CSE 421 Winter 2025 Lecture 9: Divide and Conquer

Nathan Brunelle

http://www.cs.uw.edu/421

Trominos Tiling

• Given an 8x8 grid with 1 cell missing, can we exactly cover it with "trominoes"?

What about larger boards?

Divide the board into quadrants

Place a tromino to occupy the three quadrants without the missing piece

Each quadrant is now a smaller subproblem

Solve Recursively

Divide and Conquer

Divide and Conquer (Trominoes)

- Base Case:
 - For a 2×2 board, the empty cells will be exactly a tromino

• Divide:

- Break of the board into quadrants of size $2^{n-1} \times 2^{n-1}$ each
- Put a tromino at the intersection such that all quadrants have one occupied cell

- Conquer:
 - Cover each quadrant

- Combine:
 - Reconnect quadrants

Divide and Conquer (Merge Sort)

- Base Case:
 - If the list is of length 1 or 0, it's already sorted, so just return it
 - (Alternative: when length is ≤ 15 , use insertion sort)

5 8 2 9 4 1 • **Divide:**

5

• Split the list into two "sublists" of (roughly) equal length

2 5 8 1 4 9 • Conquer:

• Sort both lists recursively

2 5 8 1 4 9 • **(** 1 2 4 5 8 9

• Combine:

• Merge sorted sublists into one sorted list

Divide and Conquer (Running Time)

T(c) = k

a = number of subproblems $\frac{n}{b} = size \ of \ each$ subproblem $f_d(n) = time \ to \ divide$

 $a \cdot T\left(\frac{n}{b}\right)$

 $f_c(n)$ =time to combine

• Base Case:

• When the problem size is small ($\leq c$), solve non-recursively

• Divide:

• When problem size is large, identify 1 or more smaller versions of exactly the same problem

• Conquer:

- Recursively solve each smaller subproblem
- Combine:
 - Use the subproblems' solutions to solve to the original

Overall: $T(n) = aT\left(\frac{n}{b}\right) + f(n)$ where $f(n) = f_d(n) + f_c(n)$

Closest Pair of Tomatoes

Closest Pair of Points

Given:

• A sequence of n points p_1, \dots, p_n with real coordinates in 2 dimensions (\mathbb{R}^2)

Find:

- A pair of points p_i, p_j s.t. the Euclidean distance $d(p_i, p_j)$ is minimized
- How about a $\Theta(n^2)$ algorithm?
 - Try all possible pairs, keeping the smallest

Our goal:

• Use D&C to create a $\Theta(n \log n)$ algorithm

Closest Pair of Point D&C Idea

To get $\Theta(n \log n)$, we will aim for $T(n) = 2T\left(\frac{n}{2}\right) + n$

- Base Case:
 - If the number of points is small, do use a naïve solution
- Divide:
 - Otherwise partition the points into 2 subsets
 - Running time "budget" O(n)
- Conquer:
 - Find the closest pair of points in each subset

• Combine:

- Use those closest pairs of points to find the closest overall
- Running time "budget" O(n)

Closest Pair: Base Cases

If n = 1

return ∞

If
$$n = 2$$

return the distance

\bigcirc
\bigcirc

If n = 3check all 3 pairs return the closest

Divide:

- Split using **median** *x*-coordinate
- each subpart has size n/2.

Conquer:

- Solve both size n/2 subproblems
- We now have the closest pair from the left and from the right

Combine:

• Return the closer of the left pair and the right pair

Closest Pair: First Idea - Problem

Divide:

- Split using **median** *x*-coordinate
- each subpart has size n/2.

Conquer:

- Solve both size n/2 subproblems
- We now have the closest pair from the left and from the right

Combine:

- Find the closest pair crossing the middle
- Return the closest of the left, right, and crossing pairs

Finding the Closest Crossing Pair – 1st Idea

Combine:

- Find the closest pair crossing the middle
- Return the closest of the left, right, and crossing pairs

Procedure:

- For each point on the left, find its closest point on the right
- Save the closest seen as the crossing pair

Problem?

