CSE 421 Winter 2025 Lecture 9: Divide and Conquer

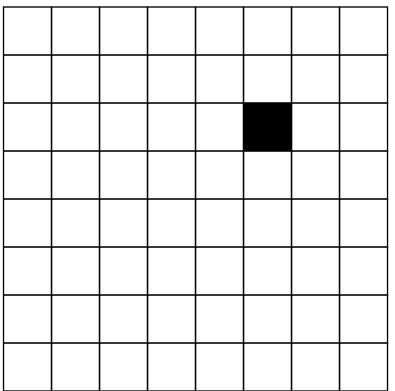
Nathan Brunelle

http://www.cs.uw.edu/421

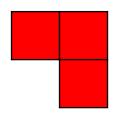
Trominos Tiling

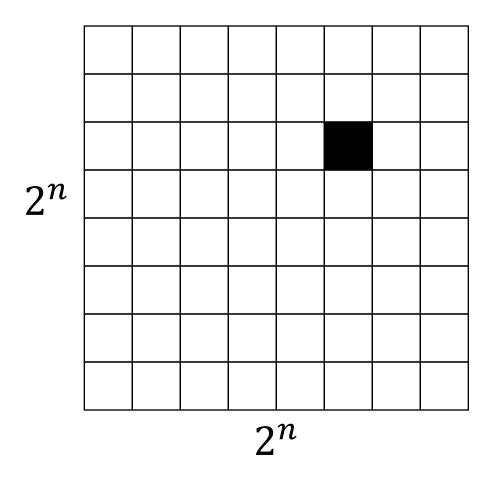
• Given an 8x8 grid with 1 cell missing, can we exactly cover it with "trominoes"?

Can you cover this?

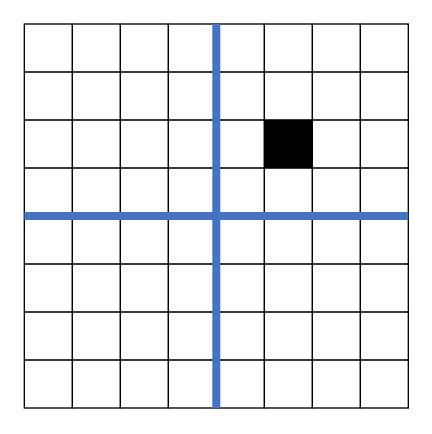


With these?

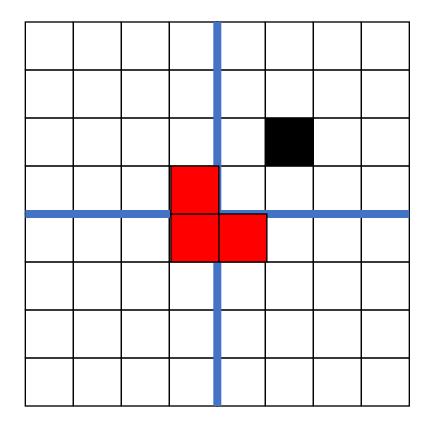




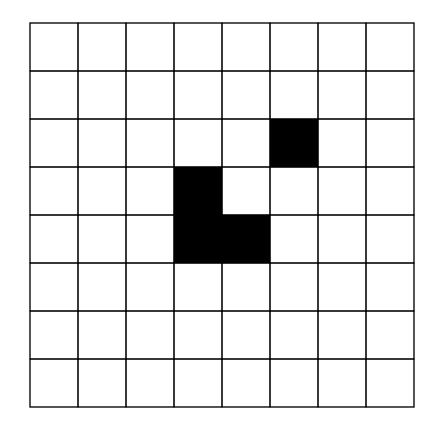
What about larger boards?



