Lecture 12

Dynamic programming |

Chinmay Nirkhe | CSE 421 Winter 2026

A new algorithmic paradigm

 Greedy algorithms:

* |dentify a “local” property to optimize

 (Generating a “global” solution by combining individual decisions
e Divide and conquer:

* Recursively solve computational task by identifying independent subtasks

« Each independent subtask is smaller than the original n — 0.9n

 Combine solutions to subtasks to solve original problem

A new algorithmic paradigm

Dynamic programming

 Optimal substructure:

* The optimal value of the problem can easily be obtained given the optimal values
of subproblems.

* |n other words, there is a recursive algorithm for the problem which would be fast
If we could just skip the recursive steps.

* Overlapping subproblems:
 The subproblems share sub-subproblems.

* |n other words, if you actually ran that naive recursive algorithm, it would waste a
lot of time solving the same problems over and over again.

3

Tribonacci numbers

e Input: Integern

o Output: Tribonacci number s, defined recursively s; = 5, = 53 = 1 and

S, =8, 1+S8,_»+S, .

* There is a canonical recursive algorithm. But it’s not very efficient.

Overlapping subproblems

> — > Ga-9e
—
o
/") e,..;
~ —D >

UV\I.\‘QQ_ oividle 4 Connan,

Huwre arg, vvwm\/ rc:\:»Ca:\-d wanblams.u

Overlapping subproblems

T 7(><>(7(> D

50— €Ly~
\&&/)&\/ 7

UV\I.\‘QQ_ oividle 4 Cowqm‘

Huwre arg, \Mm'\\/ rc:\:ma:\-d wanblams..'

Memoization

e Input: Integer n This is Ho Mo

o Output: Tribonacci number Sn/ " Wmmmw "

e Algorithm: /
FS' SZ’SBl\(L |

* |nitialize an array s of length n |
N

e Fori < 4ton,sets, < s,_;+5_-+S5 3

Tribonacci runtime analysis

e Theorem: s, < 2",
» Proof: By induction. Base cases are s; = 5, = 53 = 1. For induction
S, =8, 1+ 48, 3 <2421 2070 <7200 <

« Corollary: Each s, can be expressed using n-bits.

Tribonacci runtime analysis

» Computing each entry s; of the array takes 3 additions: O(n) time

. Total time: O(n?), total space: O(n?)

e Could we have done better?

n
Better time analysis: O(1) + Z O(i) = O(n?) (only constant factor)
i=4

 Better space: Use only O(1) registers = O(n) bits by recycling old terms in array

A note on runtime

 Runtime is often nebulously expressed
« Example 1: Sorting a list of n integers
 The runtime is often expressed as O(nlog n) time
» But this is misleading — recall, it is really O(n log n) arithmetic operations

. |If each arithmetic is on k-bit integers (between 0 and 2* — 1), then this takes

Onlogn - k).

» Input length is ®(n) numbers or O(nk) bits.

10

A note on runtime

 Runtime is often nebulously expressed
« Example 2: Dealing with a graph G = (V, E)
» The runtime is often expressed interms of n = | V|, m = | E|

 We are implicitly assuming the graph is expressed as an adjacency list
Input: (V = (1,...,6),N, = (2,3,4),N, = (1,5),N; = (1),N, = (1,5),Ns = (2,4), N, = ())
» Length of input is ®(n + m)
e If runtime is f(n + m) then the runtime is also O(f(|input|))
 We aren’t really losing much by expressing the runtime in terms of n and m

11

A note on runtime

 Runtime is often nebulously expressed
« Example 2: Dealing with a graph G = (V, E)

 Sometimes a graph is expressed as an adjacency matrix M € {0,1}"*"
where M;; = 1if (i,j) € E and = 0 otherwise.

. Input length is now O(n?)

. So aruntime of f(n) is equal to O(f(y/ | input|))

12

A note on runtime

 Runtime is often nebulously expressed
« Example 3: The input is an integer n € N

An integer can be expressed inunary 111...1 orin binary in O(log n) bits

n ONEeS

 The runtime can depend on how the input is expressed

13

Tribonacci runtime analysis

 Unary input
» Runtime is O(n?) where n = |input|
 Binary input

. Runtime is O(4%) where £ = |input|

. Best possible runtime is O(n log? n) using explicit formula:

S, = .alrf + qzrg + azr; .fo.r some algebraic numbers a,, a,, as, 'y, I, '3 and using optimal
algorithm for integer multiplication

