
Chinmay Nirkhe | CSE 421 Winter 2026

Lecture 10
Derandomization, quick sort, and stable matching I

1

Writing quality

• I’ve been pretty pleased with the solutions for the first two sets of problems

• You may have gotten a -0.01 for writing quality

• Take the time to chat with TAs about how to improve writing

• Take a look at the solutions to see how we might write the solutions

• Emulate solutions from section worksheets

• Starting with set 4, we will increase the deduction for writing quality if
egregious

2

Previously in CSE 421…

3

Selection
Find the 6th element

4

Selection

• Recursive algorithm :

• Randomly sample from . Call the “pivot”.

• Filter into , , and based on if , , or .

• If , recursively output .

• Else if, , output .

• Else, recursively output .

Selection(X, k)

j [n] xj

X XL XE XR xi < xj xi = xj xi > xj

|XL | ≥ k Selection(XL, k)

|XL | + |XE | ≥ k xj

Selection(XR, k − |XL | − |XE |)
5

Runtime analysis

• In order to apply the master theorem, we would need to argue that each recursive call was reducing
the input size from to for

•

• However, each call may not reduce the size from to

• Depends on how close the randomly chosen is to the middle

• If pivot was the largest element, then , and .

• Decreases instance size from to .

• Fortunately, the probability this occurs is .

n n/b b > 1

T(n) = T(n/b) + cn ⟹ T(n) =
c

1 − 1/b
n

n n/b

xj

xj |XL | = n − 1, |XE | = 1 |XR | = 0

n n − 1

1/n

6

Runtime analysis

• Amortized analysis:

• If pivot is the -th element, then the next problem is of size
.

• With probability , pivot is the -th element for .

• The expected compute in reducing from -sized instance to a -sized
instance is .

• Total expected runtime: .

xj ℓ
≤ max{ℓ, n − ℓ}

≥ 1/2 xj ℓ ℓ ∈ {n/4,…,3n/4}

n 3n/4
O(n)

T(n) = T(3n/4) + O(n) ⟹ T(n) = O(n)

7

Runtime analysis

• Amortized analysis:

• If pivot is the -th element, then the next problem is of size .

• With probability , pivot is the -th element for .

• The expected compute in reducing from -sized instance to a -sized instance is .

• probability, shrinks in 1 reduction.

• probability, shrinks in 2 reductions.

• … probability, shrinks in reductions …

• Expected compute is

• Total expected runtime: .

xj ℓ ≤ max{ℓ, n − ℓ}

≥ 1/2 xj ℓ ℓ ∈ {n/4,…,3n/4}

n 3n/4 O(n)

≥ 1/2

≥ 1/4

≥ 1/2j j

≤ O(n) ⋅ (1
2

+
1
4

⋅ 2 +
1
8

⋅ 3 + …) = O(n) ⋅ 2

T(n) = T(3n/4) + O(n) ⟹ T(n) = O(n)

8

Derandomization

• The worst case runtime is .

• Only happens with probability.

• But, is there an algorithm that didn’t require randomness?

• Why?

• Recall, if we could guarantee that the pivot was in the middle half, then each
recursion would decrease in size by .

• Blum-Pratt-Floyd-Rivest-Tarjan (1973): Calculate a pivot in the middle in time
.

O(n2)

2−Ω(n log n)

xj
3/4

4n/10
O(n)

9

Pivot selection algorithm

• Express the elements as a
 matrix of elements

n
5 × (n/5)

10

Pivot selection algorithm

• Express the elements as a
 matrix of elements

• Calculate the medians of
each of the columns:

n
5 × (n/5)

Y = (y1, y2, …, yn/5)

11

Pivot selection algorithm

• Express the elements as a
 matrix of elements

• Calculate the medians of
each of the columns:

n
5 × (n/5)

Y = (y1, y2, …, yn/5)

12

Pivot selection algorithm

• Express the elements as a
 matrix of elements

• Calculate the medians of
each of the columns:

• Choose the pivot as the
median of the medians:

n
5 × (n/5)

Y = (y1, y2, …, yn/5)

p ← median(Y)

13

Pivot selection algorithm
Runtime analysis

• Express the elements as a
 matrix of elements

• Calculate the medians of
each of the columns:

• Choose the pivot as the
median of the medians:

n
5 × (n/5)

Y = (y1, y2, …, yn/5)

p ← median(Y)

14

Pivot selection algorithm
Proof of correctness

15

Pivot selection algorithm
Proof of correctness

• There are columns
such that .

≥ n/10
yj ≥ p

16

Pivot selection algorithm
Proof of correctness

• There are columns
such that .

• In each such column, there
are 3 elements .

≥ n/10
yj ≥ p

≥ yj

17

Pivot selection algorithm
Proof of correctness

• There are columns
such that .

• In each such column, there
are 3 elements .

• Therefore, there are
elements .

• Similarly, there are
elements .

≥ n/10
yj ≥ p

≥ yj

≥ 3n/10
≥ p

≥ 3n/10
≤ p

18

• So, is in the middle
elements and a good pivot.

p 4n/10

Median/Selection algorithm

• Input:

• Output: the -th item in the list

• Algorithm:

• Calculate median-of-medians() in a division.

