

Lecture 11

Stable matching II and midterm review

Chinmay Nirke | CSE 421 Winter 2026

W

Gale-Shapley walkthrough

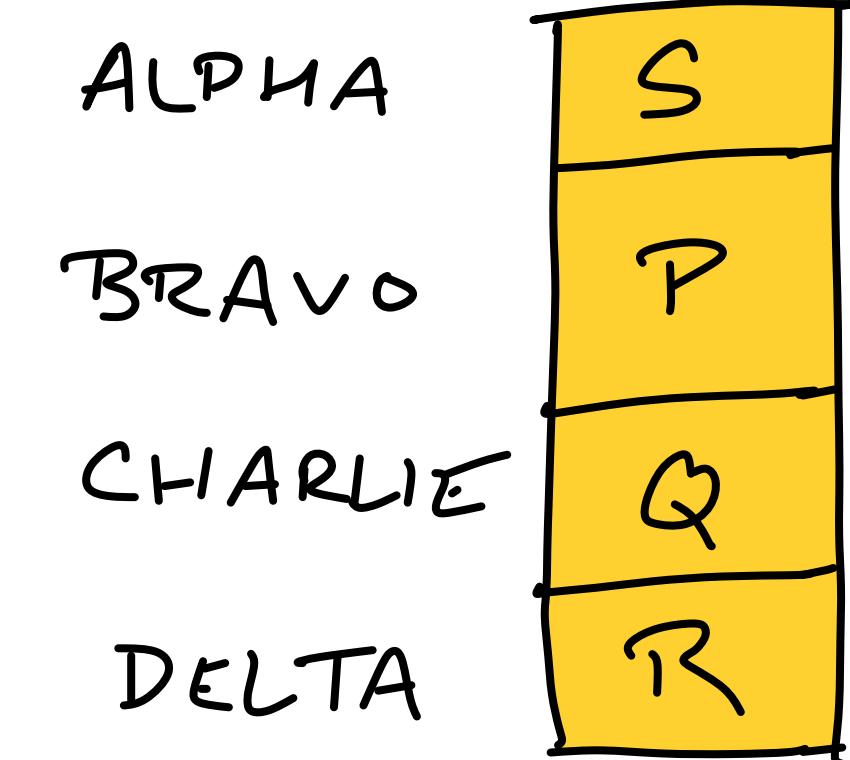
```

Initialize each person to be free.

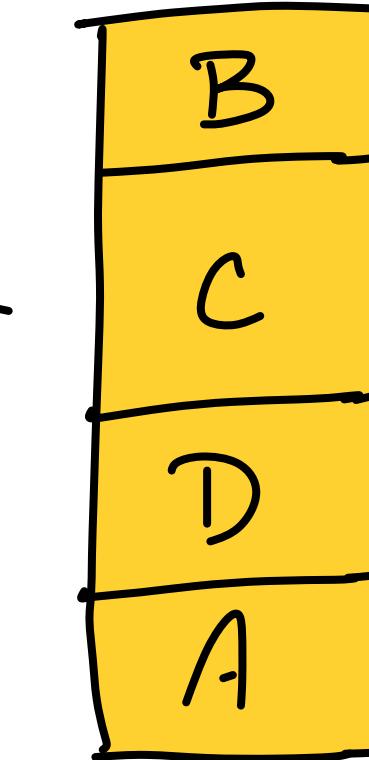
while (some p in P is free) {
    Choose some free p in P
    r = 1st person on p's preference list to whom p has not yet proposed
    if (r is free)
        tentatively match (p,r) // p and r both engaged, no longer free
    else if (r prefers p to current tentative match p')
        replace (p',r) by (p,r) // p now engaged, p' now free
    else
        r rejects p
}

```

Current partner:



PAPA QUEBEC ROMEO SIERRA



mark all proposals

FAV

LEAST

ALPHA

	R	S		
	Q	P		
	Q			
	P	R		

BRAVO

PAPA

CHARLIE

QUEBEC

DELTA

ROMEO

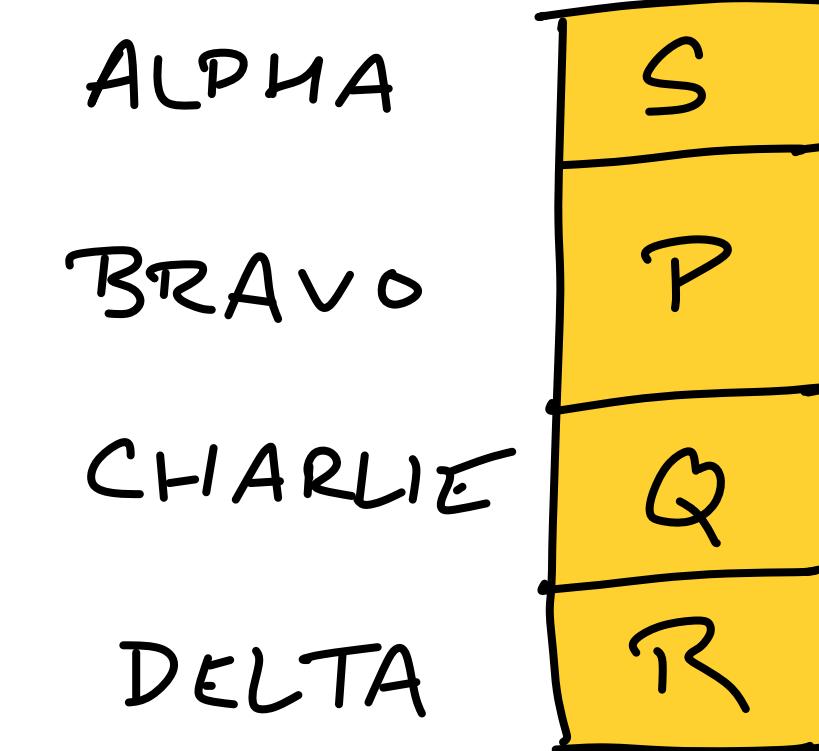
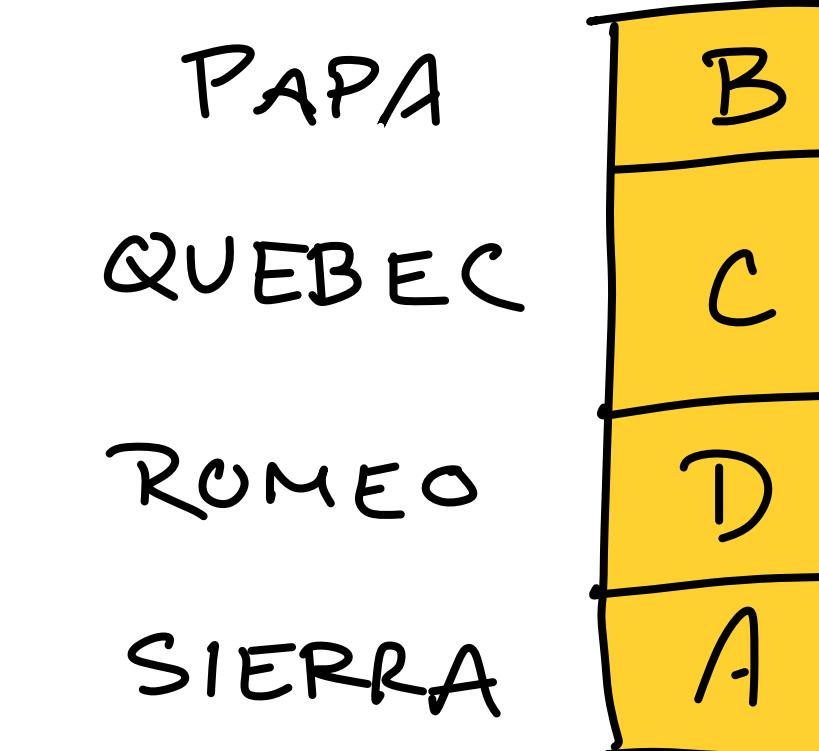
SIERRA

B			
	C		B
	D	A	

Gale-Shapley walkthrough

no free proposers.
 Alg terminates and everyone
 is matched.

Current partner:



check out how
 empty the receiver
 preference matrix is.

mark all proposals

FAV
 ↓

LEAST
 ↓

ALPHA
 BRAVO
 CHARLIE
 DELTA

	R	S		
	Q	P		
	Q			
	P	R		

FAV
 ↓

LEAST
 ↓

PAPA
 QUEBEC
 ROMEO
 SIERRA

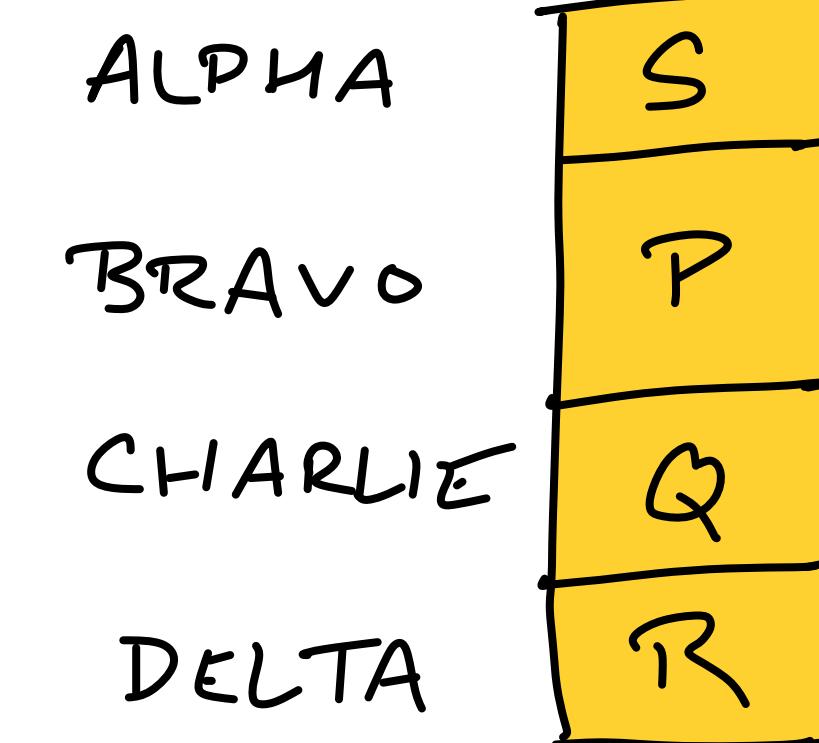
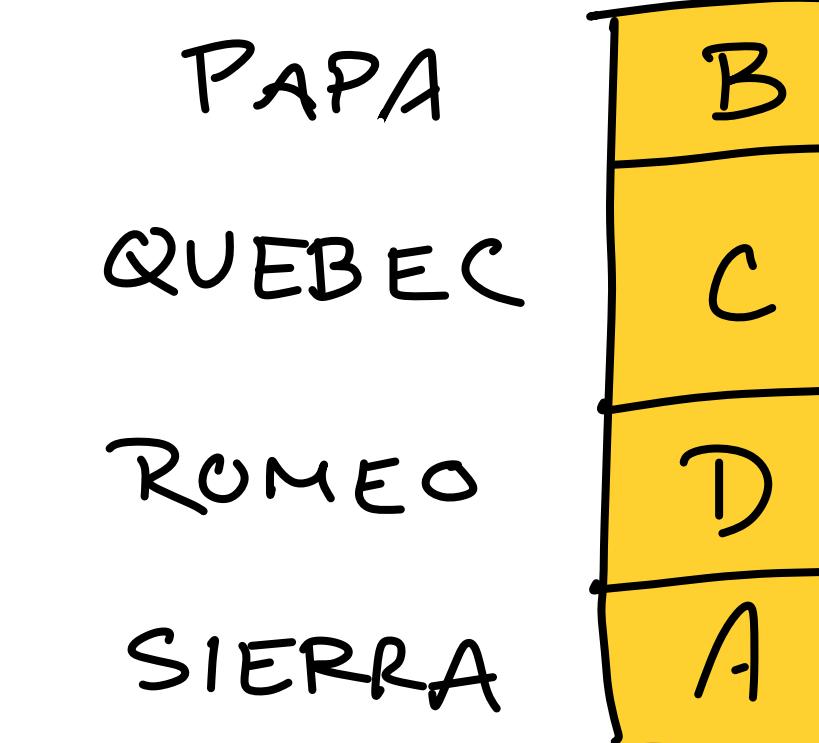
B			
	C		B
	D	A	

never even
 considered

Gale-Shapley walkthrough

no free proposers.
 Alg terminates and everyone
 is matched.

