Lecture 11

Stable matching Il and midterm review

Chinmay Nirkhe | CSE 421 Winter 2026

Initialize each person to be free

while (some p in P is free) ({
Choose some free p in P
r = 1st person on p's preference list to whom p has not yet proposed
if (r is free)

tentatively match (p,r) //p and r both engaged, no longer free

replace (p’,r) by (p,r) //p now engaged, p’ now free
else

r rejects p

C Lorrent- '\»c-lv\m.: ALPHA S TAPA B
BRAV 6 Y RUEBEC | ¢

C\—IARL)Z# R - ROMEC lr’D -

DelLTA t‘\/ﬁ SIERRA t/'l

mack all 'Frb?osals

J

A J

RUEB E.C

ALPH A

BRAV O

i
CHARLIE ROMEOS D A

SIERRA

DelLTA

no ’(\mc ?mfwsu‘s.&
Ala terminalen onel eenjone
Gale-Shapley walkthroug/ Aq /

5 Watehd .
~) 1 TAPA |
ALPHA S B .
et | a % RUEB E.C C Chack owt (/\an
F’S"ZAVD Jr Bl J?' Bl cw\]).LY 1—1’\.(, e \eve,
CHARLIE | (& ROMES | D prefince. mabix 15
DeLTA t'\’ﬁ SIERRA t A |

YV\CH"L AH ‘FTD‘FOSMS

LEAST
FAV
) LEAST J
FAV .
J * PAPA | B -
B Never CVen\
ALPHA RUEB E.C C . - Consiclored
"BRAV© ROMEO D A ‘J
CHARLIE SIERRA
DeLTA

no '(\“C—L ?mi)asu‘s ,

(Alj Terminaten ol C\-{‘\/afu—

W1 Watehed .

RUEB EC C - 5
BRAV o6 oren - ?
CHARLIE < eren
DelLTA

Initialize each person to be free
while (some p in P is free) ({
Choose some free p in P
r = 1st person on p's preference list to whom p has not yet proposed
if (r is free)
tentatively match (p,r) //p and r both engaged, no longer free

replace (p’,r) by (p,r) //p now engaged, p’ now free
else

r rejects p

C oorvrent- '\»H-v\m.: ALPHA S TAPA B
-+ BrRAve Y RUEBEC | ¢

1= CA,RD CHARUZ#’ & - ROMEO #7?') -
stable ¢ DeLTA t‘\/ﬁ SIERRA t/—I

LEAST FAV LEAST
L J v

’ TAPA

RUEB E.C C B

ROMEO "D A

SIERRA

Initialize each person to be free
while (some p in P is free) ({
Choose some free p in P
r = 1st person on p's preference list to whom p has not yet proposed
if (r is free)
tentatively match (p,r) //p and r both engaged, no longer free

replace (p’,r) by (p,r) //p now engaged, p’ now free
else

r rejects p

C oorvrent- '\»H-v\m.: ALPHA S TAPA B
-+ BrRAve Y RUEBEC | ¢

1= CA,QD CHARUZ#’ & - ROMEO #7?') -
stable ¢ DeLTA t‘\/ﬁ SIERRA t/—I

FAV LEAST FAV LEAST
J . U J \’

TAPA
RUEB E C C B

ALPH A

BRAV O

CHARLIE ROMEOS
S IERRA

DelLTA

Initialize each person to be free
while (some p in P is free) ({
Choose some free p in P
r = 1st person on p's preference list to whom p has not yet proposed
if (r is free)
tentatively match (p,r) //p and r both engaged, no longer free

replace (p’,r) by (p,r) //p now engaged, p’ now free
else

r rejects p

C oorvrent- '\»H-v\m.: ALPHA S TAPA B
-+ BrRAve Y RUEBEC | ¢

Te (AP) craene @ | Romes [
stable ¢ DeLTA t‘\/ﬁ SIERRA t/—I

FAV LEAST
J \!