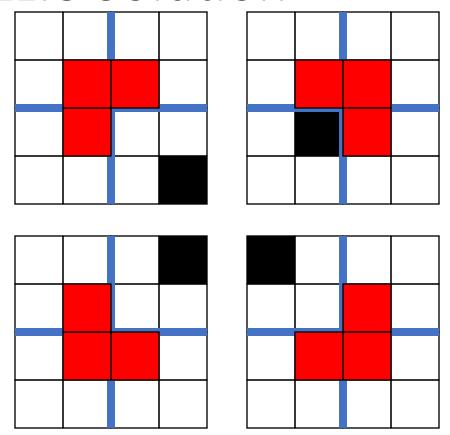
Divide the board into quadrants



Place a tromino to occupy the three quadrants without the missing piece

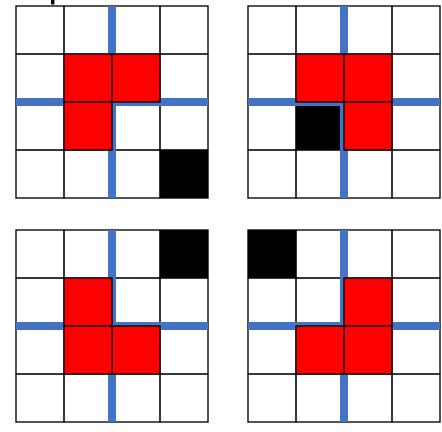


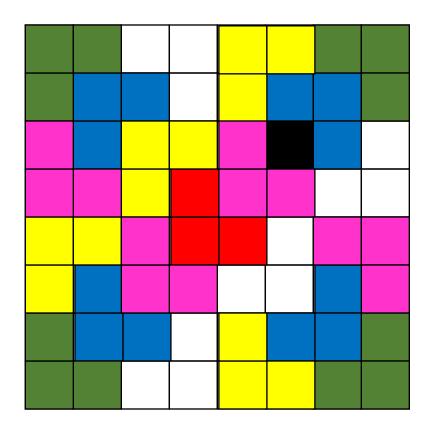
Each quadrant is now a smaller subproblem



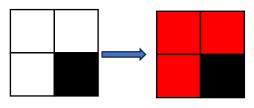
Solve Recursively

Divide and Conquer



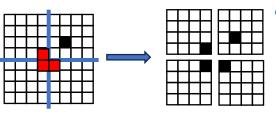


Divide and Conquer (Trominoes)



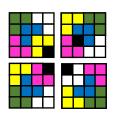
Base Case:

• For a 2×2 board, the empty cells will be exactly a tromino



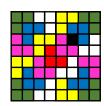
Divide:

- Break of the board into quadrants of size $2^{n-1} \times 2^{n-1}$ each
- Put a tromino at the intersection such that all quadrants have one occupied cell



Conquer:

Cover each quadrant



• Combine:

Reconnect quadrants

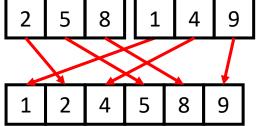
Divide and Conquer (Merge Sort) $2^{T(\frac{5}{2})} + M$

- Base Case:
 - If the list is of length 1 or 0, it's already sorted, so just return it
 - (Alternative: when length is ≤ 15 , use insertion sort)

Divide:

• Split the list into two "sublists" of (roughly) equal length

Conquer:



Combine:

• Merge sorted sublists into one sorted list

Divide and Conquer (Running Time)

$$T(c) = k$$

$$a = number of$$
 $subproblems$
 $\frac{n}{b} = size \ of \ each$
 $subproblem$
 $f_d(n) = time \ to \ divide$

$$a \cdot T\left(\frac{n}{b}\right)$$

$$f_c(n)$$
 =time to combine

Base Case:

• When the problem size is small ($\leq c$), solve non-recursively

• Divide:

 When problem size is large, identify 1 or more smaller versions of exactly the same problem

Conquer:

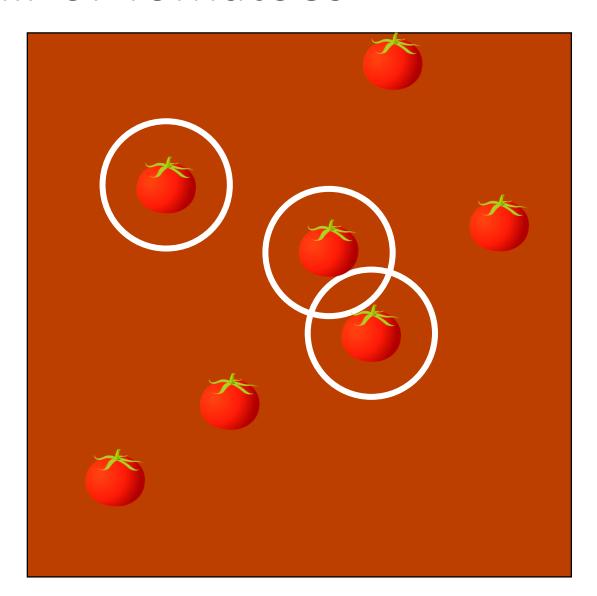
Recursively solve each smaller subproblem

Combine:

Use the subproblems' solutions to solve to the original

Overall:
$$T(n) = aT(\frac{n}{b}) + f(n)$$
 where $f(n) = f_d(n) + f_c(n)$

Closest Pair of Tomatoes



Closest Pair of Points

Given:

• A sequence of n points $p_1, ..., p_n$ with real coordinates in 2 dimensions (\mathbb{R}^2)

Find:

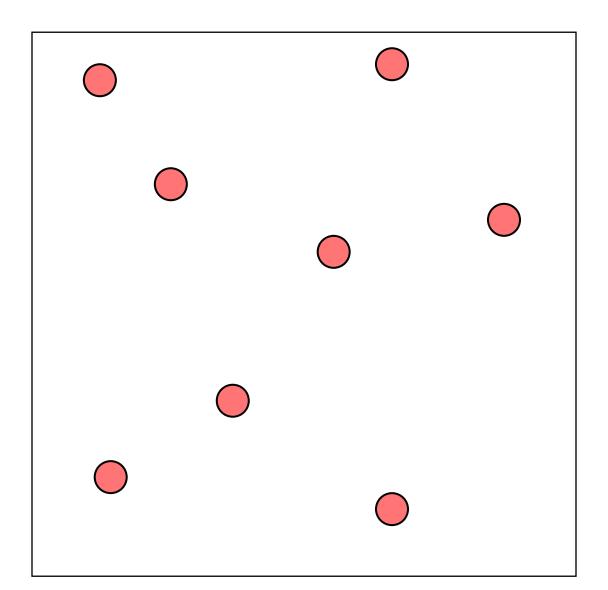
• A pair of points p_i , p_j s.t. the Euclidean distance $d(p_i, p_j)$ is minimized

How about a $\Theta(n^2)$ algorithm?

Try all possible pairs, keeping the smallest

Our goal:

• Use D&C to create a $\Theta(n \log n)$ algorithm



Closest Pair of Point D&C Idea

To get $\Theta(n \ log \ n)$, we will aim for $T(n) = 2T\left(\frac{n}{2}\right)$

Base Case:

• If the number of points is small, do use a naïve solution

Divide:

- Otherwise partition the points into 2 subsets
- Running time "budget" O(n)

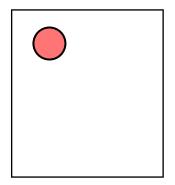
Conquer:

• Find the closest pair of points in each subset

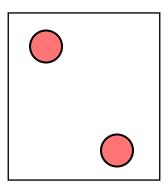
Combine:

- Use those closest pairs of points to find the closest overall
- Running time "budget" O(n)