Current partner:



mark all proposals

FAV

LEAST

ALPHA

	R	S		
	Q	P		
	Q			
	P	R		

BRAVO

CHARLIE

DELTA

PAPA

QUEBEC

ROMEO

SIERRA

FAV

LEAST

B			
	C		B
	D	A	

Gale-Shapley walkthrough

```

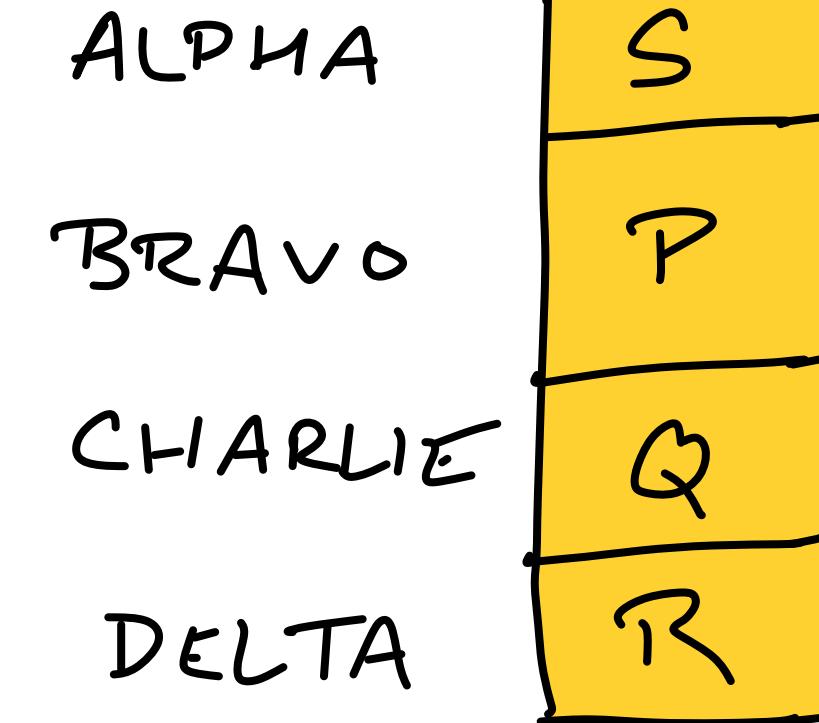
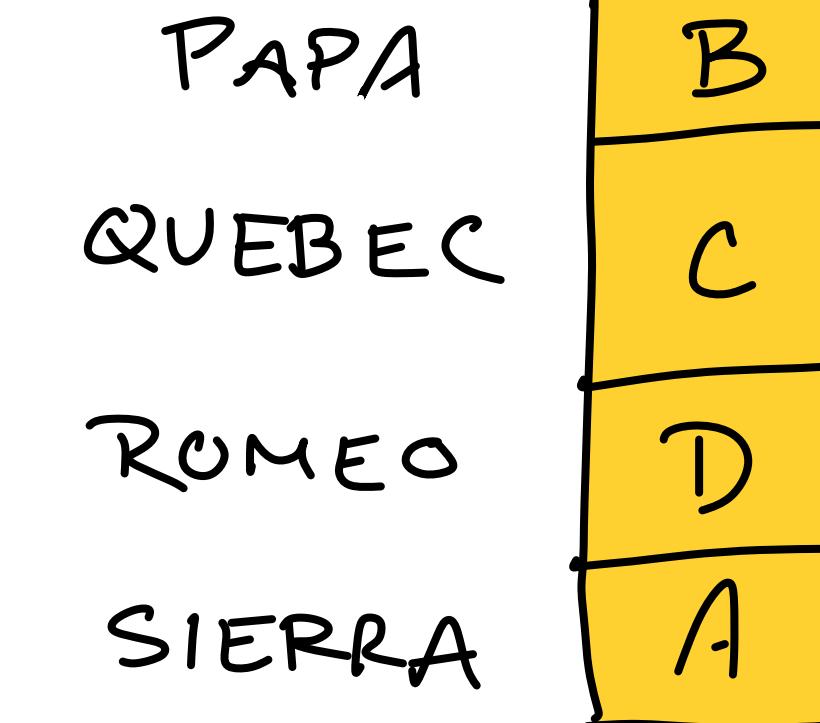
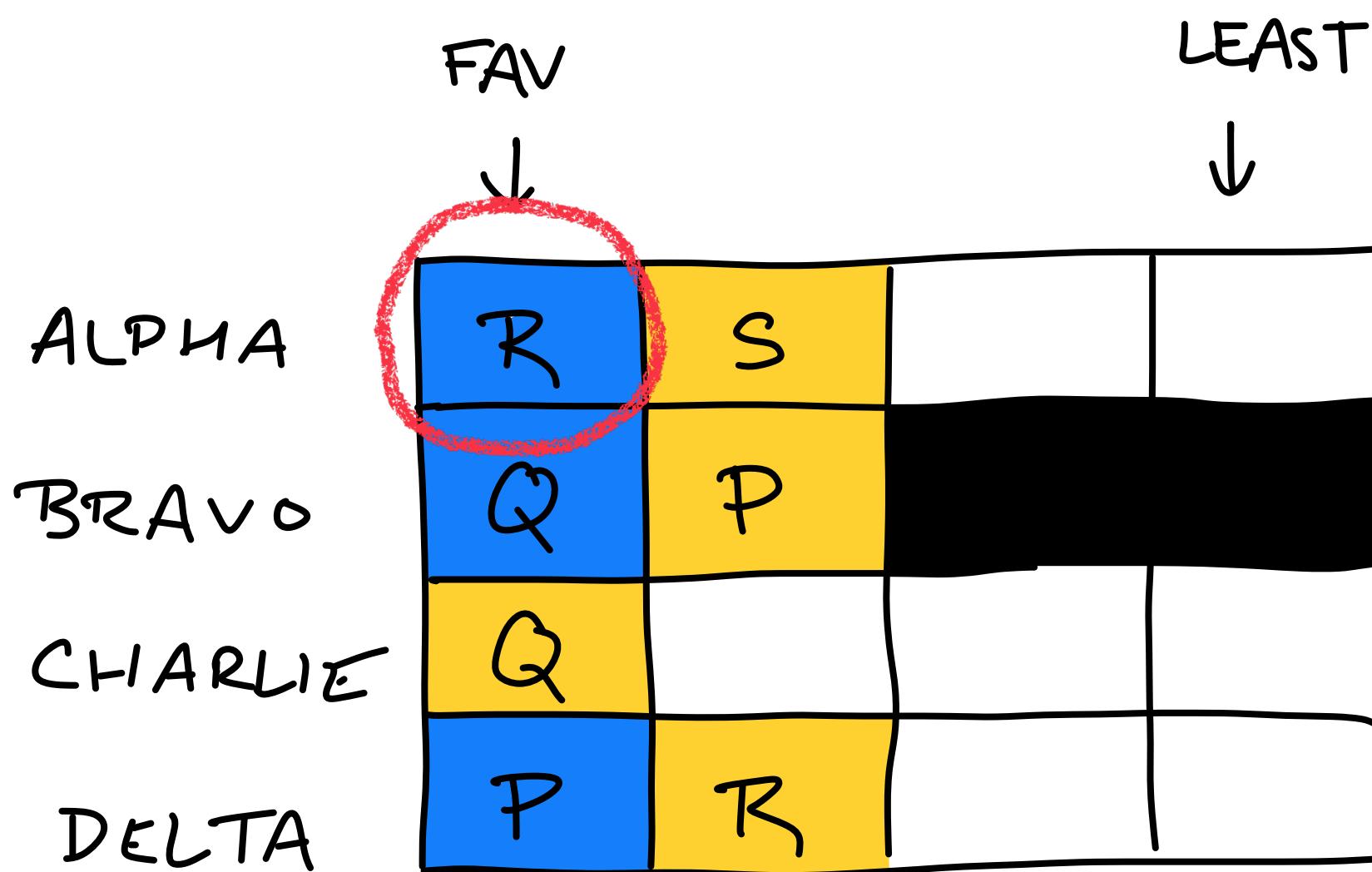
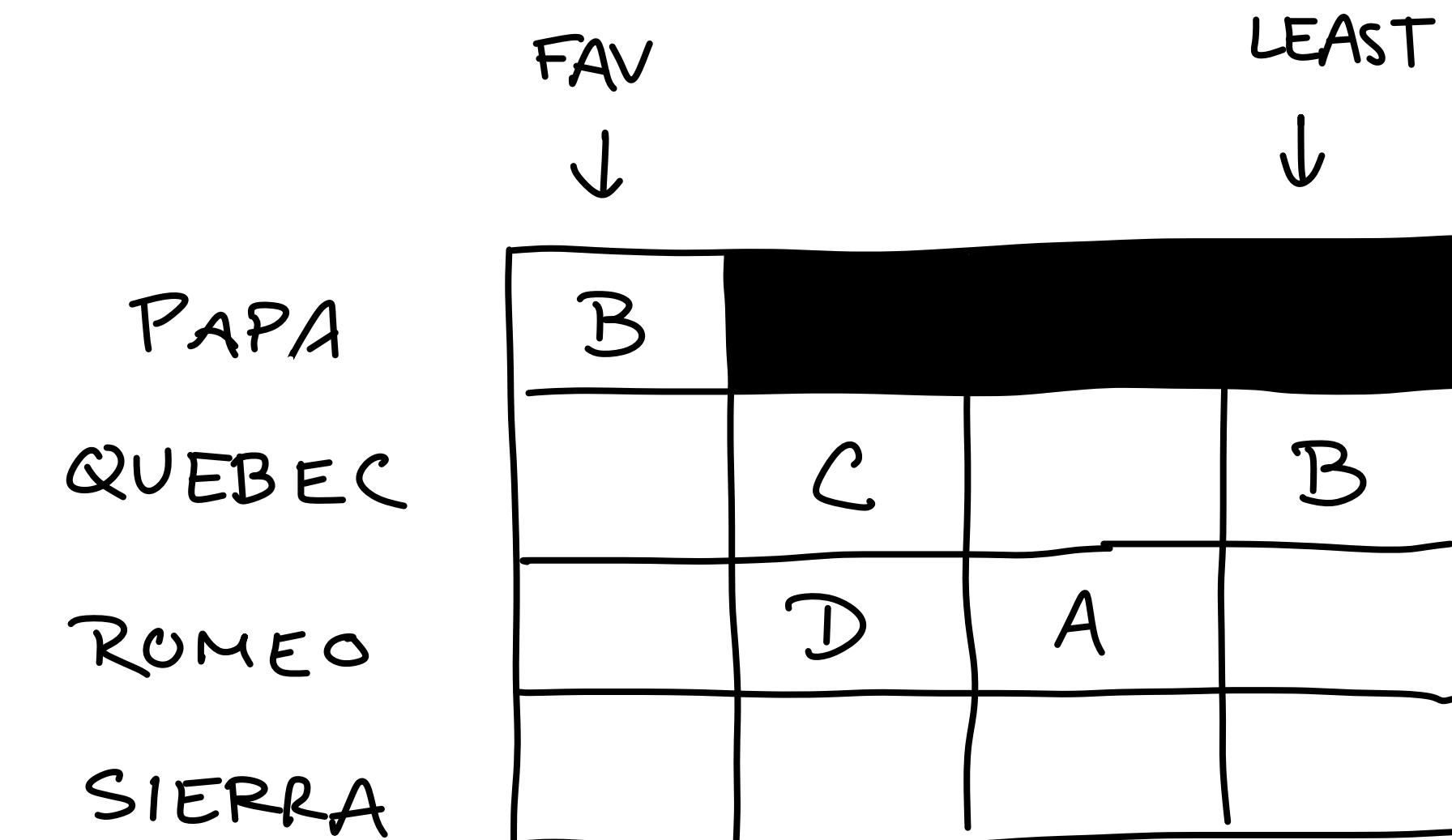
Initialize each person to be free.

while (some p in P is free) {
    Choose some free p in P
    r = 1st person on p's preference list to whom p has not yet proposed
    if (r is free)
        tentatively match (p,r) // p and r both engaged, no longer free
    else if (r prefers p to current tentative match p')
        replace (p',r) by (p,r) // p now engaged, p' now free
    else
        r rejects p
}

```

Current partner:

Is (A, R)
stable?



