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Lecture 11
Stable matching II and midterm review
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Gale-Shapley walkthrough
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Initialize each person to be free. 
while (some p in P is free) { 
    Choose some free p in P 
    r = 1st person on p's preference list to whom p has not yet proposed 
    if (r is free) 
        tentatively match (p,r)   //p and r both engaged, no longer free 

    else if (r prefers p to current tentative match p’) 
        replace (p’,r) by (p,r)   //p now engaged, p’ now free 
    else 
        r rejects p 
}



Gale-Shapley walkthrough

3



Gale-Shapley walkthrough

4



Gale-Shapley walkthrough

5

Initialize each person to be free. 
while (some p in P is free) { 
    Choose some free p in P 
    r = 1st person on p's preference list to whom p has not yet proposed 
    if (r is free) 
        tentatively match (p,r)   //p and r both engaged, no longer free 

    else if (r prefers p to current tentative match p’) 
        replace (p’,r) by (p,r)   //p now engaged, p’ now free 
    else 
        r rejects p 
}



Gale-Shapley walkthrough

6

Initialize each person to be free. 
while (some p in P is free) { 
    Choose some free p in P 
    r = 1st person on p's preference list to whom p has not yet proposed 
    if (r is free) 
        tentatively match (p,r)   //p and r both engaged, no longer free 

    else if (r prefers p to current tentative match p’) 
        replace (p’,r) by (p,r)   //p now engaged, p’ now free 
    else 
        r rejects p 
}



Gale-Shapley walkthrough

7

Initialize each person to be free. 
while (some p in P is free) { 
    Choose some free p in P 
    r = 1st person on p's preference list to whom p has not yet proposed 
    if (r is free) 
        tentatively match (p,r)   //p and r both engaged, no longer free 

    else if (r prefers p to current tentative match p’) 
        replace (p’,r) by (p,r)   //p now engaged, p’ now free 
    else 
        r rejects p 
}



The propose and reject algorithm
Proof of termination

Observation 1: Every  proposes in decreases order of preference.


Observation 2: No proposal  is ever repeated.


Conclusion: Since there are only  pairs , algorithm terminates after 
 iterations of the while loop.


p ∈ P

(p, r)

n2 (p, r)
≤ n2
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And indeed, it can take this long 
for many simple examples.
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And indeed, it can take this long 
for many simple examples.

This example takes 
 iterations.n(n − 1) + 1



The propose and reject algorithm
Proof of perfection

Observation 3: One a receiver  is matched, they are never freed up. If 
anything, w.r.t. their preferences, they only ever trade up.


Claim: By the time the algorithm terminates, everyone gets matched.


Proof:


• Since , if no receiver is free, then everyone is matched.


• If some  proposes to their last choice receiver , then all previous 
receivers  must have already been matched. Then  matching is 
added and no receiver is free.

r

|P | = |R | = n

p ∈ P rn
r (p, rn)
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The propose and reject algorithm
Proof of stability

Claim: The final matching  of the algorithm does not have unstable pairs


Proof: Consider a pair  that is not matched by : .


• Case 1: During the entire algorithm run,  never proposed to .


• Case 2: Or at some time,  proposed to .


M

(p, r) M M(p) ≠ r

p r

p r
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The propose and reject algorithm
What have we learned?

• Proof of termination in  iterations. 


• Proof of perfection: everyone gets matched. 


• Proof of stability: the output matching is stable for all pairs. 


• What have we not talked about?


• Is it fair? Is it better to be a proposer or a receiver? Does the first proposer or the last 
proposer have it better?


• Is there a faster algorithm? 


• How do we extend to  proposers and  receivers?

n2 ✓

✓

✓

n n′￼
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The history of the propose and reject algorithm
Gale and Shapley 1962 

• The original paper was about  men and  women and a 
heterosexual notion of marriage.


• Gale and Shapley’s algorithm defined the proposers as the 
men and the receivers as the women.


