
Chinmay Nirkhe | CSE 421 Winter 2026

Lecture 13
Dynamic Programming II: The Knapsack problem

1

If the Seahawks win the Super Bowl,
everyone gets a free extension on next

weeks problems (11-13 and 55) till Mon Feb
16th at 6:00pm so that you can celebrate. 

 
(If so, no late extensions)

Previously in CSE 421…

2

General dynamic programming algorithm

• Iterate through subproblems: Starting from the “smallest” and building up to
the “biggest.” For each one:

• Find the optimal value, using the previously-computed optimal values to
smaller subproblems.

• Record the choices made to obtain this optimal value. (If many smaller
subproblems were considered as candidates, record which one was chosen.)

• Compute the solution: We have the value of the optimal solution to this
optimization problem but we don’t have the actual solution itself. Use the
recorded information to actually reconstruct the optimal solution.

3

General dynamic programming runtime

4

Runtime = (Total number of subproblems) × (Time it takes to solve problems
given solutions to subproblems)

Today

5

Edit distance walkthrough

6

Edit distance walkthrough
TASTE v TREAT

7

Edit distance walkthrough
TASTE v TREAT

8

Edit distance walkthrough
TASTE v TREAT

9

Edit distance walkthrough
TASTE v TREAT

10

Edit distance walkthrough
TASTE v TREAT

11

Edit distance walkthrough
TASTE v TREAT

12

Edit distance walkthrough
TASTE v TREAT

13

Edit distance walkthrough
TASTE v TREAT

14

Edit distance walkthrough
TASTE v TREAT

15

Edit distance walkthrough
TASTE v TREAT

16

Edit distance walkthrough
TASTE v TREAT

17

Edit distance walkthrough
TASTE v TREAT

18

Edit distance walkthrough
TASTE v TREAT

19

Edit distance walkthrough
TASTE v TREAT

20

Edit distance walkthrough
TASTE v TREAT

21

Edit distance walkthrough
TASTE v TREAT

22

Edit distance walkthrough
TASTE v TREAT

23

Edit distance walkthrough
TASTE v TREAT

24

Edit distance walkthrough
TASTE v TREAT

25

Edit distance walkthrough
TASTE v TREAT

26

Edit distance walkthrough
TASTE v TREAT

27

Edit distance walkthrough
TASTE v TREAT

28

Edit distance walkthrough
TASTE v TREAT

29

Edit distance walkthrough
TASTE v TREAT

30

Edit distance walkthrough
TASTE v TREAT

31

Edit distance walkthrough
TASTE v TREAT

32

Edit distance walkthrough
TASTE v TREAT

33

Edit distance walkthrough
TASTE v TREAT

34

Edit distance walkthrough
TASTE v TREAT

35

Edit distance walkthrough
TASTE v TREAT

36

Edit distance walkthrough
TASTE v TREAT

37

Edit distance walkthrough
TASTE v TREAT

38

Edit distance walkthrough
TASTE v TREAT

39

Edit distance walkthrough
TASTE v TREAT

40

Edit distance walkthrough
TASTE v TREAT

41

Edit distance walkthrough
TASTE v TREAT

42

Edit distance walkthrough
TASTE v TREAT

43

Proof of correctness

• For dynamic programming, proof of correctness is often the easiest part of the proof!

• Because the problem is recursively defined, the proof should also be recursive — I.e., we prove the correctness
inductively

• Base cases: when or

• Induction: Argue correctness of from “smaller” problems

• When computing , either the last chars agree or disagree

• If they agree, then we can edit the string to the string

• If they disagree, then we can either delete, insert, or substitute the last char

• In all 4 cases, our problem simplifies to a subproblem

• Since we consider exhaustively all possible choices for the last char, we are guaranteed that our optimization will be
minimal over all edit distances

d(k, ℓ) k = 0 ℓ = 0

d(k, ℓ)

d(k, ℓ)

k − 1 ℓ − 1

44

Proof of correctness

• This proves that the length of the edit distance is minimal.

• Proving that we find the correct sequence of edits follows next.

• Having recorded which subproblem is minimal, we identify a path from the
 vertex to the root consisting of edits as each constructed

edge corresponds to an edit or preservation of the last char.

• This finds a sequence of edits. We proved this was the optimal
length so we are done.

(k, ℓ) d(k, ℓ)

d(k, ℓ)

45

Knapsack problem

46

The Knapsack problem

47

The Knapsack problem

• Input: Items with integer weights and values
and a max weight

• Output: Subset such that and maximizing .

w1, …wn ∈ ℕ v1, …, vn ∈ ℕ
W ∈ ℕ

S ⊆ [n] ∑
i∈S

wi ≤ W ∑
i∈S

vi

48

The Knapsack problem

• Input: Items with integer weights and values and
a max weight

• Output: Subset such that and maximizing .

• Brute force solution: Check all possible and choose the optimal
amongst those satisfying the weight constraint.

• Runtime:

w1, …wn ∈ ℕ v1, …, vn ∈ ℕ
W ∈ ℕ

S ⊆ [n] ∑
i∈S

wi ≤ W ∑
i∈S

vi

2n S S

O(n ⋅ 2n log VW)
49

A better dynamic programming algorithm

• Observation: Either item is included in or it is not

• Defining an appropriate subproblem

• Let be the optimal subset such that ’s items have net
weight and let be their optimal value

• Base cases: .