Gale-Shapley walkthrough

```

Initialize each person to be free.

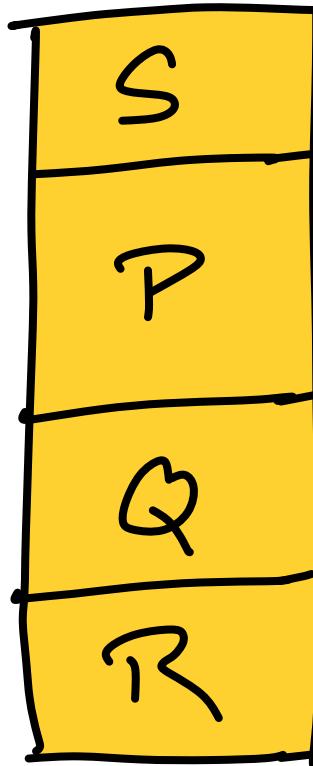
while (some p in P is free) {
    Choose some free p in P
    r = 1st person on p's preference list to whom p has not yet proposed
    if (r is free)
        tentatively match (p,r) // p and r both engaged, no longer free
    else if (r prefers p to current tentative match p')
        replace (p',r) by (p,r) // p now engaged, p' now free
    else
        r rejects p
}

```

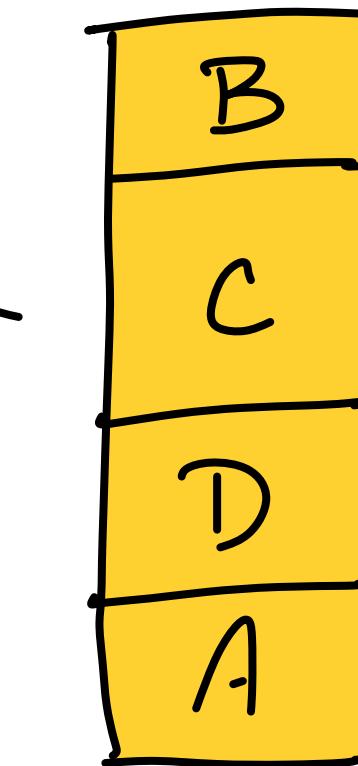
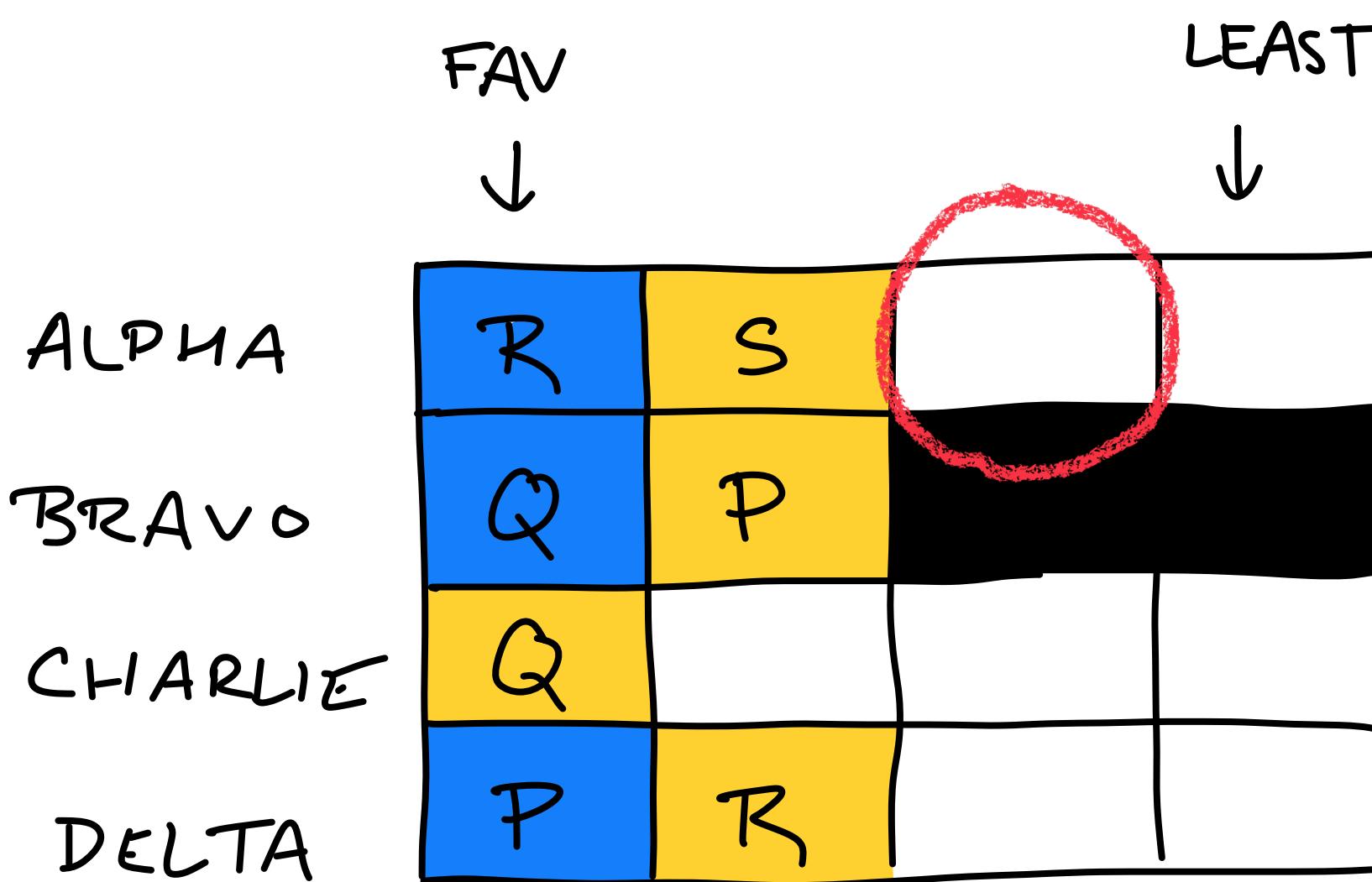
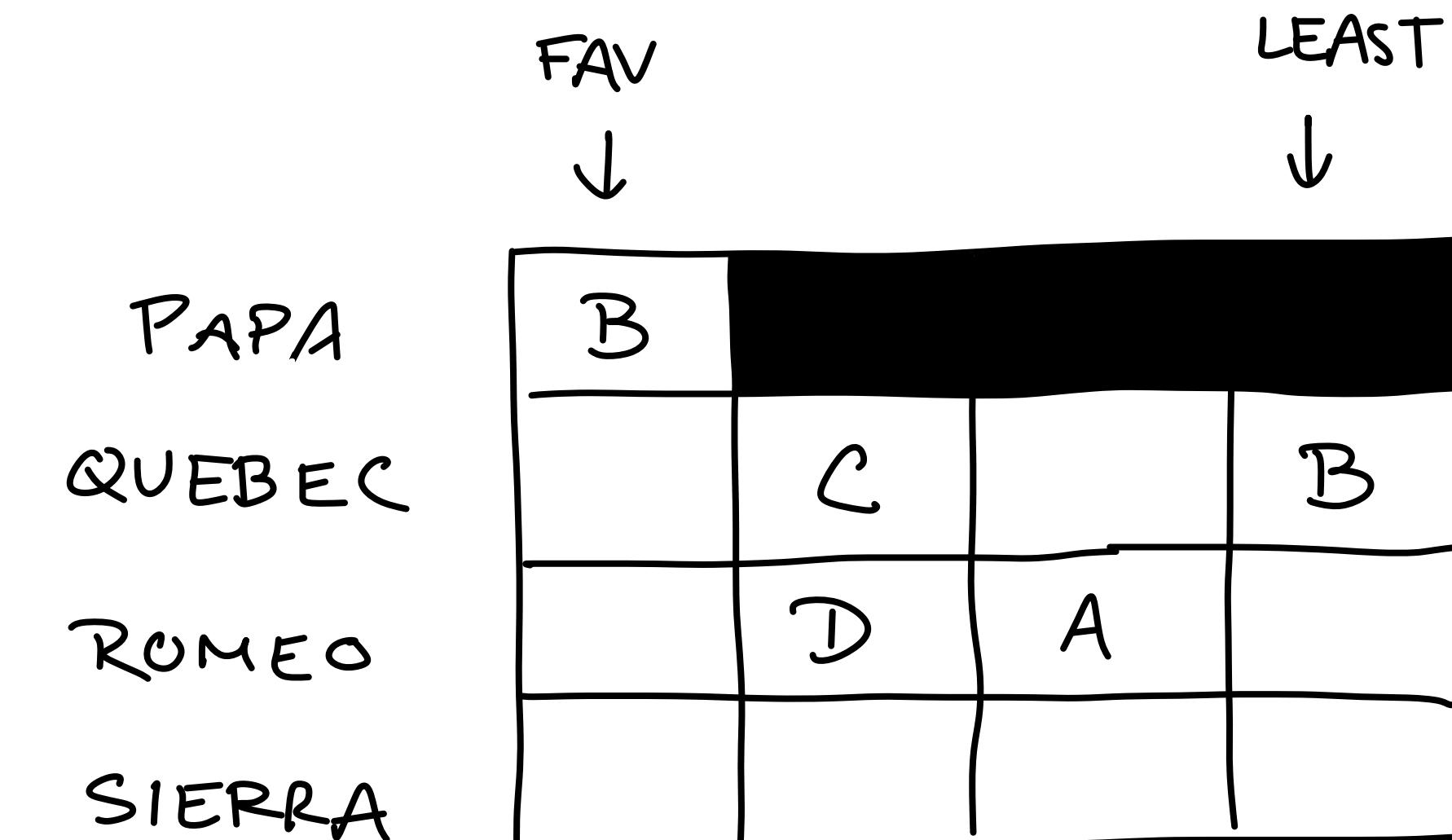
Current partner:

Is (A,Q)
stable?

