅ ) (i − 1,⋅)
≤ n

S O(n)

O(nW log VW)
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Knapsack runtime

• The input for Knapsack is usually written in binary with each item weight  
expressed with  bit numbers and value with  bit numbers


• Total input length is 


• Runtime of Knapsack brute-force alg is , exp in input length


• Runtime of Knapsack DP alg is  also exp in the input length


• This is expected. The decision version of Knapsack is a -complete 
problem. We do not expect an efficient algorithm for Knapsack. 

wi
O(log W) O(log V)

Θ(n log V + n log W) = Θ(n log VW)

O(n2n log VW)

O(nW log VW)

𝖭𝖯
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Approximation algorithms

• We’ve only alluded to -completeness so far, but the -completeness of the 
Knapsack problem means that we strongly believe that there is no algorithm for 
optimizing Knapsack that runs in time 
 




• Instead we will have to turn to approximation algorithms 


• Given a Knapsack problem , let  be the optimal 
value of subset of items weighing : 
 

𝖭𝖯 𝖭𝖯

O(poly(n log VW)) = O(ncpolylogVW)

(v1, …, vn, w1, …, wn, W) OPT
≤ W

OPT = V(n, W)
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Approximation algorithms

• Instead we will have to turn to approximation algorithms 


• Given a Knapsack problem , let  be the optimal 
value of subset of items weighing : 
 




• An alg.  is an -approximation alg. if  always outputs a subset  such 
that (a)  and (b) .


• Our target today: Come up with an efficient algorithm for constant  (like )

(v1, …, vn, w1, …, wn, W) OPT
≤ W

OPT = V(n, W)

𝒜 ϵ 𝒜 S̃
weight(S̃) ≤ W value(S̃) ≥ (1 − ϵ) ⋅ OPT

ϵ 0.01
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Knapsack approximation algorithm

• Theorem: For every , there exists an -approximation alg. for -item 

Knapsack that runs in time .


• The construction will be another dynamic programming algorithm.


• However, we will have to make adjustments to not depend on .

ϵ > 0 ϵ n

O ( n3 log(VW)
ϵ )

W
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