• We will see next that the GS algorithm is proposer-optimal 
but not receiver-optimal.


• For obvious reasons, we changed the notation.


• As originally stated, the GS algorithm favored being a man. 
This social implication was not recognized for some time!


• Is fairness possible? In some cases, yes. But this is an active 
area of research!

n n
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Shapley winning the 2012 Economics 
Nobel Prize (with Roth)



Implementing stable matching

• Input length


•  words in length because   people  preference list of length . 


• A “word” here is a number  Takes  bits to represent.


• Input length of  bits.


• Brute force algorithm: Try all  possible matchings. Testing if a matching is stable 
requires testing if each of the  pairs  is stable.


• Gale-Shapley algorithm: takes  iterations. How long does each iteration take to 
run?

N := 2n2 2n × n

∈ [n] = {1,2,…, n} . ⌈log2 n⌉

2n2⌈log2 n⌉

n!
n2 (p, r)

≤ n2
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Implementing Gale-Shapley in  timeO(n2)
Comparing 

• Input: 2  representing the preferences of  and :


• 


• Assume the proposers and receivers are numbers 


• Each preference array is a permutation of  

• Data structure for the matching:


• Maintain two arrays  and  denoting match of  and 


• Initialize both arrays to all , a symbol denoting that the match isn’t set


• If during the algorithm,  is matched, set  

• Making proposals:


• Maintain a queue  of all the free proposers. Initially  contains all  proposers.


• Maintain an array  which counts how many proposals  has made so far. Initially all entries are 0.

n × n P R

prefP[p][ j], prefR[r][ j]

1,2,…, n

{1,2,…, n}

MP[p] MR[r] p r

⊥

(p, r) MP[p] ← r, MR[r] ← p

Q Q n

count[p] p
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Initialize each person to be free. 
while (some p in P is free) { 
    Choose some free p in P 
    r = 1st person on p's preference list to whom p has not yet proposed 
    if (r is free) 
        tentatively match (p,r)   //p and r both engaged, no longer free 
    else if (r prefers p to current tentative match p’) 
        replace (p’,r) by (p,r)   //p now engaged, p’ now free 
    else 
        r rejects p 
}



Implementing Gale-Shapley in  timeO(n2)
Rejecting & accepting proposals

• How do we decide efficiently if receiver 
 prefers proposer  to proposer ? 


• Naïvely would take  queries to 
read through  to find both 

 and 

r p p′￼

O(n)
prefR[r][ ⋅ ]

p p′￼
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Implementing Gale-Shapley in  timeO(n2)
Rejecting & accepting proposals

• How do we decide efficiently if receiver  prefers 
proposer  to proposer ? 


• Naïvely would take  queries to read through 
 to find both  and 


• Instead, precompute the inverse list of 
preferences: .


• Property:  if and only if 
.


• Takes  time to precompute inverse list. Once 
computed, each comparison takes time . 

r
p p′￼

O(n)
prefR[r][ ⋅ ] p p′￼

invprefR[r][p]

j = invprefR[r][p]
p = prefR[r][ j]

O(n2)
O(1)
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Initialize each person to be free. 
while (some p in P is free) { 
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   invpref[r][pref[r][i]] = i



Implementing Gale-Shapley in  timeO(n2)

• When a proposer  becomes free,  starts proposing to new receivers 
starting from . All previous receivers have been proposed to in 
previous steps of the algorithm. Update  as rejections occur.


• Combined with the inverse list pre computation, we achieve that every 
proposer-receiver pair  is considered in  computational steps and 
there are a total  possible pairs.


• This completes the entire time complexity argument of .

p p
count[p]

count[p]

(p, r) O(1)
n2

O(n2)
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Does the ordering of the people matter?

• We arbitrarily assigned the proposers and receivers indexes .


• Would a different assignment have occurred under a different ordering?


• Multiple stable matchings can exist!