ALPHA
BRAVO
CHARLIE
DELTA



PAPA
QUEBEC
ROMEO
SIERRA



Gale-Shapley walkthrough

```

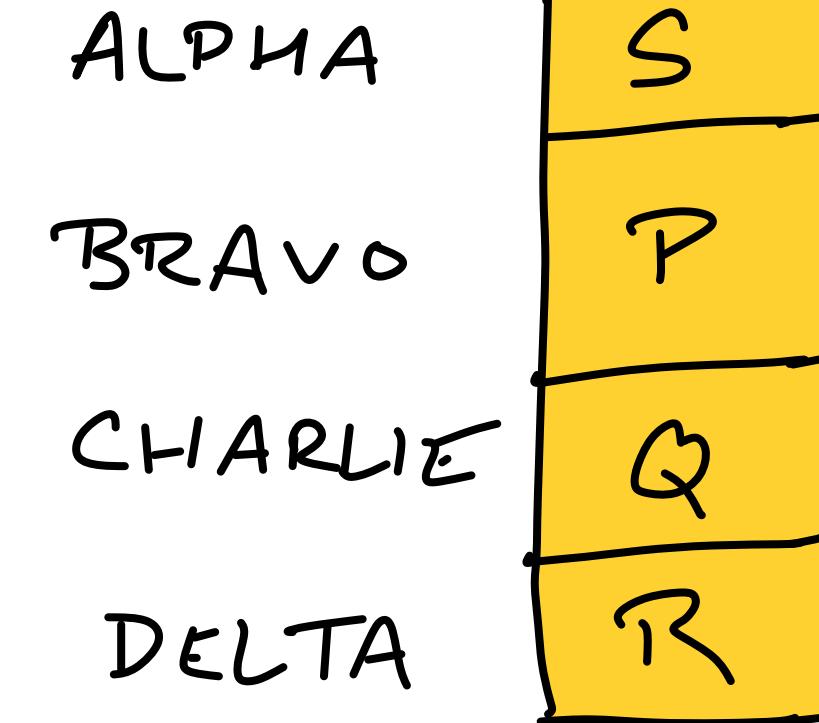
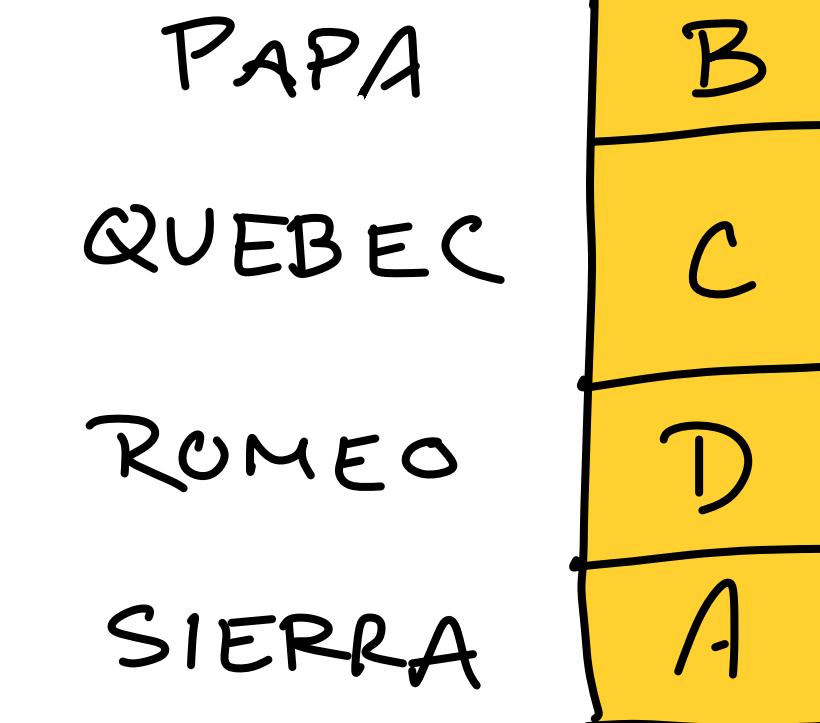
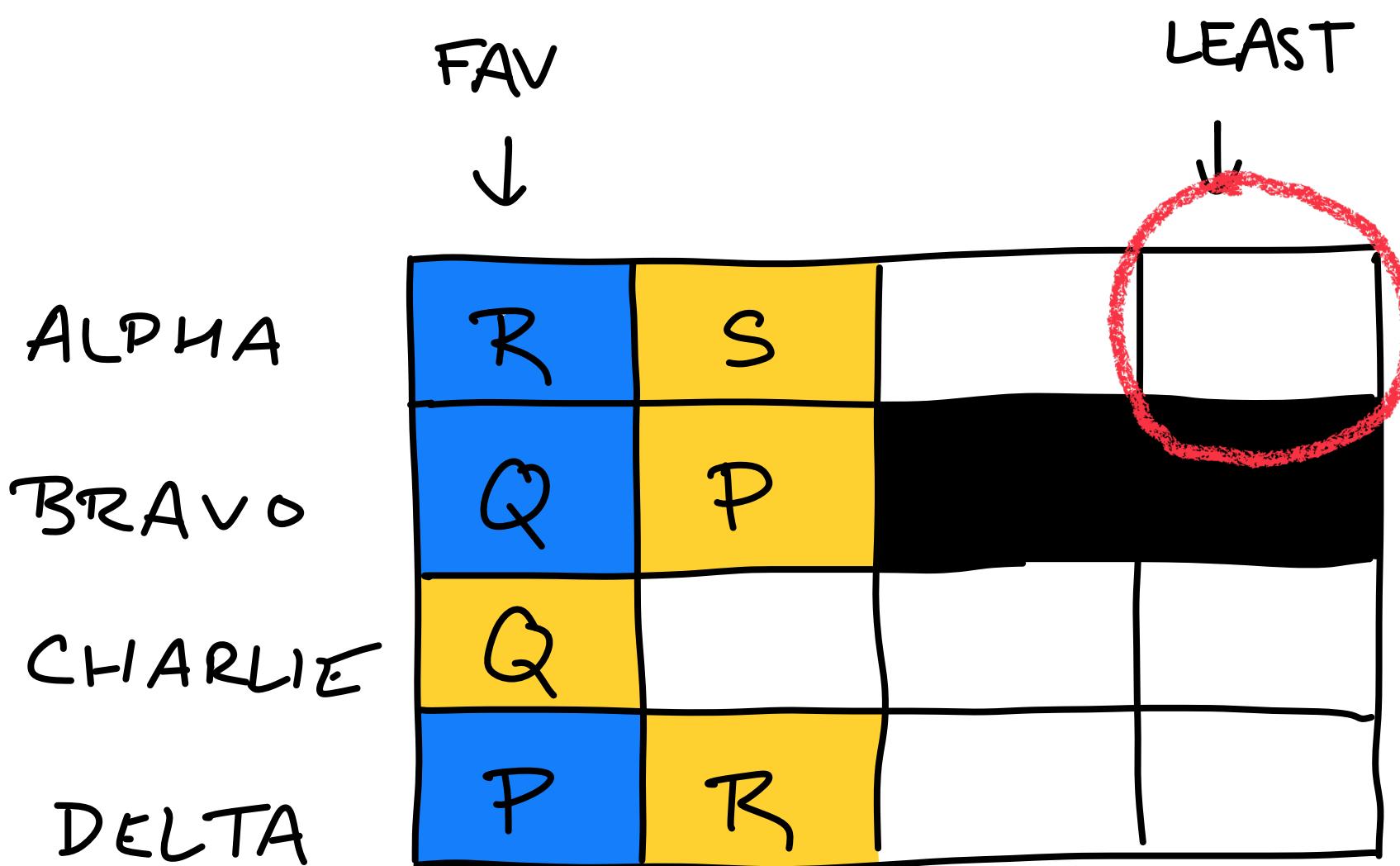
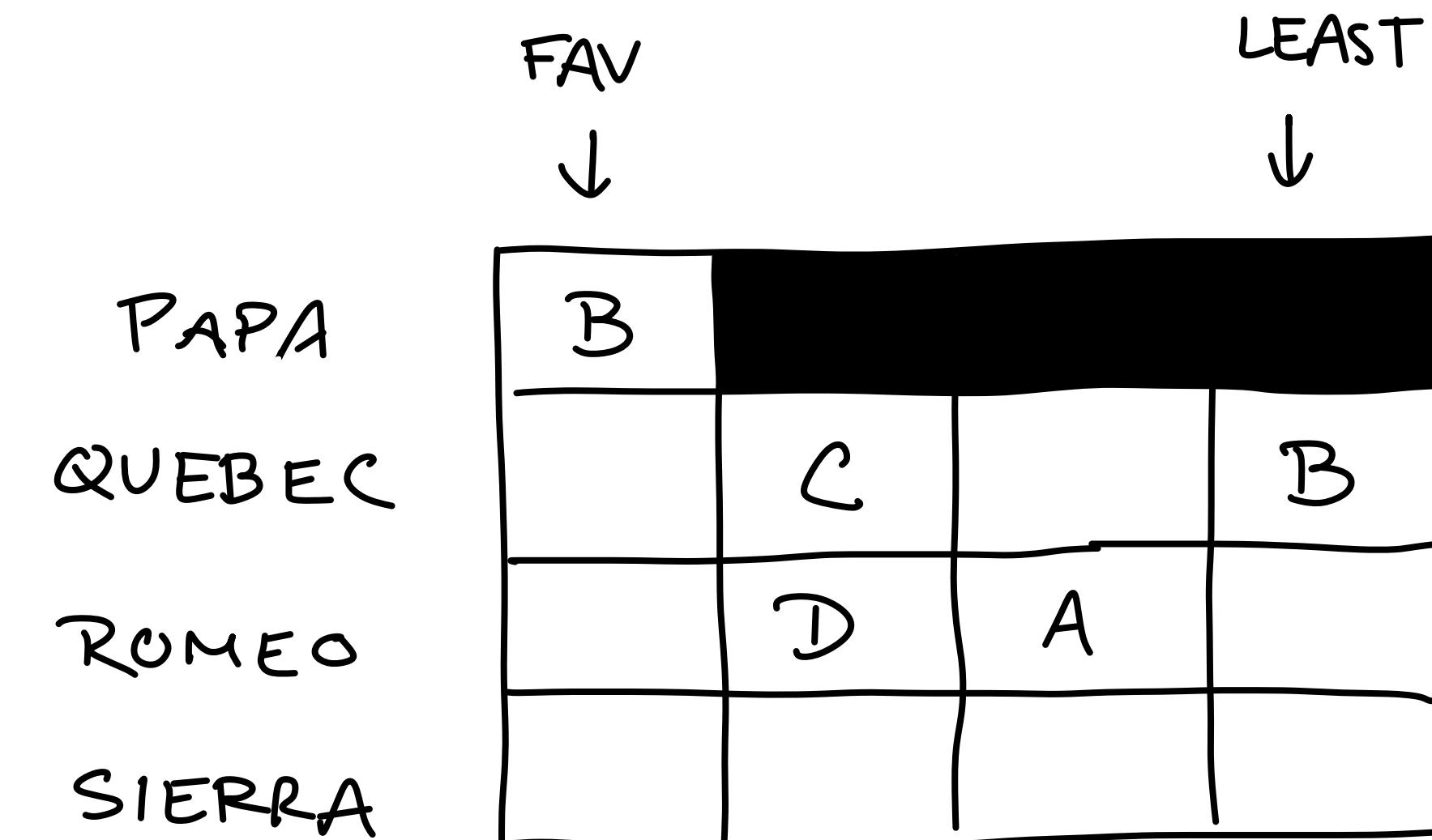
Initialize each person to be free.

while (some p in P is free) {
    Choose some free p in P
    r = 1st person on p's preference list to whom p has not yet proposed
    if (r is free)
        tentatively match (p,r) // p and r both engaged, no longer free
    else if (r prefers p to current tentative match p')
        replace (p',r) by (p,r) // p now engaged, p' now free
    else
        r rejects p
}

```

Current partner:

Is (A, P)
stable?



The propose and reject algorithm

Proof of termination

Observation 1: Every $p \in P$ proposes in decreases order of preference.

Observation 2: No proposal (p, r) is ever repeated.

Conclusion: Since there are only n^2 pairs (p, r) , algorithm terminates after $\leq n^2$ iterations of the while loop.

And indeed, it can take this long
for many simple examples.

```
Initialize each person to be free
while (some p in P is free) {
    Choose some free p in P
    r = 1st person on p's preference list to whom p has not yet proposed
    if (r is free)
        tentatively match (p,r) //p and r both engaged, no longer free
    else if (r prefers p to current tentative match p')
        replace (p',r) by (p,r) //p now engaged, p' now free
    else
        r rejects p
}
```

The propose and reject algorithm

Proof of termination

This example takes
 $n(n - 1) + 1$ iterations.