• Target problem:

i S

S(i, W′￼) S ⊆ {1,…, i} S
≤ W′￼ V(i, W)

S(⋅,0) = S(0,⋅) = ∅, V(⋅,0) = V(0,⋅) = 0

S(n, W) and V(n, W)

50

A better dynamic programming algorithm

• Let be the optimal subset such that ’s items have net weight
and let be their optimal value

• To calculate , if we include item

• Value of bag is at least and bag now has remainder available weight

• Need to recursively choose between items

• Else

• Bag still has remainder available weight

• Need to recursively choose between items

S(i, W′￼) S ⊆ {1,…, i} S ≤ W′￼

V(i, W)

S(i, W′￼) i

vi W′￼− wi

{1,…, i − 1}

W′￼

{1,…, i − 1}

51

A better dynamic programming algorithm

• Let be the optimal subset such that ’s items have net
weight and let be their optimal value

• Depending on maximization, or
 respectively.

S(i, W′￼) S ⊆ {1,…, i} S
≤ W′￼ V(i, W′￼)

S(i, W′￼) = S(i − 1,W′￼− wi) ∪ {i}
S(i, W′￼) = S(i − 1,W′￼)

52

V(i, W′￼) = max {V(i − 1,W′￼− wi) + vi,
V(i − 1,W′￼) }

Memoization for Knapsack

53

Memoization for Knapsack

54

V(i, W′￼) = max {V(i − 1,W′￼− wi) + vi,
V(i − 1,W′￼) }

Memoization for Knapsack

55

V(i, W′￼) = max {V(i − 1,W′￼− wi) + vi,
V(i − 1,W′￼) }

Knapsack dynamic programming algorithm

• Generate tables:

• Let be sized tables and set .

• For from to , from to

• If

• Then, set and set

• Else, set and set

V, Inc (n + 1) × (W + 1) V(0,⋅) = V(⋅,0) ← 0

i 1 n W′￼ 1 W

V(i − 1,W′￼) > V(i − 1,W′￼− wi) + vi

V(i, W′￼) ← V(i − 1,W′￼) Inc(i, W′￼) = false

V(i, W′￼) ← V(i − 1,W′￼− wi) + vi Inc(i, W′￼) = true

56

Knapsack dynamic programming algorithm

• Using precomputed terms, walk from finding the items to include.

• Find optimal Knapsack:

• Set . Set .

• While ,

• If ,

• Then, and .

• Else, .

• Return .

Inc (n, W) to (0,⋅)

(i, W′￼) ← (n, W) S ← ∅

i ≠ 0

Inc(i, W′￼) = true

S ← S ∪ {i} (i, W′￼) ← (i − 1,W′￼− wi)

(i, W′￼) ← (i − 1,W′￼)

S

57

Knapsack dynamic programming algorithm
Runtime analysis

• Tables are of size and computing each entry takes time
given past entries

• Total compute time of tables is

• To find the set , path walks from to each step. The path has
length .

• Computing takes time .

• Total computation time: .

O(nW) O(log VW)

O(nW log VW)

S (i, ⋅) (i − 1,⋅)
≤ n

S O(n)

O(nW log VW)

58

Knapsack runtime

• The input for Knapsack is usually written in binary with each item weight
expressed with bit numbers and value with bit numbers

• Total input length is

• Runtime of Knapsack brute-force alg is , exp in input length

• Runtime of Knapsack DP alg is also exp in the input length

• This is expected. The decision version of Knapsack is a -complete
problem. We do not expect an efficient algorithm for Knapsack.

wi
O(log W) O(log V)

Θ(n log V + n log W) = Θ(n log VW)

O(n2n log VW)

O(nW log VW)

𝖭𝖯

59

Approximation algorithms

• We’ve only alluded to -completeness so far, but the -completeness of the
Knapsack problem means that we strongly believe that there is no algorithm for
optimizing Knapsack that runs in time 
 

• Instead we will have to turn to approximation algorithms

• Given a Knapsack problem , let be the optimal
value of subset of items weighing : 
 

𝖭𝖯 𝖭𝖯

O(poly(n log VW)) = O(ncpolylogVW)

(v1, …, vn, w1, …, wn, W) OPT
≤ W

OPT = V(n, W)
60

Approximation algorithms

• Instead we will have to turn to approximation algorithms

• Given a Knapsack problem , let be the optimal
value of subset of items weighing : 
 

• An alg. is an -approximation alg. if always outputs a subset such
that (a) and (b) .

• Our target today: Come up with an efficient algorithm for constant (like)

(v1, …, vn, w1, …, wn, W) OPT
≤ W

OPT = V(n, W)

𝒜 ϵ 𝒜 S̃
weight(S̃) ≤ W value(S̃) ≥ (1 − ϵ) ⋅ OPT

ϵ 0.01

61

Knapsack approximation algorithm

• Theorem: For every , there exists an -approximation alg. for -item

Knapsack that runs in time .

• The construction will be another dynamic programming algorithm.

• However, we will have to make adjustments to not depend on .

ϵ > 0 ϵ n

O (n3 log(VW)
ϵ)

W

62