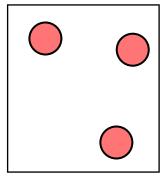
Closest Pair: Base Cases



If
$$n = 1$$
 return ∞

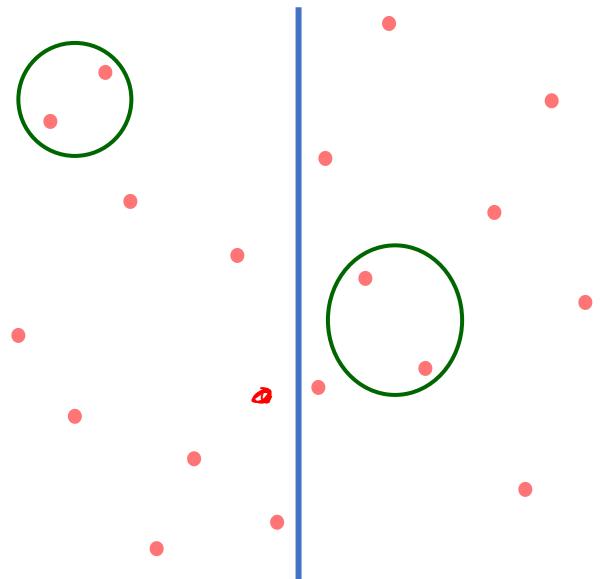


If n = 2 return the distance



If n = 3check all 3 pairs return the closest

Closest Pair: First Idea



Divide:

- Split using median x-coordinate
- each subpart has size n/2.

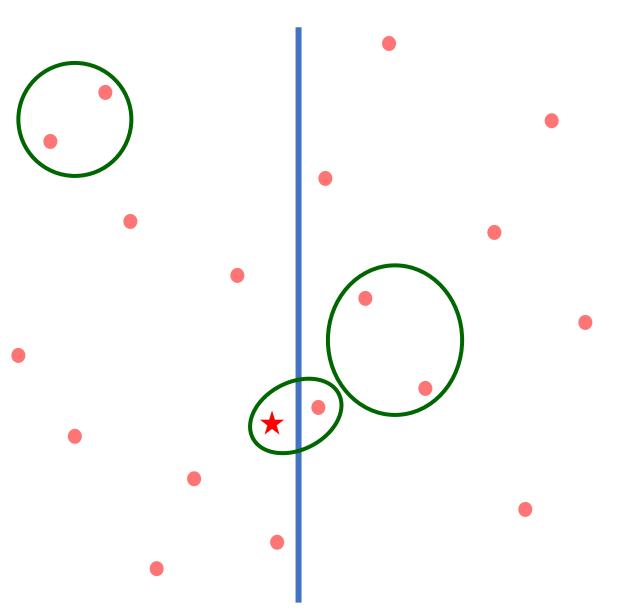
Conquer:

- Solve both size n/2 subproblems
- We now have the closest pair from the left and from the right

Combine:

Return the closer of the left pair and the right pair

Closest Pair: First Idea - Problem



Divide:

- Split using **median** *x*-coordinate
- each subpart has size n/2.

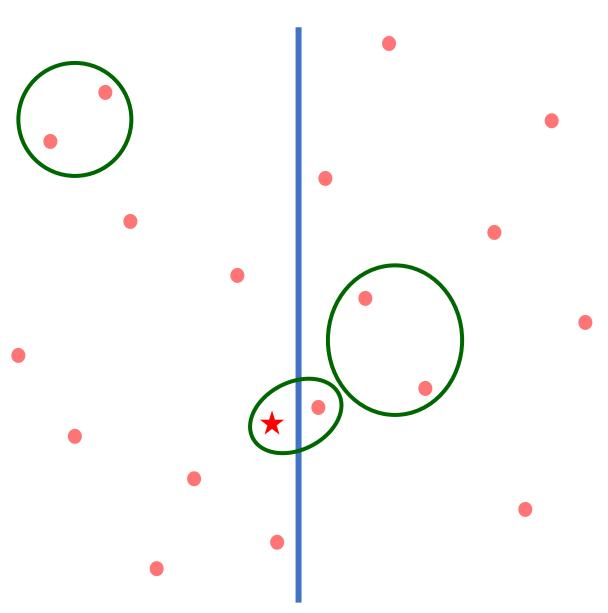
Conquer:

- Solve both size n/2 subproblems
- We now have the closest pair from the left and from the right

Combine:

- Find the closest pair crossing the middle
- Return the closest of the left, right, and crossing pairs

Finding the Closest Crossing Pair – 1st Idea



Combine:

- Find the closest pair crossing the middle
- Return the closest of the left, right, and crossing pairs