	1 st	2 nd	3 rd	4 th	5 th
V	A	B	C	D	E
W	B	C	D	A	E
X	C	D	A	B	E
Y	D	A	B	C	E
Z	A	B	C	D	E

Preference Profile for P

	1 st	2 nd	3 rd	4 th	5 th
A	W	X	Y	Z	V
B	X	Y	Z	V	W
C	Y	Z	V	W	X
D	Z	V	W	X	Y
E	V	W	X	Y	Z

Preference Profile for R

And indeed, it can take this long
for many simple examples.

```
Initialize each person to be free.
while (some p in P is free) {
    Choose some free p in P
    r = 1st person on p's preference list to whom p has not yet proposed
    if (r is free)
        tentatively match (p,r) //p and r both engaged, no longer free
    else if (r prefers p to current tentative match p')
        replace (p',r) by (p,r) //p now engaged, p' now free
    else
        r rejects p
}
```

The propose and reject algorithm

Proof of perfection

Observation 3: Once a receiver r is matched, they are never freed up. If anything, w.r.t. their preferences, they only ever trade up.

Claim: By the time the algorithm terminates, everyone gets matched.

Proof:

- Since $|P| = |R| = n$, if no receiver is free, then everyone is matched.
- If some $p \in P$ proposes to their last choice receiver r_n , then all previous receivers r must have already been matched. Then (p, r_n) matching is added and no receiver is free.

The propose and reject algorithm

Proof of stability

Claim: The final matching M of the algorithm does not have *unstable* pairs

Proof: Consider a pair (p, r) that is *not* matched by M : $M(p) \neq r$.

- Case 1: During the entire algorithm run, p *never* proposed to r .
- Case 2: Or at some time, p proposed to r .

The propose and reject algorithm

Proof of stability

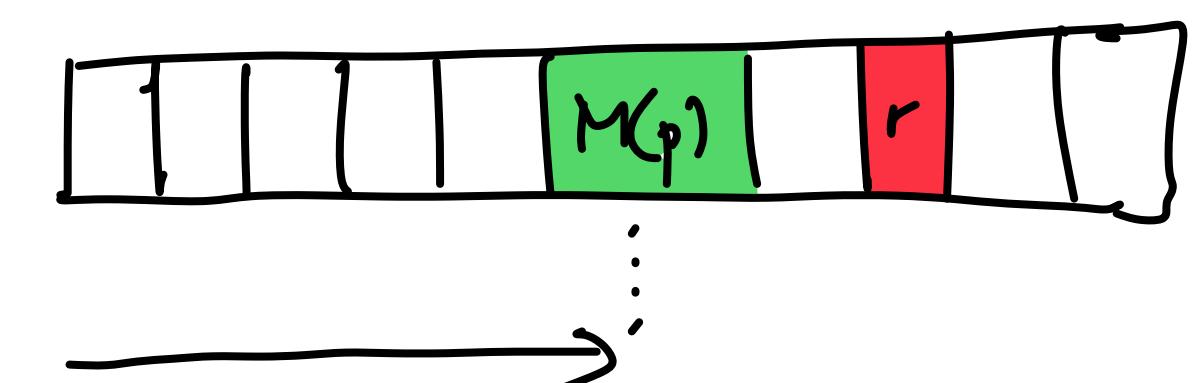
Claim: The final matching M of the algorithm does not have *unstable* pairs

Proof: Consider a pair (p, r) that is *not* matched by M :
 $M(p) \neq r$.

- Case 1: During the entire algorithm run, p never proposed to r .
 - Therefore, p prefers $M(p)$ to r . So (p, r) is *not* unstable w.r.t. M .
- Case 2: Or at some time, p proposed to r .
 - Therefore, r prefers $M(r)$ to p . So (p, r) is *not* unstable w.r.t. M .

Case 1:

p 's pref list



kept proposing until eventually
terminated at $M(p)$

$M(p)$ is preferred to r by p .

So not unstable.

The propose and reject algorithm

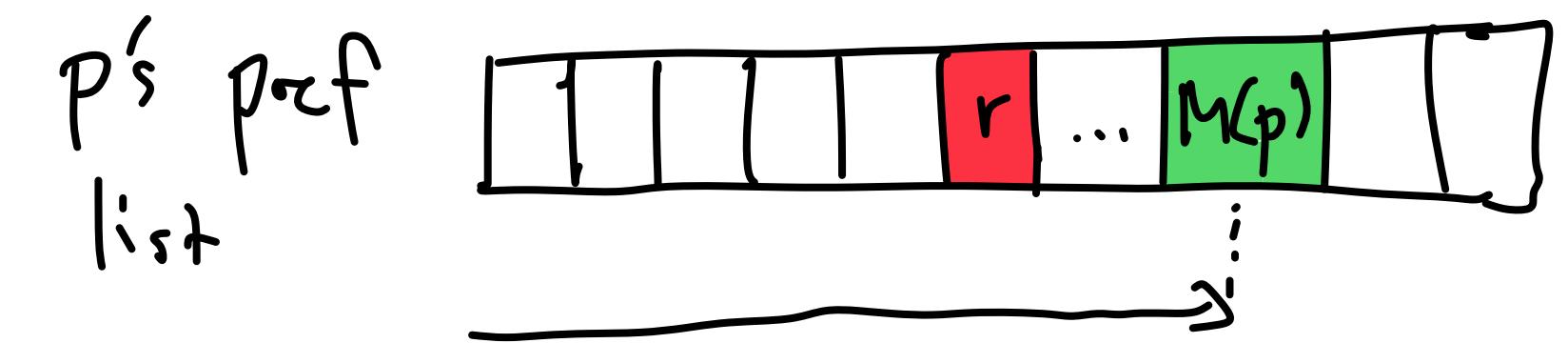
Proof of stability

Claim: The final matching M of the algorithm does not have *unstable* pairs

Proof: Consider a pair (p, r) that is *not* matched by M :
 $M(p) \neq r$.

- Case 1: During the entire algorithm run, p never proposed to r .
 - Therefore, p prefers $M(p)$ to r . So (p, r) is *not* unstable w.r.t. M .
- Case 2: Or at some time, p proposed to r .
 - Therefore, r prefers $M(r)$ to p . So (p, r) is *not* unstable w.r.t. M .

Case 2:



So, r was proposed to by p .

But r eventually rejected p meaning
 r has "traded up" to get $M(r)$.

So r prefers $M(r)$ to p .

The propose and reject algorithm

What have we learned?

- Proof of termination in n^2 iterations. ✓
- Proof of perfection: everyone gets matched. ✓
- Proof of stability: the output matching is stable for all pairs. ✓
- What have we not talked about?
 - Is it fair? Is it better to be a proposer or a receiver? Does the first proposer or the last proposer have it better?
 - Is there a faster algorithm?
 - How do we extend to n proposers and n' receivers?

The history of the propose and reject algorithm

Gale and Shapley 1962

- The original paper was about n men and n women and a heterosexual notion of marriage.
- Gale and Shapley's algorithm defined the proposers as the men and the receivers as the women.

- We will see next that the GS algorithm is **proposer**-optimal but not **receiver**-optimal.
- For obvious reasons, we changed the notation.
- As originally stated, the GS algorithm favored being a man. This social implication was not recognized for some time!
- Is fairness possible? In some cases, yes. But this is an active area of research!

COLLEGE ADMISSIONS AND THE STABILITY OF MARRIAGE

D. GALE* AND L. S. SHAPLEY, Brown University and the RAND Corporation

1. **Introduction.** The problem with which we shall be concerned relates to the following typical situation: A college is considering a set of n applicants of which it can admit a quota of only q . Having evaluated their qualifications, the admissions office must decide which ones to admit. The procedure of offering admission only to the q best-qualified applicants will not generally be satisfactory, for it cannot be assumed that all who are offered admission will accept. Accordingly, in order for a college to receive q acceptances, it will generally have to offer to admit more than q applicants. The problem of determining how many and which ones to admit requires some rather involved guesswork. It may not be known (a) whether a given applicant has also applied elsewhere; if this is known it may not be known (b) how he ranks the colleges to which he has

Shapley winning the 2012 Economics Nobel Prize (with Roth)

Implementing stable matching

- Input length
 - $N := 2n^2$ words in length because $2n$ people \times preference list of length n .
 - A “word” here is a number $\in [n] = \{1, 2, \dots, n\}$. Takes $\lceil \log_2 n \rceil$ bits to represent.
 - Input length of $2n^2 \lceil \log_2 n \rceil$ bits.
- **Brute force algorithm:** Try all $n!$ possible matchings. Testing if a matching is stable requires testing if each of the n^2 pairs (p, r) is stable.
- **Gale-Shapley algorithm:** takes $\leq n^2$ iterations. How long does each iteration take to run?

Implementing Gale-Shapley in $O(n^2)$ time

Comparing

- **Input:** 2 $n \times n$ representing the preferences of P and R :

- $\text{pref}_P[p][j], \text{pref}_R[r][j]$
- Assume the proposers and receivers are numbers $1, 2, \dots, n$
- Each preference array is a *permutation* of $\{1, 2, \dots, n\}$

- **Data structure for the matching:**

- Maintain two arrays $M_P[p]$ and $M_R[r]$ denoting match of p and r
- Initialize both arrays to all \perp , a symbol denoting that the match isn't set
- If during the algorithm, (p, r) is matched, set $M_P[p] \leftarrow r, M_R[r] \leftarrow p$

- **Making proposals:**

- Maintain a queue Q of all the free proposers. Initially Q contains all n proposers.
- Maintain an array $\text{count}[p]$ which counts how many proposals p has made so far. Initially all entries are 0.

```
Initialize each person to be free
while (some p in P is free) {
    Choose some free p in P
    r = 1st person on p's preference list to whom p has not yet proposed
    if (r is free)
        tentatively match (p,r) //p and r both engaged, no longer free
    else if (r prefers p to current tentative match p')
        replace (p',r) by (p,r) //p now engaged, p' now free
    else
        r rejects p
}
```

Implementing Gale-Shapley in $O(n^2)$ time

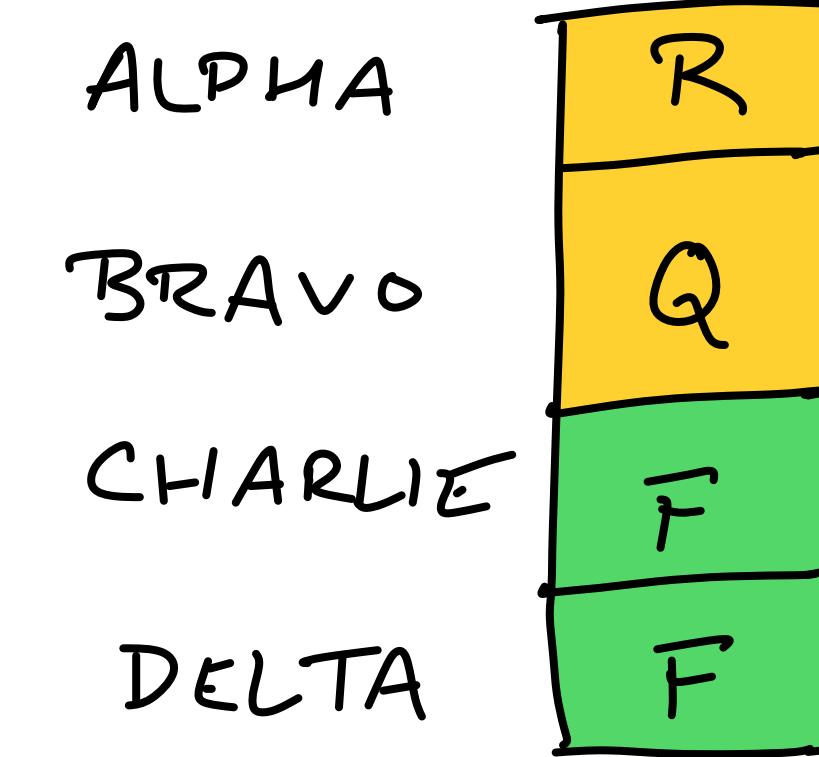
Rejecting & accepting proposals

- How do we decide efficiently if receiver r prefers proposer p to proposer p' ?
- Naïvely would take $O(n)$ queries to read through $\text{pref}_R[r][\cdot]$ to find both p and p'

```
Initialize each person to be free
while (some p in P is free) {
    Choose some free p in P
    r = 1st person on p's preference list to whom p has not yet proposed
    if (r is free)
        tentatively match (p,r)  //p and r both engaged, no longer free
    else if (r prefers p to current tentative match p')
        replace (p',r) by (p,r)  //p now engaged, p' now free
    else
        r rejects p
}
```