1…n
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It’s good to be a proposer
Proposer-optimality of Gale-Shapley

• Proposer-optimal: The proposer-optimal assignment is one in which every proposer  is 
matched with their best valid partner


• Valid partnership:  and  is a valid partnership if there exists some stable matching 
containing 


• Lemma: Gale-Shapley always produces a proposer-optimal stable matching.


• Corollary: Gale-Shapley always produces the same assignment. I.e. ordering does not 
matter!


• Proof: There is at most one proposer-optimal stable matching. Since Gale-Shapley 
always outputs a proposer-optimal stable matching, it always outputs the same 
assignment irrespective of permutation of players.

p

p r
(p, r)

25



Proof of proposer-optimality

• A proof by contradiction. Assume  is not proposer-optimal then there is 
some first time in running GS that a proposer Alice is rejected by a valid 
partner Jake since proposers propose in order of preference. 


• Since Jake rejected Alice, let Bob be the partner Jake prefers: either (Bob 
was engaged to Jake) or (Bob replaced Alice). And in , let Kevin be the 
partner of Bob: (Bob, Kevin) is stable. 


• Since Jake rejecting Alice is the first rejection by a valid partner, at that 
moment in the algorithm, Kevin cannot have rejected Bob. Only 
possibility, Bob hasn’t proposed to Kevin yet.


• So Bob prefers Jake to Kevin. 


• And, we said that Jake prefers Bob to Alice.


• So (Bob, Jake) is unstable for . A contradiction to its stability of . 

M

M′￼

M′￼ M′￼
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there is some stable matching  containing (Alice, Jake).M′￼



It’s bad to be a receiver 
Receiver-pessimality of Gale-Shapley

• Receiver-pessimal: The receiver-pessimal assignment is one in which every 
receiver  is matched with their worst valid partner


• Valid partnership:  and  is a valid partnership if there exists some stable 
matching containing 


• Lemma: Gale-Shapley always produces a receiver-pessimal stable matching.

r

p r
(p, r)
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Proof of receiver-pessimality

• A proof by contradiction. Assume  is not receiver-
pessimal i.e. some receiver Jake is matched to Alice but 
Alice is not the worst valid partner


• There exists a  stable matching in which Jake is 
matched to Bob but Bob is lower ranked by Jake in 


• Let Kevin be the match of Alice in 


• Proposer-optimality of  gives that Alice prefers Jake to 
Kevin


• (Alice, Jake) is unstable for , a contradiction.

M

M′￼

M′￼

M′￼

M

M′￼
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Natural extensions
Example: Matching residents to hospitals

• Original form: proposers are hospitals and receivers are med. school residents


• Variations that make the problem different:


• Some participants could declare some partners as unacceptable. (Rank = ).


• Unequal number of proposers and receivers.


• Participants can participate in more than one matching.


• A different notion of “stability”.


• Residents may want to perform “couples matching”.


• Many natural variants turn out to be -complete! A topic we will discuss in depth later in the 
course.

∞

𝖭𝖯
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Actual implementation

• NRMP (National Resident Matching Program)


• 23,000+ residents legally bound by the outcome


• Pre-1995 NRMP had the hospitals as proposers (recall, proposer optimality)


• Post-1995 has the hospitals as receivers (recall, receiver pessimality)


• Rural hospital dilemma


• How to get residents to unpopular (often rural hospitals)?


• Rural hospitals were often undersubscribed in matchings.
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Meta-lessons from stable matching

• To design and analyze algorithms, isolate the underlying structure of the 
problem.


• Algorithms can have deep social ramifications that need to be understood. 
Algorithm design can have unintended consequences.


• Technique for study algorithms: Find the first time the “bad event” might 
happen in the running of the algorithm and prove it doesn’t occur.


• Variant of proof by contradiction.
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Are you incentivized to lie?

• Should stable matching players lie about their preferences to get better outcomes?


• By proposer optimality, a proposer has no incentive to lie.


• Receivers are incentivized to lie.


• No mechanism can guarantee stable matchings and incentivize honesty. (Not proven 
in this class).
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