
Chinmay Nirkhe | CSE 421 Winter 2026

Lecture 11
Stable matching II and midterm review

1

Gale-Shapley walkthrough

2

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

3

Gale-Shapley walkthrough

4

Gale-Shapley walkthrough

5

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

6

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

7

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

The propose and reject algorithm
Proof of termination

Observation 1: Every proposes in decreases order of preference.

Observation 2: No proposal is ever repeated.

Conclusion: Since there are only pairs , algorithm terminates after
 iterations of the while loop.

p ∈ P

(p, r)

n2 (p, r)
≤ n2

8

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free
 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

And indeed, it can take this long 
for many simple examples.

The propose and reject algorithm
Proof of termination

9

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free
 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

W

V

1st

A

B

2nd

C

D

3rd

C

B

AZ

Y

X C

D

A

B

B

A

D

C

4th

E

E

5th

A

D

E

E

D

C

B

E

B

A

1st

W

X

2nd

Y

Z

3rd

Y

X

VE

D

C Y

Z

V

W

W

V

Z

X

4th

V

W

5th

V

Z

X

Y

Y

X

W

Z

Preference Profile for P Preference Profile for R

And indeed, it can take this long 
for many simple examples.

This example takes
 iterations.n(n − 1) + 1

The propose and reject algorithm
Proof of perfection

Observation 3: One a receiver is matched, they are never freed up. If
anything, w.r.t. their preferences, they only ever trade up.

Claim: By the time the algorithm terminates, everyone gets matched.

Proof:

• Since , if no receiver is free, then everyone is matched.

• If some proposes to their last choice receiver , then all previous
receivers must have already been matched. Then matching is
added and no receiver is free.

r

|P | = |R | = n

p ∈ P rn
r (p, rn)

10

The propose and reject algorithm
Proof of stability

Claim: The final matching of the algorithm does not have unstable pairs

Proof: Consider a pair that is not matched by : .

• Case 1: During the entire algorithm run, never proposed to .

• Case 2: Or at some time, proposed to .

M

(p, r) M M(p) ≠ r

p r

p r

11

The propose and reject algorithm
Proof of stability

Claim: The final matching of the algorithm does not have
unstable pairs

Proof: Consider a pair that is not matched by :
.

• Case 1: During the entire algorithm run, never proposed to .

• Therefore, prefers to . So is not unstable
w.r.t. .

• Case 2: Or at some time, proposed to .

• Therefore, prefers to . So is not unstable
w.r.t. .

M

(p, r) M
M(p) ≠ r

p r

p M(p) r (p, r)
M

p r

r M(r) p (p, r)
M

12

The propose and reject algorithm
Proof of stability

Claim: The final matching of the algorithm does not have
unstable pairs

Proof: Consider a pair that is not matched by :
.

• Case 1: During the entire algorithm run, never proposed to .

• Therefore, prefers to . So is not unstable
w.r.t. .

• Case 2: Or at some time, proposed to .

• Therefore, prefers to . So is not unstable
w.r.t. .

M

(p, r) M
M(p) ≠ r

p r

p M(p) r (p, r)
M

p r

r M(r) p (p, r)
M

13

The propose and reject algorithm
What have we learned?

• Proof of termination in iterations.

• Proof of perfection: everyone gets matched.

• Proof of stability: the output matching is stable for all pairs.

• What have we not talked about?

• Is it fair? Is it better to be a proposer or a receiver? Does the first proposer or the last
proposer have it better?

• Is there a faster algorithm?

• How do we extend to proposers and receivers?

n2 ✓

✓

✓

n n′￼

14

The history of the propose and reject algorithm
Gale and Shapley 1962

• The original paper was about men and women and a
heterosexual notion of marriage.

• Gale and Shapley’s algorithm defined the proposers as the
men and the receivers as the women.

• We will see next that the GS algorithm is proposer-optimal
but not receiver-optimal.

• For obvious reasons, we changed the notation.

• As originally stated, the GS algorithm favored being a man.
This social implication was not recognized for some time!

• Is fairness possible? In some cases, yes. But this is an active
area of research!

n n

15

Shapley winning the 2012 Economics
Nobel Prize (with Roth)

Implementing stable matching

• Input length

• words in length because people preference list of length .

• A “word” here is a number Takes bits to represent.

• Input length of bits.

• Brute force algorithm: Try all possible matchings. Testing if a matching is stable
requires testing if each of the pairs is stable.

• Gale-Shapley algorithm: takes iterations. How long does each iteration take to
run?

N := 2n2 2n × n

∈ [n] = {1,2,…, n} . ⌈log2 n⌉

2n2⌈log2 n⌉

n!
n2 (p, r)

≤ n2

16

Implementing Gale-Shapley in timeO(n2)
Comparing

• Input: 2 representing the preferences of and :

•

• Assume the proposers and receivers are numbers

• Each preference array is a permutation of  

• Data structure for the matching:

• Maintain two arrays and denoting match of and

• Initialize both arrays to all , a symbol denoting that the match isn’t set

• If during the algorithm, is matched, set  

• Making proposals:

• Maintain a queue of all the free proposers. Initially contains all proposers.

• Maintain an array which counts how many proposals has made so far. Initially all entries are 0.

n × n P R

prefP[p][j], prefR[r][j]

1,2,…, n

{1,2,…, n}

MP[p] MR[r] p r

⊥

(p, r) MP[p] ← r, MR[r] ← p

Q Q n

count[p] p

17

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free
 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Implementing Gale-Shapley in timeO(n2)
Rejecting & accepting proposals

• How do we decide efficiently if receiver
 prefers proposer to proposer ?