• Filter into , , and based on

• If , recurse

• Else if , return

• Else, return .

(X, k) ∈ ℝn × [n]

k X

p ← X 5 × (n/5)

X XL XE XR p

|XL | ≥ k Selection(XL, k)

|XL | + |XE | ≥ k p

Selection(XR, k − |XL | − |XE |)

19

Quicksort algorithm

• The algorithm we just analyzed, “Quickselect”, can be generalized to sorting

• Sorting algorithm :

• Pick a pivot (either randomized or with median-of-medians)

• Filter into , , by comparing elements with

• Concatenate .

Quicksort(X)

p

X XL XE XR p

Sort(XL), XE, Sort(XR)

20

Quicksort algorithm
Runtime analysis

• Runtime depends on pivot selection

• Median-of-medians:

•

• by analysis in problem 54

• Choose random element:

• Worst case: time

• Amortized: (next!)

T(n) ≤ T(αn) + T(n − αn) + O(n) for α ∈ [0.3,0.7]

T(n) = O(n log n)

O(n2)

O(n log n)

21

Quicksort algorithm
Runtime analysis

• Observations:

• The runtime of Quicksort is proportional to the
number of comparisons

• The algorithm only compares two elements if one
is the pivot

• Let be the sorted version of the
input.

• Let

• Claim:

Y = (y1, …, yn)

pij = Pr [yi and yj are compared]
pij ≤

2
j − i + 1

when i < j .

22

Proof of claim

• Claim:

• Proof:

• and and are compared at most once

• Comparisons only occur when one of them is the
pivot

• Case 1: and we never recurse on

• Case 2: and we never compare
between and

• Case 3: and we never compare
between and

pij ≤
2

j − i + 1
when i < j .

yi ≤ yj yi yj

yi, yj ∈ XE XE

yi ∈ XE, yj ∈ XR
XL, XE, XR

yi ∈ XL, yj ∈ XE
XL, XE, XR

23

• If and when and are compared during then

• Can be formally proven via induction

• So .

• Probability that either or is chosen as pivot is

.

yi yj sort(X′￼)
yi, yi+1, yi+2, …, yj ∈ X′￼

|X′￼| ≥ j − i + 1

yi yj

≤
2

j − i + 1

Sorting in the real world

• Quicksort

• Fast almost always, especially for in-memory sorting.

• Works well with caches due to good locality of reference.

• In practice,

• Don’t filter and . Use in-place swaps.

• When is small, insertion sorting is a better base case.

• Pick pivot randomly for small , median of 3 random values for medium , and median-of-
medians on 9 elements for large

• Never actually run the median-of-medians pivot finding routine

XL, XE, XR

n

n n
n

24

Sorting in the real world

• Mergesort

• Used when data is expressed as a linked list and RAM access to entries in
the middle of the list is non-existent

• Sorting over a dataset that cannot be stored in memory

• Uses extra space when sorting arrays over QuicksortO(n)

25

Sorting in the real world

• Insertion sort

• Best when data is almost sorted already

• when far from sorted

• Heap sort - memory efficient choice

• Bucket sort - distribution aware sorting

• Etc…

O(n2)

26

• Goal: Given a set of preferences amongst
hospital and residents, design an
admissions process to allocate residents to
hospitals.

• What might we want to optimize for?

• When do we know we have achieved the
optimal solution?

• What properties does our optimal solution
have?

The matching problem

27

A notion of stability

• Lets assume there are residents and hospitals for now.

• A matching is disjoint pairs assigning hospital to resident .

• A resident-hospital pair (resident , hospital) is unstable for if both

• resident prefers hospital to their assigned hospital .

• hospital prefers resident to their assigned resident .

• A matching is stable if the matching has no unstable pairs.

• Natural and desirable condition. Self-interest will prevent side-deals
from being made.

n n

M n (p, r) r p

p r′￼ M

p r′￼ M(p)

r′￼ p M(r′￼)

28

Can we design an algorithm to find a stable matching?
And does a stable matching necessarily exist?

• Input to the problem:

• Two groups of people: one group and the other
group .

• For each , a ranking from to of the group .

• For each , a ranking from to of the group .

• Output of the problem:

• A list of disjoint pairs . The matching should be
stable with respect to the input rankings.

n P
R

p ∈ P 1 n R

r ∈ R 1 n P

n M

29

Example 1: Is the following matching stable?

30

Example 1: Is the following matching stable?

31

Example 2: Is the following matching stable?

32

Example 2: Is the following matching stable?

33

The propose and reject algorithm
Gale & Shapley 1962

The group proposes and the group receivesP R

34

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

35

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

36

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

37

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

38

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

39

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

40

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

41

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

42

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

43

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

44

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

45

Gale-Shapley walkthrough

46

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

47

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

48

Gale-Shapley walkthrough

49

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

50

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

51

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

52

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

53

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

54

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

55

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

56

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

57

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

58

Gale-Shapley walkthrough

59

Gale-Shapley walkthrough

60

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

61

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

62

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