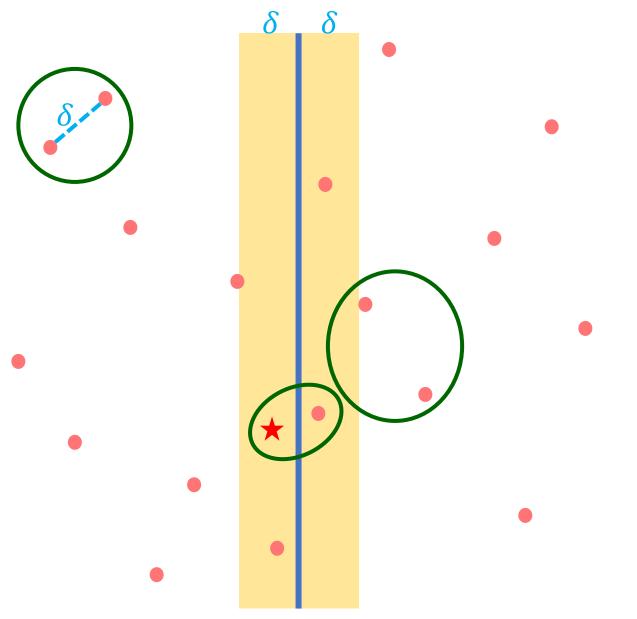
Procedure:

- For each point on the left, find its closest point on the right
- Save the closest seen as the crossing pair

Problem?

Running time is $\left(\frac{n}{2}\right)^2$

Finding the Closest Crossing Pair – 2nd Idea



Combine:

- Find the closest pair crossing the middle
- Return the closest of the left, right, and crossing pairs

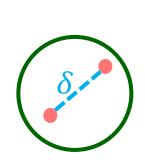
Observation:

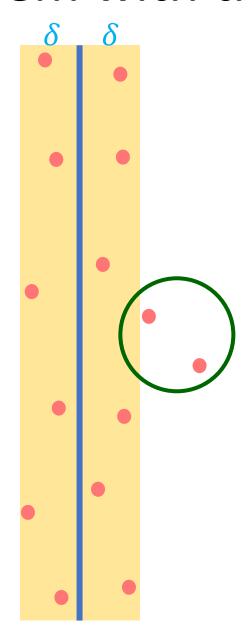
- We only care about crossing pairs that might be closer than left and right
- Ignore points too far from the divide

Procedure:

- Let δ be the closest distance from left and right
- For each point on the left that's within δ of the divide, find its closest match from among points within δ on the right

Problem with the 2nd Idea





Combine:

- Find the closest pair crossing the middle
- Return the closest of the left, right, and crossing pairs

Observation:

- We only care about crossing pairs that might be closer than left and right
- Ignore points too far from the divide

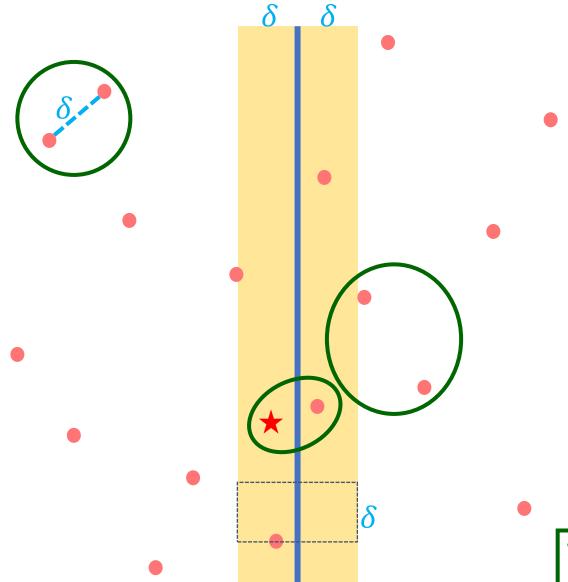
Problem:

We could still exceed our budget!