Gale-Shapley walkthrough

Current partner:



mark all proposals

FAV

LEAST

ALPHA

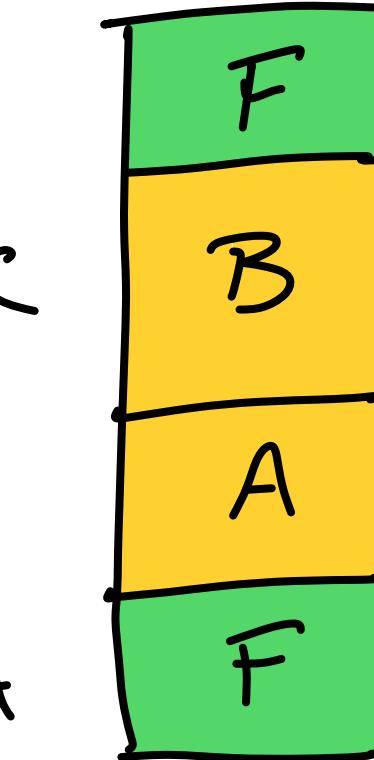
BRAVO

CHARLIE

DELTA

R			
Q			
Q			

PAPA QUEBEC ROMEO SIERRA



Who do I prefer:
Bravo OR Charlie?

FAV LEAST

PAPA

QUEBEC

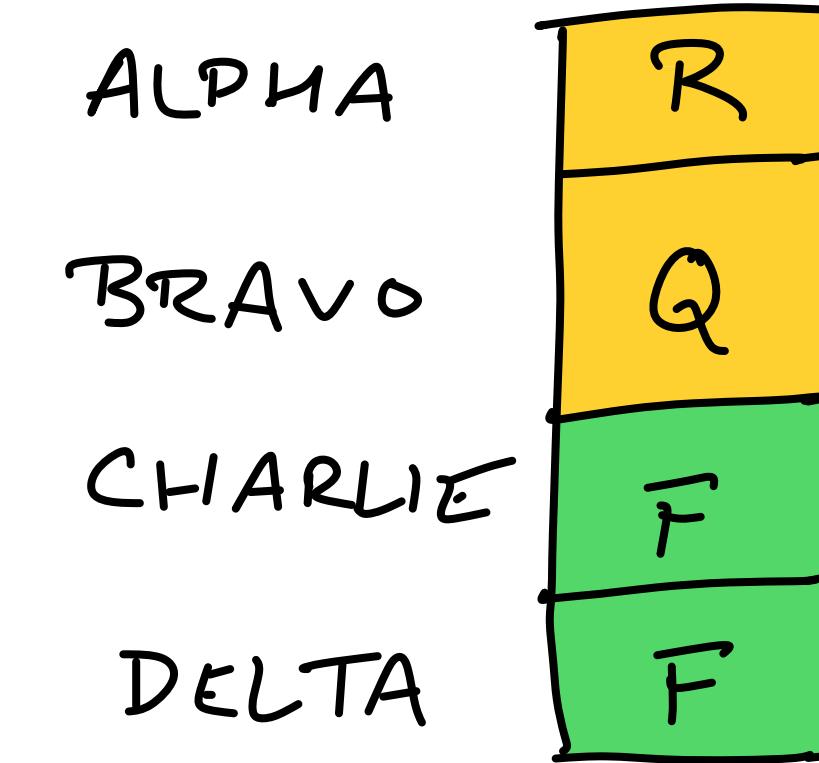
ROMEO

SIERRA

.			
.			
.			
.			

Gale-Shapley walkthrough

Current partner:



mark all proposals

FAV

LEAST

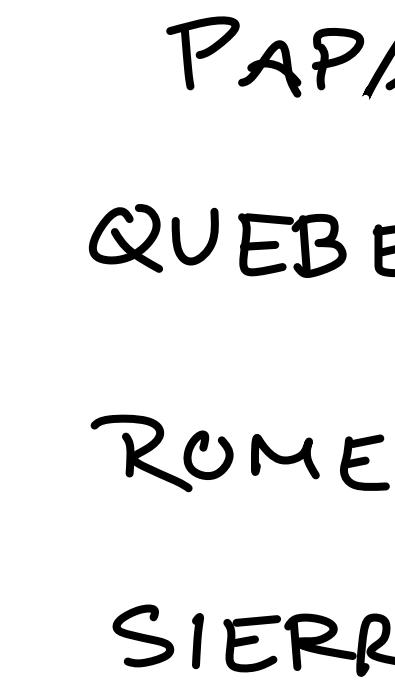
ALPHA

BRAVO

CHARLIE

DELTA

R			
Q			
Q			



Who do I prefer:
Bravo OR Charlie?

FAV LEAST

PAPA

QUEBEC

ROMEO

SIERRA

.			
.	C		B
.			
.			

Implementing Gale-Shapley in $O(n^2)$ time

Rejecting & accepting proposals

- How do we decide efficiently if receiver r prefers proposer p to proposer p' ?
- Naïvely would take $O(n)$ queries to read through $\text{pref}_R[r][\cdot]$ to find both p and p'
- Instead, *precompute* the inverse list of preferences: $\text{invpref}_R[r][p]$.
- Property: $j = \text{invpref}_R[r][p]$ if and only if $p = \text{pref}_R[r][j]$.
- Takes $O(n^2)$ time to precompute inverse list. Once computed, each comparison takes time $O(1)$.

```

Initialize each person to be free
while (some p in P is free) {
    Choose some free p in P
    r = 1st person on p's preference list to whom p has not yet proposed
    if (r is free)
        tentatively match (p,r) //p and r both engaged, no longer free
    else if (r prefers p to current tentative match p')
        replace (p',r) by (p,r) //p now engaged, p' now free
    else
        r rejects p
}

```

r	1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th
pref	8	3	7	1	4	5	6	2

r	1	2	3	4	5	6	7	8
inverse	4 th	8 th	2 nd	5 th	6 th	7 th	3 rd	1 st

```

for each i
    invpref[r][pref[r][i]] = i

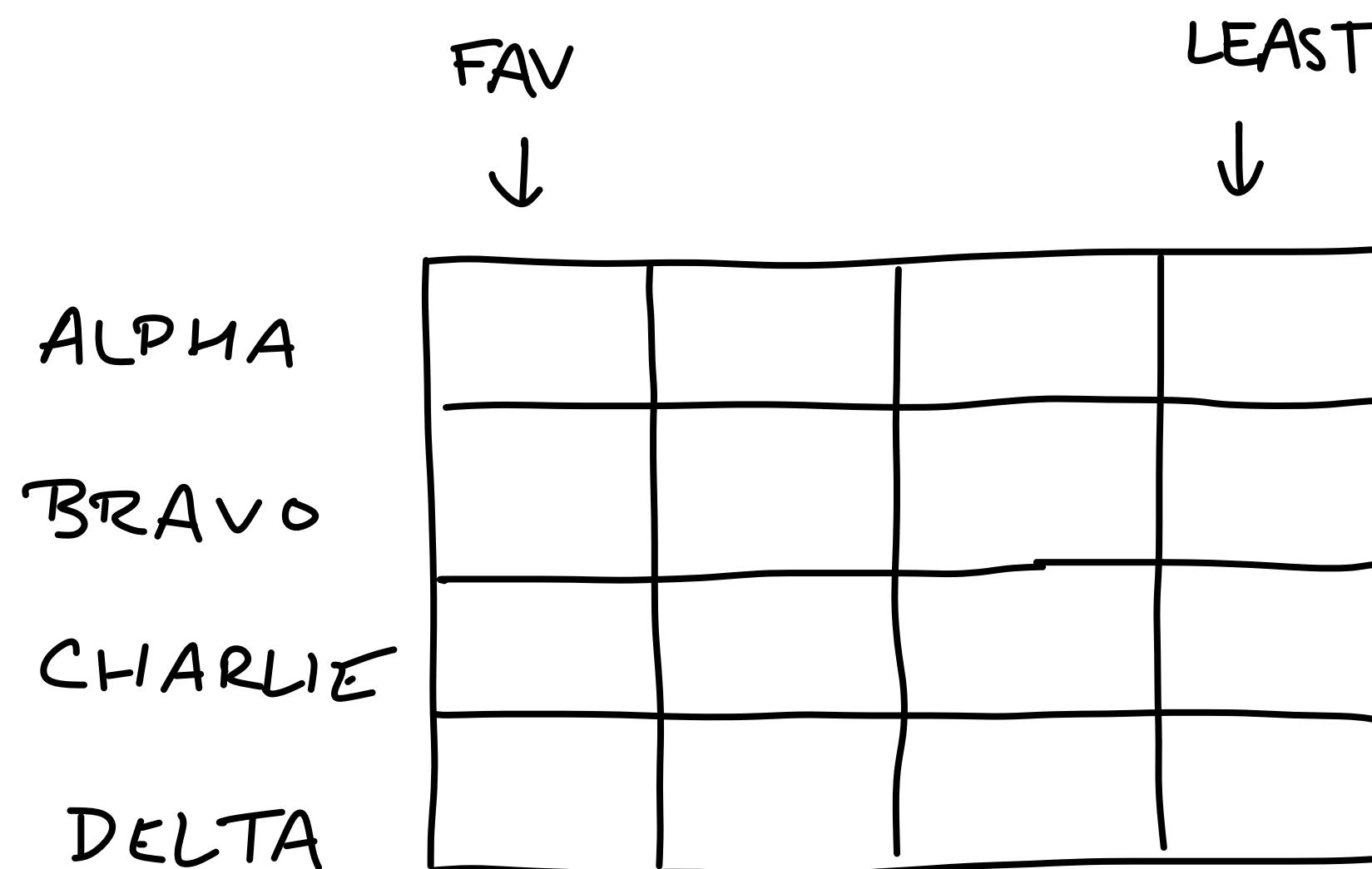
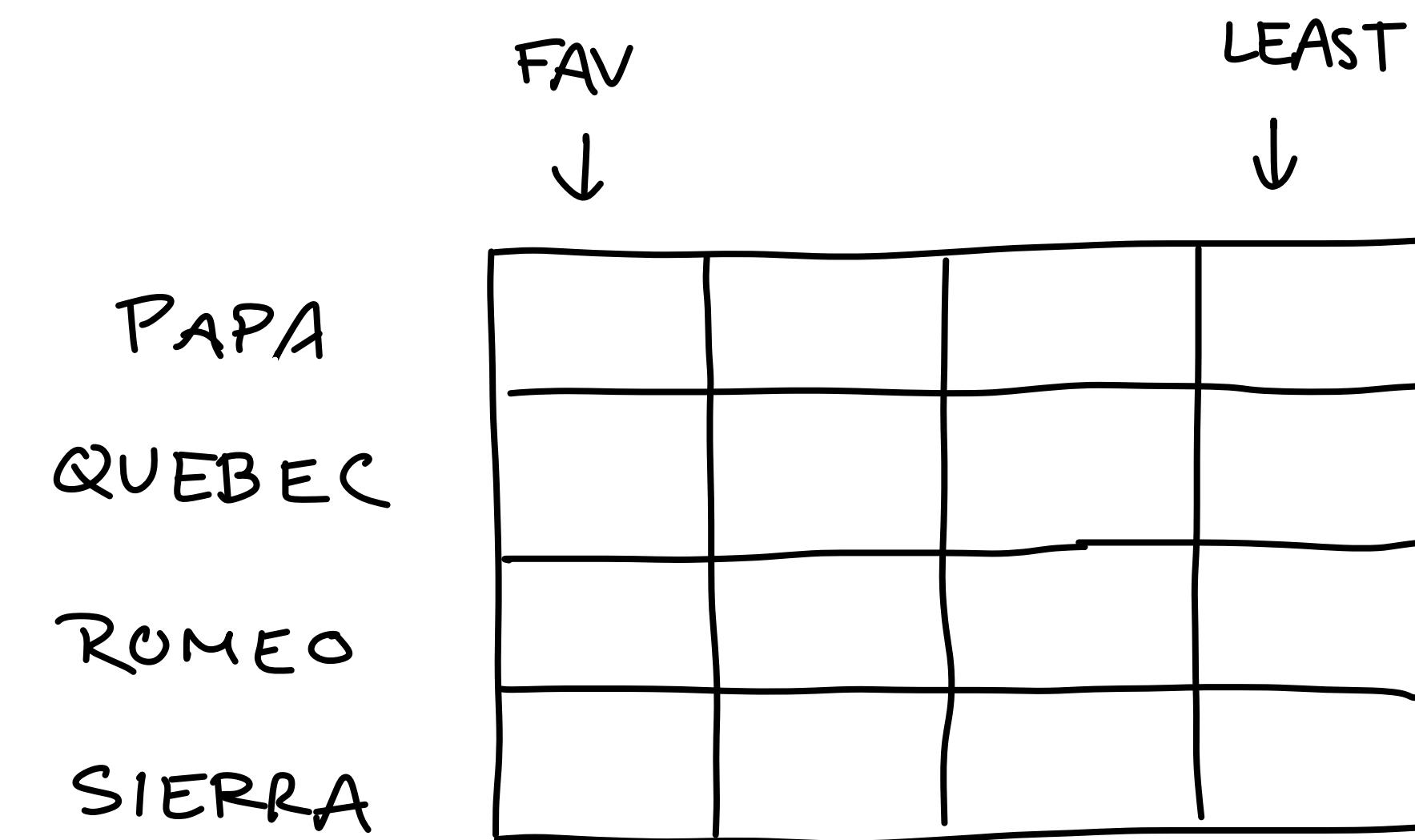
```