14

Edit distance

o Input: Two strings X = (xl...xm) and ¥ = (yl"'yn)

» Output: A minimal sequence of edit operations converting X into ¥ with
allowed transformations being Delete, Insert, or Substitute (one character)

M T S C HE VIO U
M T S C H T EVOOUS

15

Edit distance

o Input: Two strings X = (xl...xm) and ¥ = (yl"'yn)

» Output: A minimal sequence of edit operations converting X into ¥ with
allowed transformations being Delete, Insert, or Substitute (one character)

M L S C H

O U S

16

Edit distance

o Input: Two strings X = (xl...xm) and ¥ = (yl"'yn)

» Output: A minimal sequence of edit operations converting X into ¥ with
allowed transformations being Delete, Insert, or Substitute (one character)

17

Edit distance

o Input: Two strings X = (xl...xm) and ¥ = (yl"'yn)

» Output: A minimal sequence of edit operations converting X into ¥ with
allowed transformations being Delete, Insert, or Substitute (one character)

e Jo find a dynamic programming algorithm, we need to reframe the problem as
a special case of a general problem which is recursively defined

18

Edit distance

Input: Two strings X = (x...x,) and Y = (y;...y)

Definitions:

» Let X be the prefix of the first k characters of X

» Let Y, be the prefix of the first £ characters of Y

» Let d(k, Z) be the minimal edit distance between X and Y,
Base case: d(0,£) = £, need to insert all characters

Base case: d(k,0) = k, need to delete all characters

Observation: The order in which edits are made is irrelevant.

19

X[Xe
— —
le_

Y [Y
_——

L

el
' ol
o e

Oloserv)) J(\ 7
‘Q’OWL X

Xy

\(]

Inition
sive defin
Y
Recu

A
k

K

Yo

20

cursive definition
Re

1. gulosl‘l’\u'}‘iom
Case 4

X
K J?
X
¢
T % # Y :
] Kim
) O
Xi
Ye- | 7(
\(]

o T
ing Koy
S‘vw?\{ﬁcs to Cohij
Robleww <
last-

3 Ways Hae
there are

[)
C

21

Recursive definition

Case A Deleh

l{'\ "‘L#’Vev e T .
Xy X

Xk Xk_q XI:. l I \
K
Y(Ye-. Te -

?mbkm S‘\\M.?\{ﬁcs o C,oﬁi\j Xp__\ +o Y@
Hrere are 3 Ways: Mg last

0 Z (k- + 4
chaacler will gek sek: So (kL) (k-1,0)

22

Recursive definition

Cax 3. ::V\Se,w“'\' 0\
IP X F Tt
Xk Xk.\ 7(!1.
Xk Xk_q XI:.
Xk_q ?(lv. 75
Y(Ye-| YC

(Prbble\/\/\. S‘\\M.?Rﬁcs to C,oﬁi\j Xl,_ +o Y@—l.
Hrere are 3 Ways: Hae last

So d(lz_‘ @3 Z 0L<'L)(">+i.
C\/\af‘ac\ﬁr Lo L\ Sd— S—o\" .

23

ition
INniti
Ive defi
|
urs
Rec

+ occur
MULS
SCA
R Ca
,.1>
3 o{\ _HM)&;C] o(<l¢_,, K&B
On fox, # » B
go’ ‘P min -
a Ak,
L) =
= Xk oL (e
%
I |
- Ye
Xy ;
\(]

,_
las
Hre
3 Ways: 3
ek
there are » 3
e
hare
C

Recursive algorithm

The edid olistm OQH’\LOV'\“A/(
* Recursive algorithm d(k, ©): - ST f e

blewma is d(n, wa
e Ifk =0, thenreturn? e 1 <).

+ If £ =0, then return k 0
en return Mo ope. W.M\], rc?eajfd S\Abi)m‘alcms,

e It X, =Yy,
e Returnd(k— 1, — 1)

dk—-1,0-1),
Else, return 1 + min dk, 7 —1),
' d(k — 1,¢)

25

Memoization

Tabl\e o&\ olOL, €.>

- T
n d(n,m)
' 3
7 d(k,¢)
1
O | 4 3 M

26

Memoization

Tabl\e o&\ olclc, €.>

-
d(n,m)
d(-,t-) | A, 2)
d.(lt'\,c'l.) d(l‘)e'{)
2 3 M

27

Memoization

| qondl, eMiew)
Table o‘&\ olOL, €> i A\"SO wm. OvelViey)
Rl toble Colunmm 107
’V\ | | d(n,M)A C()l\&\MVL : (é’/{—" o N alx‘*l
> 4 bottom v 4’013 U\f‘ij
7 d("-"()e'l) dO‘le) A &‘Ug
Al t-1) | A, e-1)