Running time is
$$\left(\frac{n}{2}\right)^2$$

Finding the Closest Crossing Pair – 2nd Idea

Combine:

- Find the closest pair crossing the middle
- Return the closest of the left, right, and crossing pairs

Observation:

- We only care about crossing pairs that might be closer than left and right
- Ignore points too far from the divide

Procedure:

- Let δ be the closest distance from left and right
- For each point on the left that's within δ of the divide, find its closest match from among points within δ on the right

Problem with the 2nd Idea

Combine:

- Find the closest pair crossing the middle
- Return the closest of the left, right, and crossing pairs

Observation:

- We only care about crossing pairs that might be closer than left and right
- Ignore points too far from the divide

Problem:

• We could still exceed our budget!

Solution:

- Re-apply the observation vertically!
- We only need to consider points within δ above the current point as well!

Finding the Closest Crossing Pair – 3rd Idea

Combine:

- Find the closest pair crossing the middle
- Return the closest of the left, right, and crossing pairs

Procedure:

- Let δ be the closest distance from left and right
- From bottom to top, for each point p_l on the left that's within δ of the divide on the left:
 - compare it to each point on the right that is within δ of the divide and no more than δ above p_l

This will only fit within our budget if we compare each p_l to a constant number of other points

Divide and Conquer (Closest Pair of Points)

- Preprocessing:
 - Sort the points by x coordinate (call this list L_x)
 - Make a copy of the points and sort by y coordinate (call this list L_y)

• Base Case:

• If there's 1 point then return ∞ , If there's 2 or 3 points, solve naively

Divide:

0

 \mathbf{O}

0

0

- Find the median *x* coordinate
- Partition L_x and L_y into the points on the left vs. right of the median

Conquer:

• Recursively find the closest pair from among the left and right of the median

Combine:

- Let δ be the closest from the left and the right solutions
- Filter L_y to include only the points within δ of the median x
- For each point p still in L_y :
 - For each point within δ of p vertically:
 - Compare p with that point and save if the distance is less than δ
- Return minimum of the saved pair and the one used for δ

Surprisingly, This works!

• Preprocessing:

- Sort the points by x coordinate (call this list L_x)
- Make a copy of the points and sort by y coordinate (call this list L_y)

• Base Case:

• If there's 1 point then return ∞ , If there's 2 or 3 points, solve naively

Divide:

0

0

0

0

Ο

0

 \mathbf{O}

- Find the median *x* coordinate
- Partition L_x and L_y into the points on the left vs. right of the median

Conquer:

• Recursively find the closest pair from among the left and right of the median

Combine:

- Let δ be the closest from the left and the right solutions
- Filter L_y to include only the points within δ of the median x
- For each point p still in L_y :
 - For the next 7 points vertically:
 - Compare p with that point and save if the distance is less than δ
- Return minimum of the saved pair and the one used for δ

Why is 7 enough?

Claim:

• For any point p in the "strip", the 8th point above it is guaranteed to be more than δ away.

Proof:

- Consider a grid of $\frac{\delta}{2} \times \frac{\delta}{2}$ squares starting from p
- Any two points within the same square are at most $\frac{\delta}{\sqrt{2}}$ apart. $\frac{\delta}{\delta/2}$
- Because $\sqrt{2} > 1$, we know that $\frac{\delta}{\sqrt{2}} < \delta$
- Therefore, there is at most one point per square
- Besides the one which contains p there are only 7 other squares within range δ

Full Algorithm

ClosestPair(*L*): $L_x = L$ sorted by x coordinate $L_{y} = L$ sorted by y coordinate return ClosestPairRec(L_x , L_y) ClosestPairRec(L_x , L_y): # Base cases omitted m = median x coordinate $P_{\chi 1}$ = the points from L_{χ} to the left of the median $P_{\gamma 1}$ = the points from L_{γ} to the left of the median $P_{\chi 2}$ = the points from L_{χ} to the right of the median $P_{\nu 2}$ = the points from L_{ν} to the right of the median $a_1 = \text{ClosestPair}(P_{x1}, P_{y1})$ $a_2 = \text{ClosestPair}(P_{\chi 2}, P_{\gamma 2})$ $a = closer of a_1 and a_2$ $\delta = \text{distance}(a)$ for each *p* in L_{v} : if p's x coordinate is more than δ from m: remove p from L_{ν} for each p in L_{v} : for each of the next 7 points q in L_{γ} : if distance(p, q): a = (p,q)return a