Implementing Gale-Shapley in $O(n^2)$ time

- When a proposer p becomes free, p starts proposing to new receivers starting from $\text{count}[p]$. All previous receivers have been proposed to in previous steps of the algorithm. Update $\text{count}[p]$ as rejections occur.
- Combined with the inverse list pre computation, we achieve that every proposer-receiver pair (p, r) is considered in $O(1)$ computational steps and there are a total n^2 possible pairs.
- This completes the entire time complexity argument of $O(n^2)$.

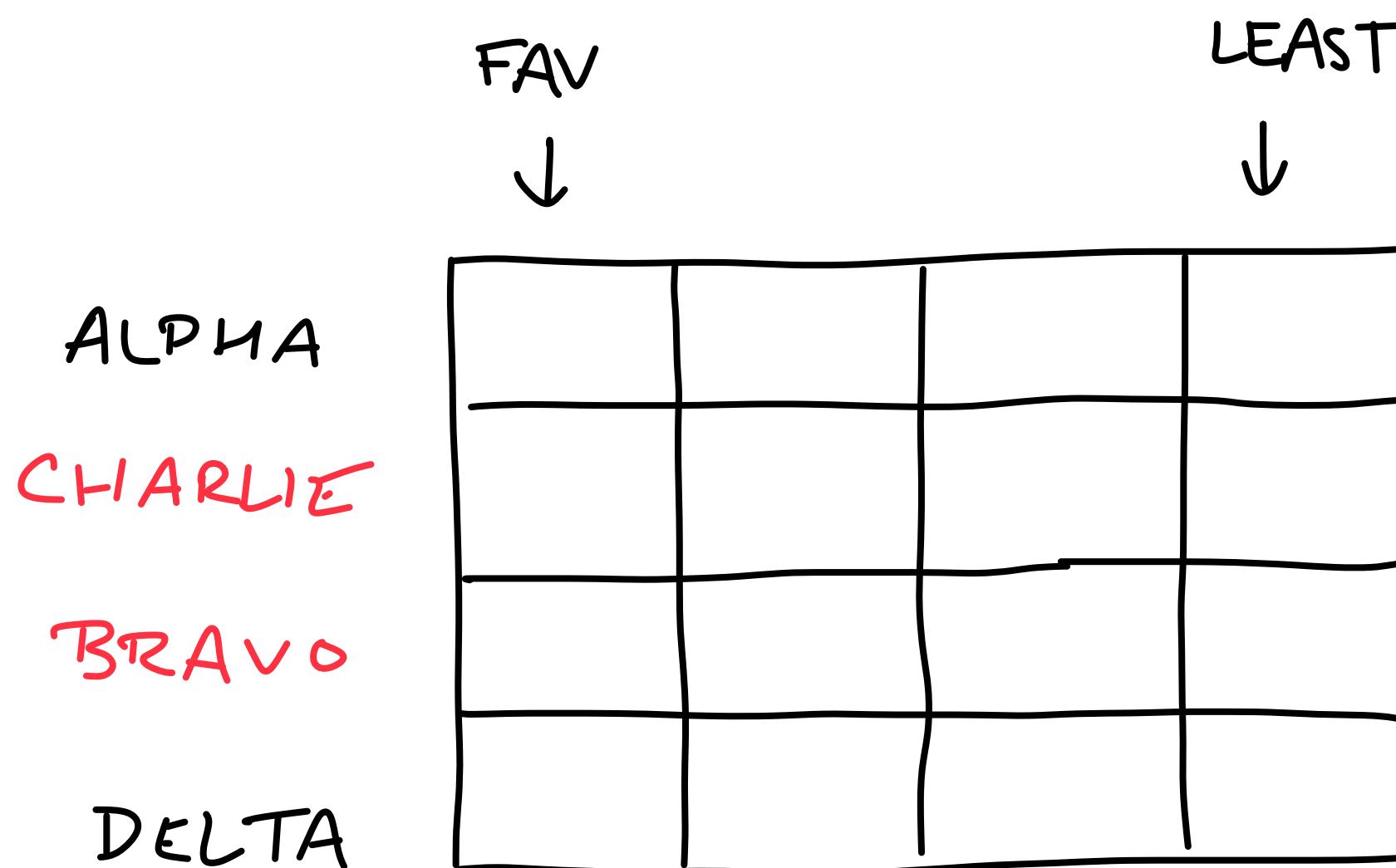
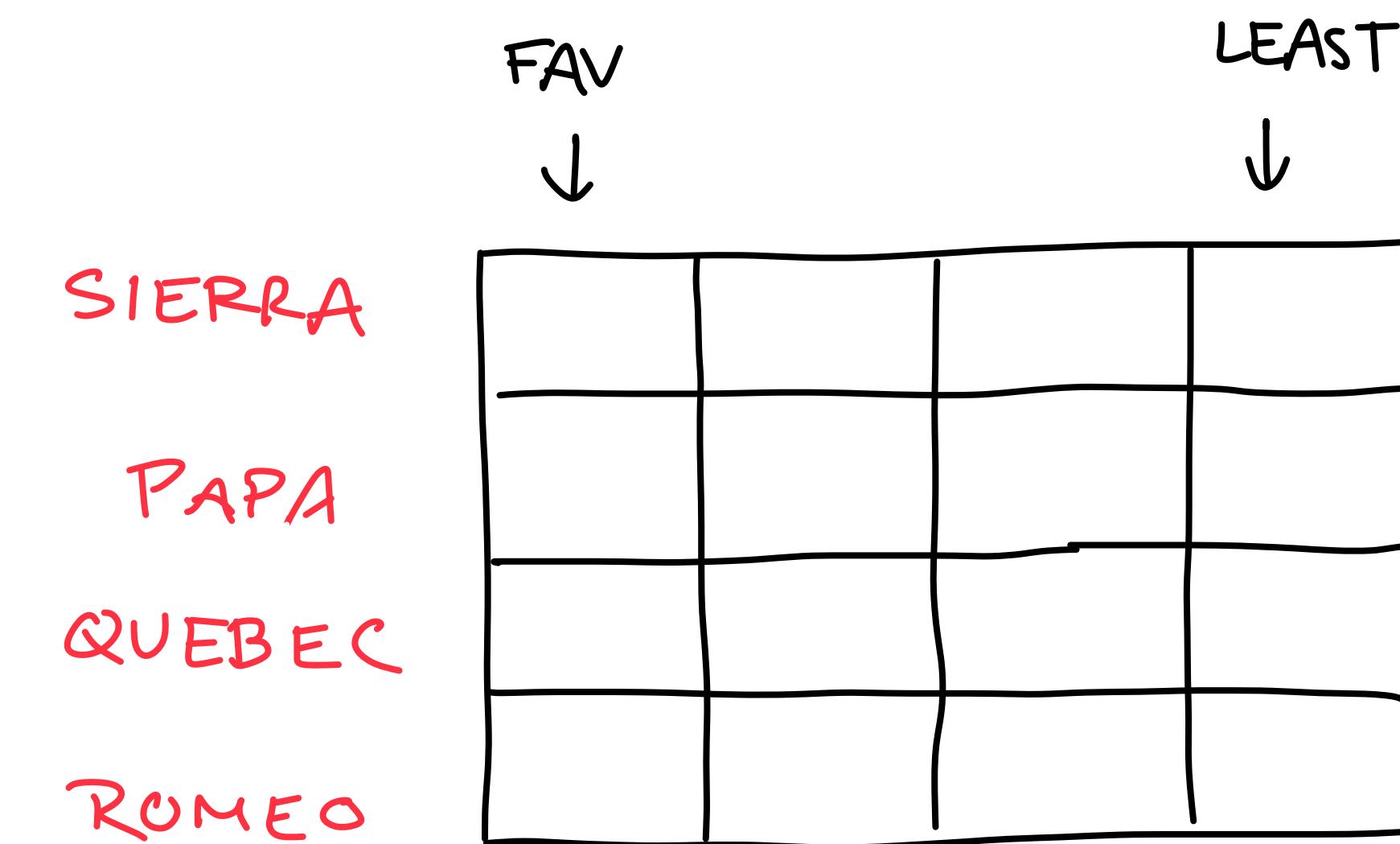
Does the ordering of the people matter?

- We arbitrarily assigned the proposers and receivers indexes 1 ... n .
- Would a different assignment have occurred under a different ordering?
- Multiple stable matchings can exist!



Does the ordering of the people matter?

- We arbitrarily assigned the proposers and receivers indexes 1 ... n .
- Would a different assignment have occurred under a different ordering?
- Multiple stable matchings can exist!



