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A new algorithmic paradigm

 Greedy algorithms:

* |dentify a “local” property to optimize

 (Generating a “global” solution by combining individual decisions
e Divide and conquer:

* Recursively solve computational task by identifying independent subtasks

« Each independent subtask is smaller than the original n — 0.9n

 Combine solutions to subtasks to solve original problem



A new algorithmic paradigm

Dynamic programming

 Optimal substructure:

* The optimal value of the problem can easily be obtained given the optimal values
of subproblems.

* |n other words, there is a recursive algorithm for the problem which would be fast
If we could just skip the recursive steps.

* Overlapping subproblems:
 The subproblems share sub-subproblems.

* |n other words, if you actually ran that naive recursive algorithm, it would waste a
lot of time solving the same problems over and over again.
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Tribonacci numbers

e Input: Integern

o Output: Tribonacci number s, defined recursively s; = 5, = 53 = 1 and

S, =8, 1+S8,_»+S, .

* There is a canonical recursive algorithm. But it’s not very efficient.



Overlapping subproblems
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Overlapping subproblems
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Memoization

e Input: Integer n This is Ho Mo

o Output: Tribonacci number Sn/ " Wmmmw "

e Algorithm: /
FS' SZ’SBl\( L |

* |nitialize an array s of length n |
N

e Fori < 4ton,sets, < s,_;+5_-+S5 3



Tribonacci runtime analysis

e Theorem: s, < 2",
» Proof: By induction. Base cases are s; = 5, = 53 = 1. For induction
S, =8, 1+ 48, 3 <2421 2070 <7200 <

« Corollary: Each s, can be expressed using n-bits.



Tribonacci runtime analysis

» Computing each entry s; of the array takes 3 additions: O(n) time

. Total time: O(n?), total space: O(n?)

e Could we have done better?

n
Better time analysis: O(1) + Z O(i) = O(n?) (only constant factor)
i=4

 Better space: Use only O(1) registers = O(n) bits by recycling old terms in array



A note on runtime

 Runtime is often nebulously expressed
« Example 1: Sorting a list of n integers
 The runtime is often expressed as O(nlog n) time
» But this is misleading — recall, it is really O(n log n) arithmetic operations

. |If each arithmetic is on k-bit integers (between 0 and 2* — 1), then this takes

Onlogn - k).

» Input length is ®(n) numbers or O(nk) bits.
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A note on runtime

 Runtime is often nebulously expressed
« Example 2: Dealing with a graph G = (V, E)
» The runtime is often expressed interms of n = | V|, m = | E|

 We are implicitly assuming the graph is expressed as an adjacency list
Input: (V = (1,...,6),N, = (2,3,4),N, = (1,5),N; = (1),N, = (1,5),Ns = (2,4), N, = ())
» Length of input is ®(n + m)
e If runtime is f(n + m) then the runtime is also O(f( |input|))
 We aren’t really losing much by expressing the runtime in terms of n and m
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A note on runtime

 Runtime is often nebulously expressed
« Example 2: Dealing with a graph G = (V, E)

 Sometimes a graph is expressed as an adjacency matrix M € {0,1}"*"
where M;; = 1if (i,j) € E and = 0 otherwise.

. Input length is now O(n?)

. So aruntime of f(n) is equal to O(f(y/ | input| ))
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A note on runtime

 Runtime is often nebulously expressed
« Example 3: The input is an integer n € N

An integer can be expressed inunary 111...1 orin binary in O(log n) bits

n ONEeS

 The runtime can depend on how the input is expressed
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Tribonacci runtime analysis

 Unary input
» Runtime is O(n?) where n = |input|
 Binary input

. Runtime is O(4%) where £ = |input|

. Best possible runtime is O(n log? n) using explicit formula:

S, = .alrf + qzrg + azr; .fo.r some algebraic numbers a,, a,, as, 'y, I, '3 and using optimal
algorithm for integer multiplication
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Edit distance

o Input: Two strings X = (xl...xm) and ¥ = (yl"'yn)

» Output: A minimal sequence of edit operations converting X into ¥ with
allowed transformations being Delete, Insert, or Substitute (one character)
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Edit distance

o Input: Two strings X = (xl...xm) and ¥ = (yl"'yn)

» Output: A minimal sequence of edit operations converting X into ¥ with
allowed transformations being Delete, Insert, or Substitute (one character)
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Edit distance

o Input: Two strings X = (xl...xm) and ¥ = (yl"'yn)

» Output: A minimal sequence of edit operations converting X into ¥ with
allowed transformations being Delete, Insert, or Substitute (one character)
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Edit distance

o Input: Two strings X = (xl...xm) and ¥ = (yl"'yn)