FAV
J

TAPA
RUEB E C C B

ALPH A

BRAV O

i
CHARLIEZ ROMEOS D A

SIERRA

DelLTA

The propose and reject algorithm

Proof of termination

Observation 1: Every p € P proposes in decreases order of preference.
Observation 2: No proposal (p, r) is ever repeated.

Conclusion: Since there are only n’ pairs (p, r), algorithm terminates after
< n” iterations of the while loop.

Initialize each person to be free
while (some p in P is free) {
Choose some free p in P

/c\ . . P(r]' I r = 1st person on p's preference list to whom p has not yet proposed

nd indeed, it can take this long (e i oo

f " | | tentatively match (p,r) //p and r both engaged, no longer free
Or many Slmp e examp eS' else if (r prefers p to current tentative match p’)

replace (p’,r) by (p,x) //p now engaged, p’ now free
else
r rejects p

The propose and reject algorithm

Proof of termination

This example takes

n(n— 1)+ 1 iterations. E —

Preference Profile for P Preference Profile for R

Initialize each person to be free
while (some p in P is free) {
Choose some free p in P

And |ndeed, |'t Can take thls Iong r = lst. person on p's preference list to whom p has not yet proposed

if (r is free)
for many Simple exampIeS. tentatively match (p,r) //p and r both engaged, no longer free
else if (r prefers p to current tentative match p’)
replace (p’,r) by (p,x) //p now engaged, p’ now free
else
r rejects p

The propose and reject algorithm

Proof of perfection

Observation 3: One a receiver r is matched, they are never freed up. If
anything, w.r.t. their preferences, they only ever trade up.

Claim: By the time the algorithm terminates, everyone gets matched.

Proof:
« Since | P| = |R| = n, if no receiver is free, then everyone is matched.

« If some p € P proposes to their last choice receiver r,, then all previous

receivers 1 must have already been matched. Then (p, r,) matching is
added and no receiver is free.

10

The propose and reject algorithm
Proof of stability

Claim: The final matching M of the algorithm does not have unstable pairs
Proof: Consider a pair (p,) that is not matched by M: M(p) # r.

« Case 1: During the entire algorithm run, p never proposed to r.

e Case 2: Or at some time, p proposed to .

11

The propose and reject algorithm

Proof of stability
Cone 4
Claim: The final matching M of the algorithm does not have |
unstable pairs F ; Fr"? l 1 (\ TM(ﬂ \]I:
ek
Proof: Consider a pair (p, r) that is not matched by M: s
M(p) #r.

‘cef} propes ,ol w*\\ e.vew\unY
-\.G"W\\I\O\'\'Qo\ t MLV\

» Case 1: During the entire algorithm run, p never proposed to r.

 Therefore, p prefers M(p) to r. So (p, r) is not unstable
w.r.t. M. HLP') IS —P,,._X\Cm) b r lm.[? ‘

» Case 2: Or at some time, p proposed to 7.

So not wasdble,
» Therefore, r prefers M(r) to p. So (p, r) is not unstable

w.r.t. M.

12

The propose and reject algorithm

Proof of stability
Cone 2 :
Claim: The final matching M of the algorithm does not have (| |
unstable pairs Fls F"'? l 1 (\ I Mp) & |
\ek i —
Proof: Consider a pair (p, r) that is not matched by M: s 2\
M(p) # r.

‘cef} Pm?“j‘j et | e.vew\unY
'\'Gl'm'u\oy\ﬁo\ t MLP\

» Case 1: During the entire algorithm run, p never proposed to r.

 Therefore, p prefers M(p) to r. So (p, r) is not unstable

w.r.t. M. gb[rwWas PW?C’XJLAZ) b\.[P,

» Case 2: Or at some time, p proposed to 7.