• Naïvely would take queries to
read through to find both

 and

r p p′￼

O(n)
prefR[r][⋅]

p p′￼

18

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free
 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

19

Gale-Shapley walkthrough

20

Implementing Gale-Shapley in timeO(n2)
Rejecting & accepting proposals

• How do we decide efficiently if receiver prefers
proposer to proposer ?

• Naïvely would take queries to read through
 to find both and

• Instead, precompute the inverse list of
preferences: .

• Property: if and only if
.

• Takes time to precompute inverse list. Once
computed, each comparison takes time .

r
p p′￼

O(n)
prefR[r][⋅] p p′￼

invprefR[r][p]

j = invprefR[r][p]
p = prefR[r][j]

O(n2)
O(1)

21

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free
 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

pref

1st

8

2nd

7

3rd

3

4th

4

5th

1 5 26

6th 7th 8th𝒓

inverse 4th 2nd8th 6th5th 7th 1st3rd

1 2 3 4 5 6 7 8𝒓

for each i

 invpref[r][pref[r][i]] = i

Implementing Gale-Shapley in timeO(n2)

• When a proposer becomes free, starts proposing to new receivers
starting from . All previous receivers have been proposed to in
previous steps of the algorithm. Update as rejections occur.

• Combined with the inverse list pre computation, we achieve that every
proposer-receiver pair is considered in computational steps and
there are a total possible pairs.

• This completes the entire time complexity argument of .

p p
count[p]

count[p]

(p, r) O(1)
n2

O(n2)

22

Does the ordering of the people matter?

• We arbitrarily assigned the proposers and receivers indexes .

• Would a different assignment have occurred under a different ordering?

• Multiple stable matchings can exist!

1…n

23

Does the ordering of the people matter?

• We arbitrarily assigned the proposers and receivers indexes .

• Would a different assignment have occurred under a different ordering?

• Multiple stable matchings can exist!

1…n

24

It’s good to be a proposer
Proposer-optimality of Gale-Shapley

• Proposer-optimal: The proposer-optimal assignment is one in which every proposer is
matched with their best valid partner

• Valid partnership: and is a valid partnership if there exists some stable matching
containing

• Lemma: Gale-Shapley always produces a proposer-optimal stable matching.

• Corollary: Gale-Shapley always produces the same assignment. I.e. ordering does not
matter!

• Proof: There is at most one proposer-optimal stable matching. Since Gale-Shapley
always outputs a proposer-optimal stable matching, it always outputs the same
assignment irrespective of permutation of players.

p

p r
(p, r)

25

Proof of proposer-optimality

• A proof by contradiction. Assume is not proposer-optimal then there is
some first time in running GS that a proposer Alice is rejected by a valid
partner Jake since proposers propose in order of preference.

• Since Jake rejected Alice, let Bob be the partner Jake prefers: either (Bob
was engaged to Jake) or (Bob replaced Alice). And in , let Kevin be the
partner of Bob: (Bob, Kevin) is stable.

• Since Jake rejecting Alice is the first rejection by a valid partner, at that
moment in the algorithm, Kevin cannot have rejected Bob. Only
possibility, Bob hasn’t proposed to Kevin yet.

• So Bob prefers Jake to Kevin.

• And, we said that Jake prefers Bob to Alice.

• So (Bob, Jake) is unstable for . A contradiction to its stability of .

M

M′￼

M′￼ M′￼

26

there is some stable matching containing (Alice, Jake).M′￼

It’s bad to be a receiver
Receiver-pessimality of Gale-Shapley

• Receiver-pessimal: The receiver-pessimal assignment is one in which every
receiver is matched with their worst valid partner

• Valid partnership: and is a valid partnership if there exists some stable
matching containing

• Lemma: Gale-Shapley always produces a receiver-pessimal stable matching.

r

p r
(p, r)

27

Proof of receiver-pessimality

• A proof by contradiction. Assume is not receiver-
pessimal i.e. some receiver Jake is matched to Alice but
Alice is not the worst valid partner

• There exists a stable matching in which Jake is
matched to Bob but Bob is lower ranked by Jake in

• Let Kevin be the match of Alice in

• Proposer-optimality of gives that Alice prefers Jake to
Kevin

• (Alice, Jake) is unstable for , a contradiction.

M

M′￼

M′￼

M′￼

M

M′￼

28

Natural extensions
Example: Matching residents to hospitals

• Original form: proposers are hospitals and receivers are med. school residents

• Variations that make the problem different:

• Some participants could declare some partners as unacceptable. (Rank =).

• Unequal number of proposers and receivers.

• Participants can participate in more than one matching.

• A different notion of “stability”.

• Residents may want to perform “couples matching”.

• Many natural variants turn out to be -complete! A topic we will discuss in depth later in the
course.

∞

𝖭𝖯

29

Actual implementation

• NRMP (National Resident Matching Program)

• 23,000+ residents legally bound by the outcome

• Pre-1995 NRMP had the hospitals as proposers (recall, proposer optimality)

• Post-1995 has the hospitals as receivers (recall, receiver pessimality)

• Rural hospital dilemma

• How to get residents to unpopular (often rural hospitals)?

• Rural hospitals were often undersubscribed in matchings.

30

Meta-lessons from stable matching

• To design and analyze algorithms, isolate the underlying structure of the
problem.

• Algorithms can have deep social ramifications that need to be understood.
Algorithm design can have unintended consequences.

• Technique for study algorithms: Find the first time the “bad event” might
happen in the running of the algorithm and prove it doesn’t occur.

• Variant of proof by contradiction.

31

Are you incentivized to lie?

• Should stable matching players lie about their preferences to get better outcomes?

• By proposer optimality, a proposer has no incentive to lie.

• Receivers are incentivized to lie.

• No mechanism can guarantee stable matchings and incentivize honesty. (Not proven
in this class).

32