» Output: A minimal sequence of edit operations converting X into ¥ with
allowed transformations being Delete, Insert, or Substitute (one character)

e Jo find a dynamic programming algorithm, we need to reframe the problem as
a special case of a general problem which is recursively defined
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Edit distance

Input: Two strings X = (x...x,) and Y = (y;...y)

Definitions:

» Let X be the prefix of the first k characters of X

» Let Y, be the prefix of the first £ characters of Y

» Let d(k, Z) be the minimal edit distance between X and Y,
Base case: d(0,£) = £, need to insert all characters

Base case: d(k,0) = k, need to delete all characters

Observation: The order in which edits are made is irrelevant.
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Recursive definition
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Recursive definition
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Recursive algorithm

The edid olistm OQH’\LOV'\“A/(
* Recursive algorithm d(k, ©): - ST f e

blewma is d(n, wa
e Ifk =0, thenreturn? e 1 < ).

+ If £ =0, then return k 0
en return Mo ope. W.M\], rc?eajfd S\Abi)m‘alcms,

e It X, =Yy,
e Returnd(k— 1, — 1)

dk—-1,0-1),
Else, return 1 + min dk, 7 —1),
' d(k — 1,¢)
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Memoization

Tabl\e o&\ olOL, €.>
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Memoization

Tabl\e o&\ olclc, €.>

-
d(n,m)
d(-,t-) | A, 2)
d.(lt'\,c'l.) d(l‘ )e'{)
2 3 M
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Memoization

| qondl, eMiew)
Table o‘&\ olOL, €> i A\"SO wm. OvelViey)
Rl toble  Colunmm 107
’V\ | | d(n,M)A C()l\&\MVL : (é’/{—" o N alx‘\*l
> 4 bottom v 4’013 U\f‘ij
7 d("-"()e'l) dO‘le) A &‘Ug
Al t-1) | A, e-1)

O | 4 2 3 H ‘ M | C)\A:\?\,A— (icl/l, VV\>

28



Edit distance algorithm

» Createatable(n+ 1) X (m + 1) table d.

e Fill the base row and column to O:

* (Going left to right, bottom to top

nm loa?s

-

e Ifx, =y, thensetd(k,?) « d(k— 1,0 — 1)

dk—-1,¢-1),
Else, set d(k, ) < 1 + min dk,c —1),
' d(k — 1,¢)

e Return d(n, m).
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Finding the set of edits

* This algorithm only computes the edit distance.

e How do we also calculate the collection of edits that need to be made?

» Recall we set d(k, ) based on a local optimization of subproblems

o Solution: Also keep track of which subproblem achieved the optimization

o Createatreewith V= [n+ 1] X [m + 1] (the squares of the table) and a
edge point from (k, £) to the subproblem that solved the optimization
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Table o‘&\ olOL, @>

Finding the set of edits
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Finding the set of edits
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Finding the set of edits
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Table oﬁ\ oloc, @>

Finding the set of edits

R

/i e A
e |l
Ve ct—ec1—<

34



Finding the set of edits
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Optimal edit path algorithm

e Generate tables:
« Create(n+ 1) X (m + 1) tables d, p.

e Setd(k,0) « k,d(0,) « ¢ and
p(k,0) < (k—1,0),p0,0) < (0, — 1) fork € [n], ¢ € [m].

e Fork < ltonandfor?Z <« 1tom

» Compute d(k, £) recursively and identify parent p of (k, ).
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Optimal edit path algorithm

* Produce edit path:
e Set (k,0) = <« (n,m)
. While (k, £) # (0,0)

e« Ifpk,0)=(k—1,—1) and x, # y,,
print “Substitute X, fory,”

e |f p(k, f) — (k — l,f), print “Delete xk”
e |f p(k’ f) — (k,  — 1), print “Insert yf”
e Set(k,?) « p(k,?)
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Edit distance runtime

» Generating tables subroutine runs in O(nm) time

» The path from (n, m) to (0,0) has length at most n + m. Total time to print the
edit distance is O(n + m).

e Total runtime is still O(nm).
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General dynamic programming algorithm

o |terate through subproblems: Starting from the “smallest” and building up to
the “biggest.” For each one:

* Find the optimal value, using the previously-computed optimal values to
smaller subproblems.

* Record the choices made to obtain this optimal value. (If many smaller
subproblems were considered as candidates, record which one was chosen.)

« Compute the solution: We have the value of the optimal solution to this
optimization problem but we don’t have the actual solution itself. Use the
recorded information to actually reconstruct the optimal solution.
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General dynamic programming runtime

Time 1t takes to solve problems
Runtime = (Total number of subproblems) x ( P )

given solutions to subproblems



