CSE 421 Winter 2025
Lecture 9: Divide and Conquer

Nathan Brunelle
http://www.cs.uw.edu/421

http://www.cs.uw.edu/421

Trominos Tiling

* Given an 8x8 grid with 1 cell missing, can we exactly cover it with

“trominoes”? _
Can you cover this?

. With these?

Trominoes Puzzle Solution

Zn

Zn

What about larger boards?

Trominoes Puzzle Solution

Divide the board into quadrants

Trominoes Puzzle Solution

Place a tromino to occupy the three
guadrants without the missing piece

Trominoes Puzzle Solution

Each quadrant is now a smaller subproblem

Trominoes Puzzle Solution

Solve Recursively

Divide and Conquer

r
L

Trominoes Puzzle Solution

Divide and Conquer (Trominoes)

* Base Case:
- * Fora 2 X 2 board, the empty cells will be exactly a tromino

* Divide:
* Break of the board into quadrants of size 2"~! x 2™"1 each

* Put a tromino at the intersection such that all quadrants have one
occupied cell

j'q'::

* Conquer:
* Cover each quadrant

 Combine:
* Reconnect quadrants

10

Divide and Conquer (Merge Sort) o (<)7‘)

* Base Case:
* |f the list is of length 1 or O, it’s already sorted, so just return it
 (Alternative: when length is < 15, use insertion sort)

518]2f[9]4]|1]° Divide: o& f\/

 Split the list into two “sublists” of (roughly) equal length D

21518(|1]4]9 OCanuer:) (f_\
* Sort both lists recursively (QJ >

e Combine:

* Merge sorted sublists into one sorted list ﬂ

11

Divide and Conquer (Running Time)

R =)

a = numberof &

subproblems
=size of each

subproblem
fa(n) =.time to divide |

&l (g)

f-(n) =time to combine

—

e Base Case:

* When the problem size is small (< ¢), solve non-recursively

e Divide:

 When problem size is large, identify 1 or more smaller

versions of exactly the same problem

* Conquer:
* Recursively solve each smaller subproblem

* Combine:
* Use the subproblems’ solutions to solve to the original

Overall: T(n) = aT (%) + f(n) where f(n) = fq(n) + fc(n)

12

Closest Pair of Tomatoes

Closest Pair of Points

Given:

* A sequence of n points p,, ..., p,, with real
coordinates in 2 dimensions (R?)

Find:
* A pair of points p;, p; s.t. the Euclidean
distance d(p;, p;) is minimized

How about a ©(n?) algorithm?

* Try all possible pairs, keeping the smallest

Our goal: (7
* Use D&C to create a O(nlogn) algorithm

Closest Pair of Point D&C Idea

To get O(n log n), we will aim for T(n) = 2T (g)

* Base Case:
* |f the number of points is small, do use a naive solution
* Divide:
9/> e Otherwise partition the points intq}z/subsets
* Running time “budget” 0 (n)
* Conquer:
* Find the closest pair of points in each subset

e Combine:

——\.__> e Use those closest pairs of points to find the closest overall
* Running time “budget” 0(n)

15

Closest Pair: Base Cases

O

fn=1
return oo

O

O

fn =2

return the distance

© o
O

fn =3
check all 3 pairs
return the closest

Closest Pair: First Idea

Divide:
« Split using median x-coordinate
« each subpart has size n/2.

Conquer:

* Solve both size n/2 subproblems

* We now have the closest pair from the
left and from the right

Combine:
e Return the closer of the left pair and the
right pair

17

Closest Pair: First Idea - Problem
Divide:
« Split using median x-coordinate
« each subpart has size n/2.

Conquer:

* Solve both size n/2 subproblems

* We now have the closest pair from the
left and from the right

Combine:

* Find the closest pair crossing the middle

e Return the closest of the left, right, and
crossing pairs

18

Finding the Closest Crossing Pair — 15 Idea

Combine:

* Find the closest pair crossing the middle

 Return the closest of the left, right, and
crossing pairs

Procedure:

* For each point on the left, find its closest
point on the right

* Save the closest seen as the crossing pair

Problem?
. . . n 2
Running time is (E)

19

Finding the Closest Crossing Pair — 2" Idea

o0 0

Combine:

* Find the closest pair crossing the middle

 Return the closest of the left, right, and
crossing pairs

Observation:

* We only care about crossing pairs that
might be closer than left and right

* lIgnore points too far from the divide

Procedure:

 Let O be the closest distance from left
and right

* For each point on the left that’s within 0
of the divide, find its closest match from
among points within ¢ on the right

20

Problem with the 2"? |dea

O 0

Combine:

* Find the closest pair crossing the middle

 Return the closest of the left, right, and
crossing pairs

Observation:

* We only care about crossing pairs that
might be closer than left and right

* lIgnore points too far from the divide

Problem:
* We could still exceed our budget!