O | 4 2 3 H ‘ M | C)\A:\?\,A— (icl/l, VV\>

28

Edit distance algorithm

» Createatable(n+ 1) X (m + 1) table d.

e Fill the base row and column to O:

* (Going left to right, bottom to top

nm loa?s

-

e Ifx, =y, thensetd(k,?) « d(k— 1,0 — 1)

dk—-1,¢-1),
Else, set d(k,) < 1 + min dk,c —1),
' d(k — 1,¢)

e Return d(n, m).

29

OC‘) Cow\fw\'cc\';oné

Tota) Time

\|

O C\/\vvm>

Finding the set of edits

* This algorithm only computes the edit distance.

e How do we also calculate the collection of edits that need to be made?

» Recall we set d(k,) based on a local optimization of subproblems

o Solution: Also keep track of which subproblem achieved the optimization

o Createatreewith V= [n+ 1] X [m + 1] (the squares of the table) and a
edge point from (k, £) to the subproblem that solved the optimization

30

Table o‘&\ olOL, @>

Finding the set of edits

-
d(n,m)
d(i-,) | A,)
d.(ltv\,c'l.) d(")e'{)
2 3 M

Finding the set of edits

Table o‘&\ olOL, @>

-_—

—
. d(n,m)
3
pA A(e-t,t) | Ak)

* d.(lt'\,c'l.) d(l‘)e'{)
GLK 2= B H< M

32

Finding the set of edits

Table o‘&\ olOL, @>

- T
1
\V
\/
\/ v
\\% Z
<\ < & & &

Table oﬁ\ oloc, @>

Finding the set of edits

R

/i e A
e |l
Ve ct—ec1—<

34

Finding the set of edits

TQ\O\"'— 0{ 0“(") e> C)W\"-chﬁv‘e&. s 1 o“:\
Q.\ler\{ Verte |

— 1 T
L N 4 / = \ o
\/é_-Jl’ e \ ree *\mv\ 3 Qarmm
LI ; | I - Hhe oot (D,O>
\ '\é | ‘.) J COVLS“B Of &, l) I_/
Vet B 0 ES NS A A

_— 1

35

Optimal edit path algorithm

e Generate tables:
« Create(n+ 1) X (m + 1) tables d, p.

e Setd(k,0) « k,d(0,) « ¢ and
p(k,0) < (k—1,0),p0,0) < (0, — 1) fork € [n], ¢ € [m].

e Fork < ltonandfor?Z <« 1tom

» Compute d(k, £) recursively and identify parent p of (k,).

36

Optimal edit path algorithm

* Produce edit path:
e Set (k,0) = <« (n,m)
. While (k, £) # (0,0)

e« Ifpk,0)=(k—1,—1) and x, # y,,
print “Substitute X, fory,”

e |f p(k, f) — (k — l,f), print “Delete xk”
e |f p(k’ f) — (k, — 1), print “Insert yf”
e Set(k,?) « p(k,?)

37

Followy 'Fasl't_ E)lom Q\,W\> bael 4o (_0,0>
av\& ﬁmok "H/\L co(,§’\'5 o;\f:} -HAL rwq7

_ (—}\ ?(k)t> =Ck—-|,€-l\ L

= Y,
Han e el s fc:(m‘.\aQ &:: Jla

‘ow\' Q\/\m—b\,

Edit distance runtime

» Generating tables subroutine runs in O(nm) time

» The path from (n, m) to (0,0) has length at most n + m. Total time to print the
edit distance is O(n + m).

e Total runtime is still O(nm).

38

General dynamic programming algorithm

o |terate through subproblems: Starting from the “smallest” and building up to
the “biggest.” For each one:

* Find the optimal value, using the previously-computed optimal values to
smaller subproblems.

* Record the choices made to obtain this optimal value. (If many smaller
subproblems were considered as candidates, record which one was chosen.)

« Compute the solution: We have the value of the optimal solution to this
optimization problem but we don’t have the actual solution itself. Use the
recorded information to actually reconstruct the optimal solution.

39

General dynamic programming runtime

Time 1t takes to solve problems
Runtime = (Total number of subproblems) x (P)

given solutions to subproblems