» Therefore, r prefers M(r) to p. So (p, r) is not unstable

w.r.t. M. - l’VM %7&&4 u‘)“ o ac\. M(f)
Se T Pm%a M) $o P

Bt r e,\/evxﬁa\\\k(fb\\w\-r.ol P WVE

13

The propose and reject algorithm

What have we learned?

. Proof of termination in 77 iterations. v/
» Proof of perfection: everyone gets matched. v/

» Proof of stability: the output matching is stable for all pairs. v/
 What have we not talked about?

e |s it fair? Is it better to be a proposer or a receiver? Does the first proposer or the last
proposer have it better?

* |s there a faster algorithm?

* How do we extend to 7 proposers and 7' receivers?

14

The history of the propose and reject algorithm

Gale and Shapley 1962

* The original paper was about 7 men and n women and a
heterosexual notion of marriage.

* Gale and Shapley’s algorithm defined the proposers as the
men and the receivers as the women.

* We will see next that the GS algorithm is proposer-optimal
but not receiver-optimal.

* For obvious reasons, we changed the notation.

* As originally stated, the GS algorithm favored being a man.
This social implication was not recognized for some time!

* |s fairness possible? In some cases, yes. But this is an active
area of research!

15

COLLEGE ADMISSIONS AND THE STABILITY OF MARRIAGE
D. GALE* Anp L. S. SHAPLEY, Brown University and the RAND Corporation

1. Introduction. The problem with which we shall be concerned relates to
the following typical situation: A college is considering a set of # applicants of

which it can admit a quota of only ¢. Having evaluated their qualifications, the
admissions office must decide which ones to admit. The procedure of offering
admission only to the ¢ best-qualified applicants will not generally be satisfac-
tory, for it cannot be assumed that all who are offered admission will accept.
Accordingly, in order for a college to receive g acceptances, it will generally have
to offer to admit more than g applicants. The problem of determining how many
and which ones to admit requires some rather involved guesswork. It may not
be known (a) whether a given applicant has also applied elsewhere; if this is
known it may not be known (b) how he ranks the colleges to which he has

Shapley winning the 2012 Economics
Nobel Prize (with Roth)

Implementing stable matching

* |Input length
.« N := 2n” words in length because 27 people X preference list of length 7.

A “word” hereis anumber € [n| = {1,2,...,n} . Takes |log, n| bits to represent.
+ Input length of 21 [log, 1] bits.

» Brute force algorithm: Try all ! possible matchings. Testing if a matching is stable
requires testing if each of the 7~ pairs (p, r) is stable.

o Gale-Shapley algorithm: takes < n” iterations. How long does each iteration take to
run?

16

Implementing Gale-Shapley in O(n?) time
Comparing

Initialize each person to be free

_ while (some p in P is free) {

 Input: 2 n X n representing the preferences of P and R: .
Choose some free p in P

r = 1st person on p's preference list to whom p has not yet proposed

':prefP[Fﬂ[j]fprefR[r]Lf] if (r is free)

tentatively match (p,r) //p and r both engaged, no longer free

 Assume the proposers and receivers are numbers 1,2,...,n Sles iF (r sEefems b e EnEEEE eoisiiee matan o)

replace (p’,r) by (p,r) //p now engaged, p’ now free

 Each preference array is a permutation of { 1,2,...,n} else

r rejects p

 Data structure for the matching:
 Maintain two arrays Mp|p| and My|r] denoting match of p and r
« Initialize both arrays to all 1, a symbol denoting that the match isn’t set

« If during the algorithm, (p, r) is matched, set Mp|p]| < r, Mp[r| < p

 Making proposals:
« Maintain a queue Q of all the free proposers. Initially O contains all n proposers.

« Maintain an array count| p] which counts how many proposals p has made so far. Initially all entries are 0.