It's good to be a proposer

Proposer-optimality of Gale-Shapley

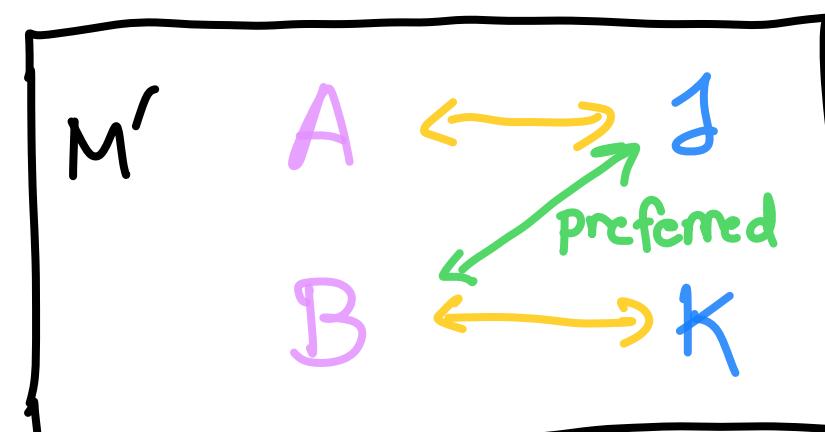
- **Proposer-optimal:** The proposer-optimal assignment is one in which every proposer p is matched with their best *valid* partner
- **Valid partnership:** p and r is a *valid partnership* if there exists some stable matching containing (p, r)
- **Lemma:** Gale-Shapley always produces a proposer-optimal stable matching.
 - **Corollary:** Gale-Shapley always produces the same assignment. I.e. ordering does not matter!
 - **Proof:** There is at most one proposer-optimal stable matching. Since Gale-Shapley always outputs a proposer-optimal stable matching, it always outputs the same assignment irrespective of permutation of players.

Proof of proposer-optimality

Gale Shapley

there is some stable matching M' containing (Alice, Jake).

- A proof by contradiction. Assume M is not proposer-optimal then there is some **first time in running GS** that a **proposer Alice** is rejected by a **valid partner Jake** since proposers propose in order of preference.
- Since **Jake** rejected **Alice**, let **Bob** be the partner **Jake** prefers: either (**Bob** was engaged to **Jake**) or (**Bob** replaced **Alice**). And in M' , let **Kevin** be the partner of **Bob**: (**Bob**, **Kevin**) is **stable**.
- Since **Jake** rejecting **Alice** is the **first** rejection by a **valid partner**, at that moment in the algorithm, **Kevin** cannot have rejected **Bob**. Only possibility, **Bob** hasn't proposed to **Kevin** yet.
 - So **Bob** prefers **Jake** to **Kevin**.
 - And, we said that **Jake** prefers **Bob** to **Alice**.
 - So (**Bob**, **Jake**) is unstable for M' . A contradiction to its stability of M' .



At this moment in time:

GS Alg : A J

Temp Matching : A J

B : J K

J : B A

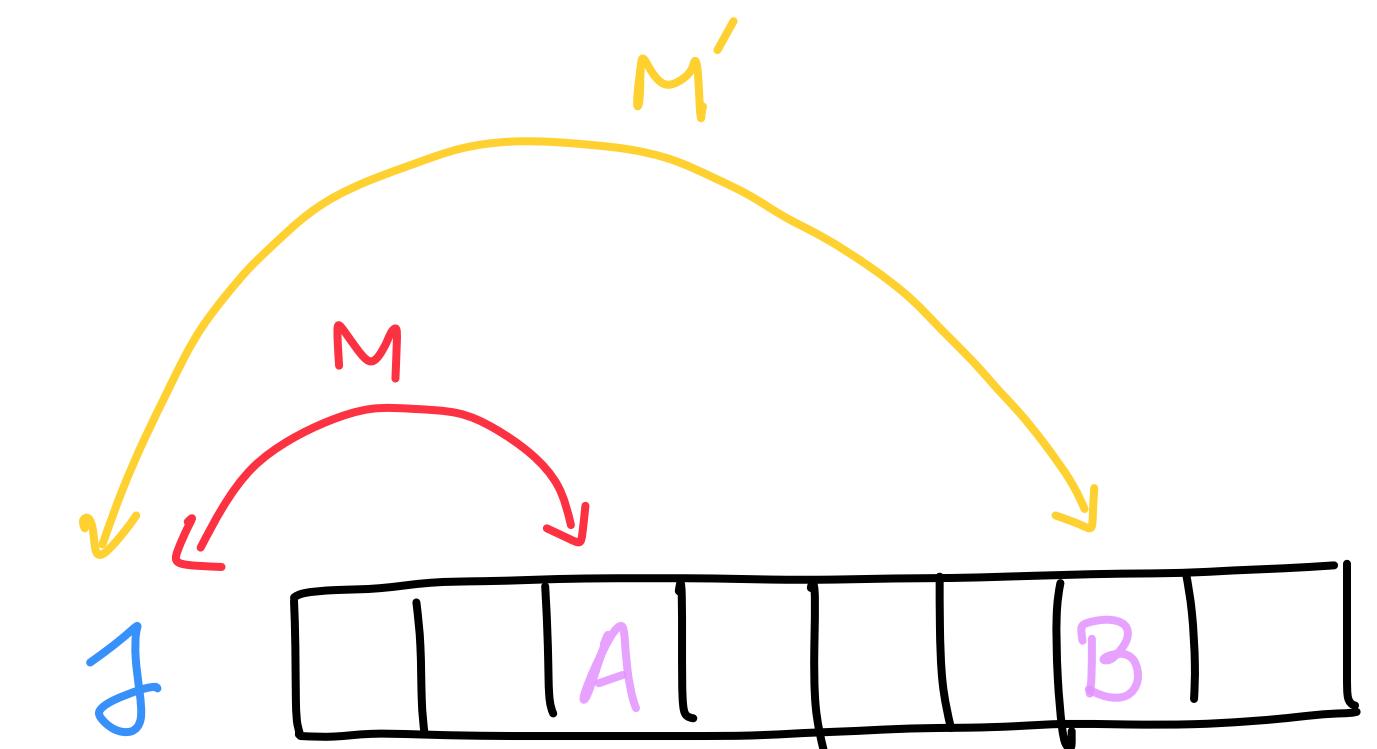
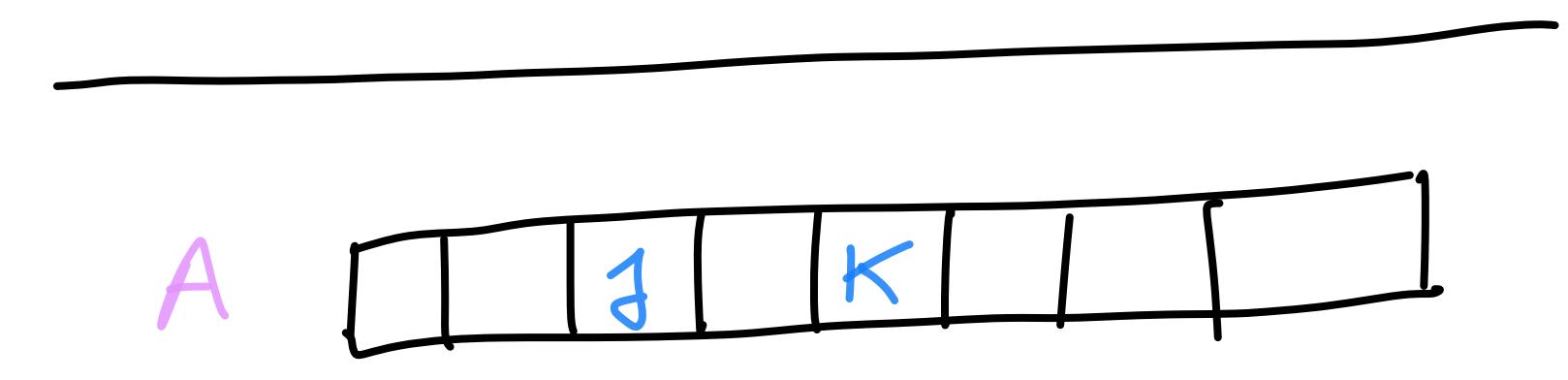
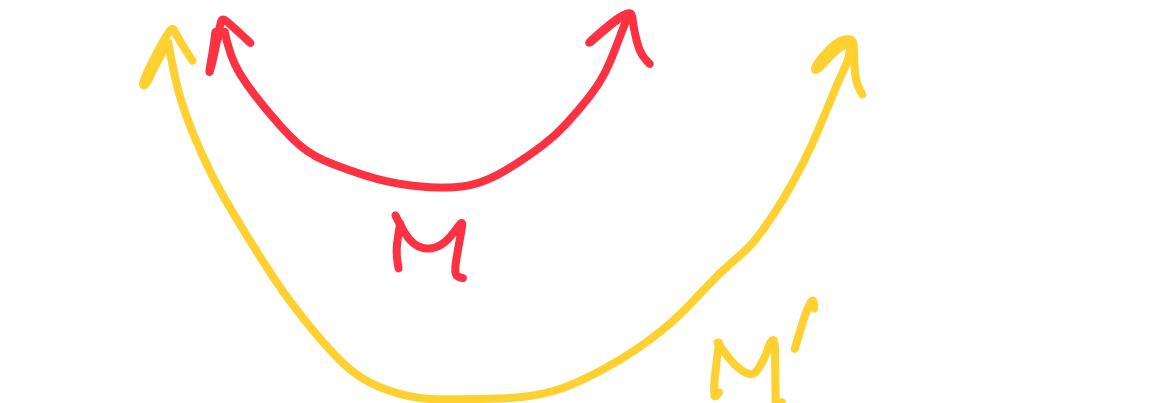
It's **bad** to be a receiver

Receiver-pessimality of Gale-Shapley

- **Receiver-pessimal:** The receiver-pessimal assignment is one in which *every* receiver r is matched with their **worst** *valid* partner
- **Valid partnership:** p and r is a **valid partnership** if there exists some stable matching containing (p, r)
- **Lemma:** Gale-Shapley always produces a receiver-pessimal stable matching.

Proof of receiver-pessimality

- A proof by contradiction. Assume M is not receiver-pessimal i.e. some receiver **Jake** is matched to **Alice** but **Alice** is not the worst **valid partner**
 - There exists a M' stable matching in which **Jake** is matched to **Bob** but **Bob** is **lower ranked** by **Jake** in M'
 - Let **Kevin** be the match of **Alice** in M'
 - Proposer-optimality of M gives that **Alice** prefers **Jake** to **Kevin**
 - $(\text{Alice}, \text{Jake})$ is unstable for M' , a contradiction.



Natural extensions

Example: Matching residents to hospitals

- Original form: proposers are hospitals and receivers are med. school residents
- Variations that make the problem different:
 - Some participants could declare some partners as unacceptable. (Rank = ∞).
 - Unequal number of proposers and receivers.
 - Participants can participate in more than one matching.
 - A different notion of “stability”.
 - Residents may want to perform “couples matching”.
- Many natural variants turn out to be **NP-complete**! A topic we will discuss in depth later in the course.

Actual implementation

- NRMP (National Resident Matching Program)
 - 23,000+ residents legally bound by the outcome
 - Pre-1995 NRMP had the hospitals as proposers (recall, proposer optimality)
 - Post-1995 has the hospitals as receivers (recall, receiver pessimality)
- Rural hospital dilemma
 - How to get residents to unpopular (often rural hospitals)?
 - Rural hospitals were often undersubscribed in matchings.

Meta-lessons from stable matching

- To design and analyze algorithms, isolate the underlying structure of the problem.
- Algorithms can have deep social ramifications that need to be understood. Algorithm design can have unintended consequences.
- Technique for study algorithms: Find the first time the “bad event” might happen in the running of the algorithm and prove it doesn’t occur.
- Variant of proof by contradiction.

Are you incentivized to lie?

- Should stable matching players lie about their preferences to get better outcomes?
 - By proposer optimality, a proposer has no incentive to lie.
 - Receivers are incentivized to lie.
- No mechanism can guarantee stable matchings and incentivize honesty. (Not proven in this class).

	1 st	2 nd	3 rd
X	A	B	C
Y	B	A	C
Z	A	B	C

Group P Preference List

	1 st	2 nd	3 rd
A	Y	X	Z
B	X	Y	Z
C	X	Y	Z

Group R True Preference List

	1 st	2 nd	3 rd
A	Y	Z	X
B	X	Y	Z
C	X	Y	Z

A pretends to prefer Z to X