
Chinmay Nirkhe | CSE 421 Winter 2026

Lecture 12
Dynamic programming I

1

A new algorithmic paradigm

• Greedy algorithms:

• Identify a “local” property to optimize

• Generating a “global” solution by combining individual decisions

• Divide and conquer:

• Recursively solve computational task by identifying independent subtasks

• Each independent subtask is smaller than the original

• Combine solutions to subtasks to solve original problem

• The subtasks are different from each other and repeat substacks don’t occur

n → 0.9n

2

A new algorithmic paradigm
Dynamic programming

• Optimal substructure:

• The optimal value of the problem can easily be obtained given the optimal values
of subproblems.

• In other words, there is a recursive algorithm for the problem which would be fast
if we could just skip the recursive steps.

• Overlapping subproblems:

• The subproblems share sub-subproblems.

• In other words, if you actually ran that naïve recursive algorithm, it would waste a
lot of time solving the same problems over and over again.

3

Tribonacci numbers

• Input: Integer

• Output: Tribonacci number defined recursively and 
 

.

• There is a canonical recursive algorithm. But it’s not very efficient.

n

sn s1 = s2 = s3 = 1

sn = sn−1 + sn−2 + sn−3

4

Overlapping subproblems

5

Overlapping subproblems

6

Memoization

• Input: Integer

• Output: Tribonacci number

• Algorithm:

• Initialize an array of length

• Set

• For to , set

n

sn

s n

s1, s2, s3 ← 1

i ← 4 n si ← si−1 + si−2 + si−3

7

Tribonacci runtime analysis

• Theorem: .

• Proof: By induction. Base cases are For induction 
 

.

• Corollary: Each can be expressed using -bits.

sn ≤ 2n

s1 = s2 = s3 = 1.

sn = sn−1 + sn−2 + sn−3 ≤ 2n−1 + 2n−2 + 2n−3 ≤ 7 ⋅ 2n−3 ≤ 2n

sn n

8

Tribonacci runtime analysis

• Computing each entry of the array takes 3 additions: time

• Total time: , total space:

• Could we have done better?

• Better time analysis: (only constant factor)

• Better space: Use only registers bits by recycling old terms in array

si O(n)

O(n2) O(n2)

O(1) +
n

∑
i=4

O(i) = O(n2)

O(1) = O(n)

9

A note on runtime

• Runtime is often nebulously expressed

• Example 1: Sorting a list of integers

• The runtime is often expressed as time

• But this is misleading — recall, it is really arithmetic operations

• If each arithmetic is on -bit integers (between 0 and), then this takes
.

• Input length is numbers or bits.

n

O(n log n)

O(n log n)

k 2k − 1
O(n log n ⋅ k)

Θ(n) Θ(nk)
10

A note on runtime

• Runtime is often nebulously expressed

• Example 2: Dealing with a graph

• The runtime is often expressed in terms of

• We are implicitly assuming the graph is expressed as an adjacency list 
 
Input:

• Length of input is

• If runtime is then the runtime is also

• We aren’t really losing much by expressing the runtime in terms of and

G = (V, E)

n = |V | , m = |E |

⟨V = (1,…,6), N1 = (2,3,4), N2 = (1,5), N3 = (1), N4 = (1,5), N5 = (2,4), N6 = ()⟩

Θ(n + m)

f(n + m) O(f(| input |))

n m

11

A note on runtime

• Runtime is often nebulously expressed

• Example 2: Dealing with a graph

• Sometimes a graph is expressed as an adjacency matrix
where if and otherwise.

• Input length is now

• So a runtime of is equal to

G = (V, E)

M ∈ {0,1}n×n

Mij = 1 (i, j) ∈ E = 0

Θ(n2)

f(n) O(f(| input |))

12

A note on runtime

• Runtime is often nebulously expressed

• Example 3: The input is an integer

•
An integer can be expressed in unary or in binary in bits

• The runtime can depend on how the input is expressed

n ∈ ℕ

111…1
n ones

O(log n)

13

Tribonacci runtime analysis

• Unary input

• Runtime is where

• Binary input

• Runtime is where

• Best possible runtime is using explicit formula: 
 

 for some algebraic numbers and using optimal
algorithm for integer multiplication

O(n2) n = | input |

O(4ℓ) ℓ = | input |

O(n log2 n)

sn = a1rn
1 + a2rn

2 + a3rn
3 a1, a2, a3, r1, r2, r3

14

Edit distance

• Input: Two strings and

• Output: A minimal sequence of edit operations converting into with
allowed transformations being Delete, Insert, or Substitute (one character)

X = (x1…xm) Y = (y1…yn)

X Y

15

Edit distance

• Input: Two strings and

• Output: A minimal sequence of edit operations converting into with
allowed transformations being Delete, Insert, or Substitute (one character)