17

Implementing Gale-Shapley in O(n?) time
Rejecting & accepting proposals

Initialize each person to be free
while (some p in P is free) {

« How do we decide efficiently if receiver Choose some free p in ?
,’? if=(]];sti:>e;'rs:en) on p's preference list to whom p has not yet proposed
r prefers prOpcser p to propcser p) tentatively match (p,r) //p and r both engaged, no longer free

else if (r prefers p to current tentative match p’)

° Na|Ve|y WOUId take O(n) querles .tO elsereplace (0’ r) by (p,r) //p now engaged, p’ now free
read through prefy[r]| -] to find both)

p and p’

r rejects p

18

Gale-Shapley walkthrough

Covrent pectron: ALPHA Rﬁ_ AP/ Fﬁ_
\ RBRAV O Q RUEBEC | B
_ Jr _
C\—IARUZ% - ROMEO A
DelLTA tl’—' SIERRA t 4
MQ(’L AH ‘FW‘FOS&‘S O
J J, b
TAPA |
ALPHA ‘
RUEB E C B 3
BRAV O B 3
ROMEO
CHARLIE Q
SIERRA
DelLTA

19

Gale-Shapley walkthrough

Covrent pectron: ALPHA Rﬁ_ AP/ Fﬁ_
\ BRAV O Q RUEBEC | B
_ Jr _
C\—IARUZ% - ROMEO A
DelLTA tl’—' SIERRA t 4
MQ(’L AH ‘FW‘FOS&‘S O
J J, b
TAPA |
ALPH A ‘
RUEB E.C C - B)
BRAV O B 3
ROMEO
CHARLIEZ Q
SIERRA
DeLTA

20

Implementing Gale-Shapley in O(n?) time
Rejecting & accepting proposals

Initialize each person to be free
while (some p in P is free) {

 How do we decide efficiently if receiver r prefers Choose some free p in P
/ r = 1st person on p's preference list to whom p has not yet proposed
proposer p to proposer p? ST

tentatively match (p,r) //p and r both engaged, no longer free
else if (r prefers p to current tentative match p’)

¢ Nalvely WOUId take O(I/l) quel’leS tO I’ead thrOugh replace (p’,r) by (p,r) //p now engaged, p’ now free

else

pretp[r][-] to find both p and p’ : rejects p

* |nstead, precompute the inverse list of

preferences: invprefp[r][p]. .

» Property: j = invpret,|r][p] if and only if

p = prefylrllj]. [N R CH TN CR

 Jakes O(nz) time to precompute inverse list. Once
computed, each comparison takes time O(1).

for i

invpref[r] [pref[r] [1]] = 1

21

Implementing Gale-Shapley in O(n?) time

* When a proposer p becomes free, p starts proposing to new receivers
starting from count|p|. All previous receivers have been proposed to in
previous steps of the algorithm. Update count|p| as rejections occur.

« Combined with the inverse list pre computation, we achieve that every
proposer-receiver pair (p, r) is considered in O(1) computational steps and
there are a total n° possible pairs.

e This completes the entire time complexity argument of O(nz).

22

Does the ordering of the people matter?

» We arbitrarily assigned the proposers and receivers indexes 1...n.
* Would a different assignment have occurred under a different ordering?

* Multiple stable matchings can exist!

FAV LEAST FAV LEAST
J L J v
ALP LA 1 VAPA
AV] 4 QUEBEC) 4
CHARLIE ROMEOS
DelTA SIERRA

23

Does the ordering of the people matter?

» We arbitrarily assigned the proposers and receivers indexes 1...n.
* Would a different assignment have occurred under a different ordering?

* Multiple stable matchings can exist!

d J \ b
ﬂ SIERRA
ALPH A
CHARLIE TAPA B 3
DelLTA ROMEOS

24

It’s good to be a proposer
Proposer-optimality of Gale-Shapley

 Proposer-optimal: The proposer-optimal assignment is one in which every proposer p Is
matched with their best valid partner

« Valid partnership: p and r is a valid partnership if there exists some stable matching
containing (p, r)

 Lemma: Gale-Shapley always produces a proposer-optimal stable matching.

* Corollary: Gale-Shapley always produces the same assignment. |.e. ordering does not
matter!