Solution:

 Re-apply the observation vertically!

 We only need to consider points within
0 above the current point as well!

Fmdmg the Closest Crossing Pair — 3" Idea

Combine:
* Find the closest pair crossing the middle

 Return the closest of the left, right, and
crossing pairs

Procedure:
* Let O be the closest distance from left
and right
* From bottom to top, for each point p; on
the left that’s within 6 of the divide on
the left:
e compare it to each point on the
right that is within 6 of the divide
and no more than ¢ above p;

This will only fit within our budget if we compare

each p, to a constant number of other points 22

Divide and Conquer (Closest Pair of Points)

* Preprocessing:
* Sort the points by x coordinate (call this list L) /] /

2 h
ol [0 o * Make a copy of the points and sort by y coordinate (call this Iist&} Lj
o/ o *\ Base Case:

* If there’s 1 point then return oo, If there’s 2 or 3 points, solve naively
Divide:

* Find the median x coordinate
©) * Partition L, and L,, into the points on the left vs. right of the median

¢ uer:
* Recursively find the clwir from among the ﬁt and right of the median

e Combine: -

. Le‘@l be the closest from the left and the right solutions
. FiIter{ L, t? include only the points within 6 of the median x

* Fore ointpstillin Ly,: _
E * For each point within 6 of p vertically: g 9/
* Compare p with that point and save if the distance is less than
e Return minimum of the saved pair and the one used for §

Surprisingly, This works!

* Preprocessing:
 Sort the points by x coordinate (call this list L,)

o ol [0 o) * Make a copy of the points and sort by y coordinate (call this list L)
oj[o * Base Case:

* If there’s 1 point then return oo, If there’s 2 or 3 points, solve naively
Divide:

* Find the median x coordinate
©) * Partition L, and L,, into the points on the left vs. right of the median

Conquer:
* Recursively find the closest pair from among the left and right of the median

Combine:
* Let 6 be the closest from the left and the right solutions
* Filter L,, to include only the points within ¢ of the median x
* For each point p still in L,,:
* For the next 7 points vertically:
* Compare p with that point and save if the distance is less than §
e Return minimum of the saved pair and the one used for §

Why is 7 enough?
))

>

4

Claim:

For any point p in the “strip”, the 8t point above it
is guaranteed to be more than.ﬁ\way

Proof:

: : §_ 6 :
Consider a grid OfE X ~ squares starting from p
Any two points within the same square are at most

5 0/2
— apart.

NG
5

Because V2 > 1, we know that % <0

Therefore, there is at most one point per square
Besides the one which contains p there are only 7
other squares within range §

25

Full Algorithm

ClosestPair(L):
L, = L sorted by x coordinate
L, = L sorted by y coordinate
return ClosestPairRec(Ly, L)

ClosestPairRec(L,., L

y):
Base cases omitted

m = median x coordinate
P,1 = the points from L, to the left of the median
Py; = the points from L,, to the left of the median
P,, = the points from L, to the right of the median
Py, = the points from L,, to the right of the median
a; = ClosestPairRec(Py1, Py4)
a, = ClosestPairRec(Py;,, P,)
a = closer of a; and a,
6 = distance(a)
foreach pin Ly:
if p’s x coordinate is more than § from m:
remove p from L,,
foreach pin Ly:
for each of the next 7 points q in L,,:
if distance(p, q):

a=(pq)
return a

	Slide 1: CSE 421 Winter 2025 Lecture 9: Divide and Conquer
	Slide 2: Trominos Tiling
	Slide 3: Trominoes Puzzle Solution
	Slide 4: Trominoes Puzzle Solution
	Slide 5: Trominoes Puzzle Solution
	Slide 6: Trominoes Puzzle Solution
	Slide 7: Trominoes Puzzle Solution
	Slide 8: Divide and Conquer
	Slide 9: Trominoes Puzzle Solution
	Slide 10: Divide and Conquer (Trominoes)
	Slide 11: Divide and Conquer (Merge Sort)
	Slide 12: Divide and Conquer (Running Time)
	Slide 13: Closest Pair of Tomatoes
	Slide 14: Closest Pair of Points
	Slide 15: Closest Pair of Point D&C Idea
	Slide 16: Closest Pair: Base Cases
	Slide 17: Closest Pair: First Idea
	Slide 18: Closest Pair: First Idea - Problem
	Slide 19: Finding the Closest Crossing Pair – 1st Idea
	Slide 20: Finding the Closest Crossing Pair – 2nd Idea
	Slide 21: Problem with the 2nd Idea
	Slide 22: Finding the Closest Crossing Pair – 3rd Idea
	Slide 23: Divide and Conquer (Closest Pair of Points)
	Slide 24: Surprisingly, This works!
	Slide 25: Why is 7 enough?
	Slide 26: Full Algorithm