X = (x1…xm) Y = (y1…yn)

X Y

16

Edit distance

• Input: Two strings and

• Output: A minimal sequence of edit operations converting into with
allowed transformations being Delete, Insert, or Substitute (one character)

X = (x1…xm) Y = (y1…yn)

X Y

17

Edit distance

• Input: Two strings and

• Output: A minimal sequence of edit operations converting into with
allowed transformations being Delete, Insert, or Substitute (one character)

• To find a dynamic programming algorithm, we need to reframe the problem as
a special case of a general problem which is recursively defined

X = (x1…xm) Y = (y1…yn)

X Y

18

Edit distance

• Input: Two strings and

• Definitions:

• Let be the prefix of the first characters of

• Let be the prefix of the first characters of

• Let be the minimal edit distance between and

• Base case: , need to insert all characters

• Base case: , need to delete all characters

• Observation: The order in which edits are made is irrelevant.

X = (x1…xm) Y = (y1…yn)

Xk k X

Yℓ ℓ Y

d(k, ℓ) Xk Yℓ

d(0,ℓ) = ℓ

d(k,0) = k

19

Recursive definition

20

Recursive definition

21

Recursive definition

22

Recursive definition

23

Recursive definition

24

Recursive algorithm

• Recursive algorithm :

• If , then return

• If , then return

• If ,

• Return

•
Else, return .

d(k, ℓ)

k = 0 ℓ

ℓ = 0 k

xk = yℓ

d(k − 1,ℓ − 1)

1 + min
d(k − 1,ℓ − 1),

d(k, ℓ − 1),
d(k − 1,ℓ)

25

Memoization

26

Memoization

27

Memoization

28

Edit distance algorithm

• Create a table table .

• Fill the base row and column to 0: (I.e., set)

• Going left to right, bottom to top

• (I.e., For to and for to)

• If , then set

•
Else, set .

• Return .

(n + 1) × (m + 1) d

d(k,0) ← k, d(0,ℓ) ← ℓ for k ∈ [n], ℓ ∈ [m]

k ← 1 n ℓ ← 1 m

xk = yℓ d(k, ℓ) ← d(k − 1,ℓ − 1)

d(k, ℓ) ← 1 + min
d(k − 1,ℓ − 1),

d(k, ℓ − 1),
d(k − 1,ℓ)

d(n, m)

29

Finding the set of edits

• This algorithm only computes the edit distance.

• How do we also calculate the collection of edits that need to be made?

• Recall we set based on a local optimization of subproblems

• Solution: Also keep track of which subproblem achieved the optimization

• Create a tree with (the squares of the table) and a
edge point from to the subproblem that solved the optimization

d(k, ℓ)

V = [n + 1] × [m + 1]
(k, ℓ)

30

Finding the set of edits

31

Finding the set of edits

32

Finding the set of edits

33

Finding the set of edits

34

Finding the set of edits

35

Optimal edit path algorithm

• Generate tables:

• Create tables , .

• Set and
 for .

• For to and for to

• Compute recursively and identify parent of .

(n + 1) × (m + 1) d p

d(k,0) ← k, d(0,ℓ) ← ℓ
p(k,0) ← (k − 1,0), p(0,ℓ) ← (0,ℓ − 1) k ∈ [n], ℓ ∈ [m]

k ← 1 n ℓ ← 1 m

d(k, ℓ) p (k, ℓ)

36

Optimal edit path algorithm

• Produce edit path:

• Set

• While

• If ,
print “Substitute for ”

• If , print “Delete ”

• If , print “Insert ”

• Set

(k, ℓ) = ← (n, m)

(k, ℓ) ≠ (0,0)

p(k, ℓ) = (k − 1,ℓ − 1) and xk ≠ yℓ
xk yℓ

p(k, ℓ) = (k − 1,ℓ) xk

p(k, ℓ) = (k, ℓ − 1) yℓ

(k, ℓ) ← p(k, ℓ)

37

Edit distance runtime

• Generating tables subroutine runs in time

• The path from to has length at most . Total time to print the
edit distance is .

• Total runtime is still .

O(nm)

(n, m) (0,0) n + m
O(n + m)

O(nm)

38

General dynamic programming algorithm

• Iterate through subproblems: Starting from the “smallest” and building up to
the “biggest.” For each one:

• Find the optimal value, using the previously-computed optimal values to
smaller subproblems.

• Record the choices made to obtain this optimal value. (If many smaller
subproblems were considered as candidates, record which one was chosen.)

• Compute the solution: We have the value of the optimal solution to this
optimization problem but we don’t have the actual solution itself. Use the
recorded information to actually reconstruct the optimal solution.

39

General dynamic programming runtime

40

Runtime = (Total number of subproblems) × (Time it takes to solve problems
given solutions to subproblems)