Solution:

- Re-apply the observation vertically!
- We only need to consider points within δ above the current point as well! 21

Finding the Closest Crossing Pair – 3rd Idea



Combine:

- Find the closest pair crossing the middle
- Return the closest of the left, right, and crossing pairs

Procedure:

- Let δ be the closest distance from left and right
- From bottom to top, for each point p_l on the left that's within δ of the divide on the left:
 - compare it to each point on the right that is within δ of the divide and no more than δ above p_l

This will only fit within our budget if we compare each p_I to a constant number of other points

Divide and Conquer (Closest Pair of Points)

- Sort the points by x coordinate (call this list L_x)
- Make a copy of the points and sort by y coordinate (call this list L_y)

Base Case:

• If there's 1 point then return ∞ , If there's 2 or 3 points, solve naively

Divide:

- Find the median *x* coordinate
- Partition L_x and L_y into the points on the left vs. right of the median

Conquer:

Recursively find the closest pair from among the left and right of the median

Combine:

- Let δ be the closest from the left and the right solutions
- Filter, L_y to include only the points within δ of the median x
- For each point p still in L_{ν} :
 - For each point within δ of p vertically:
 - Compare p with that point and save if the distance is less than δ
- Return minimum of the saved pair and the one used for δ

Surprisingly, This works!

Preprocessing:

- Sort the points by x coordinate (call this list L_x)
- Make a copy of the points and sort by y coordinate (call this list L_{ν})

• If there's 1 point then return ∞ , If there's 2 or 3 points, solve naively

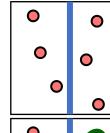
- Find the median x coordinate
- Partition L_{χ} and L_{V} into the points on the left vs. right of the median

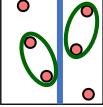
Conquer:

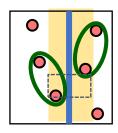
• Recursively find the closest pair from among the left and right of the median

Combine:

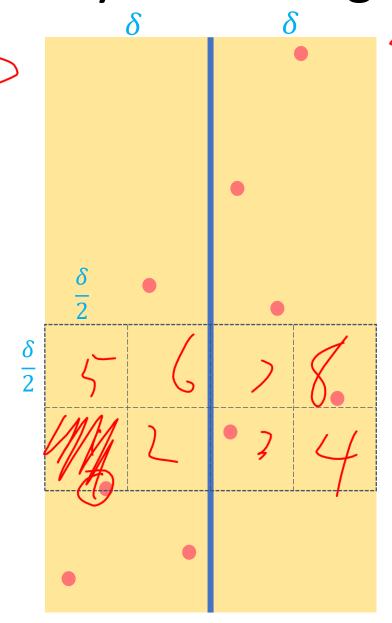
- Let δ be the closest from the left and the right solutions
- Filter L_{ν} to include only the points within δ of the median x
- For each point p still in L_y :
 - For the next 7 points vertically:
 - Compare p with that point and save if the distance is less than δ
- Return minimum of the saved pair and the one used for δ







Why is 7 enough?



Claim:

• For any point p in the "strip", the 8^{th} point above it is guaranteed to be more than δ away.

Proof:

- Consider a grid of $\frac{\delta}{2} \times \frac{\delta}{2}$ squares starting from p
- Any two points within the same square are at most $\frac{\delta}{\sqrt{2}}$ apart.

• Because $\sqrt{2} > 1$, we know that $\frac{\delta}{\sqrt{2}} < \delta$

 $\delta/2$

- Therefore, there is at most one point per square
- Besides the one which contains p there are only 7 other squares within range δ

Full Algorithm

```
ClosestPair(L):

L_x = L sorted by x coordinate

L_y = L sorted by y coordinate

return ClosestPairRec(L_x, L_y)
```

```
ClosestPairRec(L_x, L_y):
  # Base cases omitted
  m = \text{median } x \text{ coordinate}
  P_{x1} = the points from L_x to the left of the median
  P_{v1} = the points from L_v to the left of the median
  P_{x2} = the points from L_x to the right of the median
  P_{v2} = the points from L_v to the right of the median
  a_1 = \text{ClosestPairRec}(P_{x1}, P_{v1})
  a_2 = \text{ClosestPairRec}(P_{x2}, P_{v2})
  a = closer of a_1 and a_2
  \delta = \operatorname{distance}(a)
  for each p in L_v:
     if p's x coordinate is more than \delta from m:
       remove p from L_{\nu}
  for each p in L_v:
     for each of the next 7 points q in L_{\nu}:
       if distance(p, q):
          a = (p, q)
  return a
```