* Proof: There is at most one proposer-optimal stable matching. Since Gale-Shapley
always outputs a proposer-optimal stable matching, it always outputs the same
assignment irrespective of permutation of players.

25

Proof of proposer-optimality

there is some stable matching M’ containing (Alice, Jake).
GAle 9“\’“7&
A proof by contradiction. Assume M is not proposer-optimal thel there is A"’ This Momed i e, :
some first time in running GS that a proposer Alice Is rejected by a valid

partner Jake since proposers propose in order of preference. GS Al 9

» Since Jake rejected Alice, let Bob be the partner Jake prefers: either (Bob ﬁw\F An

was engaged to Jake) or (Bob replaced Alice). And in M’, let Kevin be the
partner of Bob: (Bob, Kevin) is stable.

e Since Jake rejecting Alice is the first rejection by a valid partner, at that \ | \ ALQ \ ‘ ’ (J | —\
moment in the algorithm, Kevin cannot have rejected Bob. Only ‘
possibility, Bob hasn’t proposed to Kevin yet.

S

[CTET T [(kT 1|

 So Bob prefers Jake to Kevin.

 And, we said that Jake prefers Bob to Alice. .

« So (Bob, Jake) is unstable for M". A contradiction to its stability of M.

[4

M
K : | ~

It’s bad to be a recelver

Receiver-pessimality of Gale-Shapley

 Recelver-pessimal: The receiver-pessimal assignment is one in which every
recelver r iIs matched with their worst valid partner

o Valid partnership: p and r is a valid partnership if there exists some stable
matching containing (p, r)

 Lemma: Gale-Shapley always produces a receiver-pessimal stable matching.

27

Proof of receiver-pessimality

» A proof by contradiction. Assume M is not receiver-
pessimal I.e. some receiver Jake is matched to Alice but
Alice Is not the worst valid partner

» There exists a M’ stable matching in which Jake is
matched to Bob but Bob is lower ranked by Jake in M’

e Let Kevin be the match of Alice in M’

* Proposer-optimality of M gives that Alice prefers Jake to
Kevin

 (Alice, Jake) is unstable for M’, a contradiction.

28

/7)
HEN

||

R EREE
\Mf

Natural extensions

Example: Matching residents to hospitals

* QOriginal form: proposers are hospitals and receivers are med. school residents

» Variations that make the problem different:

e Some participants could declare some partners as unacceptable. (Rank = o0).
 Unequal number of proposers and receivers.

* Participants can participate in more than one matching.

» A different notion of “stability”.

* Residents may want to perform “couples matching”.

« Many natural variants turn out to be NP-complete! A topic we will discuss in depth later in the
course.

29

Actual implementation

* NRMP (National Resident Matching Program)
o 23,000+ residents legally bound by the outcome
* Pre-1995 NRMP had the hospitals as proposers (recall, proposer optimality)
 Post-1995 has the hospitals as receivers (recall, receiver pessimality)
* Rural hospital dilemma
 How to get residents to unpopular (often rural hospitals)?

* Rural hospitals were often undersubscribed in matchings.

30

Meta-lessons from stable matching

* Jo design and analyze algorithms, isolate the underlying structure of the
problem.

* Algorithms can have deep social ramifications that need to be understood.
Algorithm design can have unintended consequences.

* Technique for study algorithms: Find the first time the “bad event” might
happen in the running of the algorithm and prove it doesn’t occur.

» Variant of proof by contradiction.

31

Are you incentivized to lie?

e Should stable matching players lie about their preferences to get better outcomes?

By proposer optimality, a proposer has no incentive to lie.

e Recelvers are incentivized to lie.

 No mechanism can guarantee stable matchings and incentivize honesty. (Not proven

in this class).

A B
B A
A B

Group P Preference List

C
C
C

Y X |y
- T
< v O

Group R True Preference List

x

32

Y

A pretends to prefer Z to X

