
CSE 421 Winter 2025
Lecture 9: Divide and Conquer

Nathan Brunelle

http://www.cs.uw.edu/421

http://www.cs.uw.edu/421

Trominos Tiling

• Given an 8x8 grid with 1 cell missing, can we exactly cover it with
“trominoes”?

Can you cover this?

With these?

Trominoes Puzzle Solution

What about larger boards?

2𝑛

2𝑛

Trominoes Puzzle Solution

Divide the board into quadrants

Trominoes Puzzle Solution

Place a tromino to occupy the three
quadrants without the missing piece

Trominoes Puzzle Solution

Each quadrant is now a smaller subproblem

Trominoes Puzzle Solution

Solve Recursively

Divide and Conquer

Trominoes Puzzle Solution

Divide and Conquer (Trominoes)
• Base Case:

• For a 2 × 2 board, the empty cells will be exactly a tromino

• Divide:
• Break of the board into quadrants of size 2𝑛−1 × 2𝑛−1 each

• Put a tromino at the intersection such that all quadrants have one
occupied cell

• Conquer:
• Cover each quadrant

• Combine:
• Reconnect quadrants

10

Divide and Conquer (Merge Sort)
• Base Case:

• If the list is of length 1 or 0, it’s already sorted, so just return it

• (Alternative: when length is ≤ 15, use insertion sort)

• Divide:
• Split the list into two “sublists” of (roughly) equal length

• Conquer:
• Sort both lists recursively

• Combine:
• Merge sorted sublists into one sorted list

11

5

5 8 2 9 4 1

2 5 8 1 4 9

1 2 4 5 8 9

2 5 8 1 4 9

Divide and Conquer (Running Time)
• Base Case:

• When the problem size is small (≤ 𝑐), solve non-recursively

• Divide:
• When problem size is large, identify 1 or more smaller

versions of exactly the same problem

• Conquer:
• Recursively solve each smaller subproblem

• Combine:
• Use the subproblems’ solutions to solve to the original

12

𝑇 𝑐 = 𝑘

𝑎 = number of
 subproblems
𝑛

𝑏
=size of each

 subproblem
𝑓𝑑 𝑛 = time to divide

𝑎 ⋅ 𝑇
𝑛

𝑏

𝑓𝑐 𝑛 =time to combine

Overall: 𝑻 𝒏 = 𝒂𝑻
𝒏

𝒃
+ 𝒇 𝒏 where 𝒇 𝒏 = 𝒇𝒅 𝒏 + 𝒇𝒄(𝒏)

2

3

4

5

6

7

Closest Pair of Tomatoes

Closest Pair of Points
Given:

• A sequence of 𝒏 points 𝒑𝟏, … , 𝒑𝒏 with real
coordinates in 2 dimensions (ℝ𝟐)

Find:

• A pair of points 𝒑𝒊, 𝒑𝒋 s.t. the Euclidean

distance 𝒅(𝒑𝒊, 𝒑𝒋) is minimized

How about a Θ(𝒏𝟐) algorithm?
• Try all possible pairs, keeping the smallest

Our goal:

• Use D&C to create a Θ(𝑛 log 𝑛) algorithm

Closest Pair of Point D&C Idea

• Base Case:
• If the number of points is small, do use a naïve solution

• Divide:
• Otherwise partition the points into 2 subsets

• Running time “budget” 𝑂 𝑛

• Conquer:
• Find the closest pair of points in each subset

• Combine:
• Use those closest pairs of points to find the closest overall

• Running time “budget” 𝑂 𝑛
15

To get 𝚯(𝒏 𝒍𝒐𝒈 𝒏), we will aim for 𝑻 𝒏 = 𝟐𝑻
𝒏

𝟐
+ 𝒏

Closest Pair: Base Cases

16

If 𝑛 = 1
 return ∞

If 𝑛 = 2
 return the distance

If 𝑛 = 3
 check all 3 pairs
 return the closest

Closest Pair: First Idea

17

Divide:

• Split using median 𝒙-coordinate

• each subpart has size 𝒏/𝟐.

Conquer:
• Solve both size 𝒏/𝟐 subproblems
• We now have the closest pair from the

left and from the right

Combine:
• Return the closer of the left pair and the

right pair

Closest Pair: First Idea - Problem

18

Divide:

• Split using median 𝒙-coordinate

• each subpart has size 𝒏/𝟐.

Conquer:
• Solve both size 𝒏/𝟐 subproblems
• We now have the closest pair from the

left and from the right

Combine:
• Find the closest pair crossing the middle
• Return the closest of the left, right, and

crossing pairs

Finding the Closest Crossing Pair – 1st Idea

19

Procedure:
• For each point on the left, find its closest

point on the right
• Save the closest seen as the crossing pair

Problem?

 Running time is
𝑛

2

2

Combine:
• Find the closest pair crossing the middle
• Return the closest of the left, right, and

crossing pairs

Finding the Closest Crossing Pair – 2nd Idea

20

Procedure:
• Let 𝛿 be the closest distance from left

and right
• For each point on the left that’s within 𝛿

of the divide, find its closest match from
among points within 𝛿 on the right

Combine:
• Find the closest pair crossing the middle
• Return the closest of the left, right, and

crossing pairs

Observation:
• We only care about crossing pairs that

might be closer than left and right
• Ignore points too far from the divide

𝛿

𝛿 𝛿

Problem with the 2nd Idea

21

Problem:
• We could still exceed our budget!

Combine:
• Find the closest pair crossing the middle
• Return the closest of the left, right, and

crossing pairs

Observation:
• We only care about crossing pairs that

might be closer than left and right
• Ignore points too far from the divide

𝛿

𝛿 𝛿

Solution:
• Re-apply the observation vertically!
• We only need to consider points within

𝛿 above the current point as well!

Finding the Closest Crossing Pair – 3rd Idea

22

Procedure:
• Let 𝛿 be the closest distance from left

and right
• From bottom to top, for each point 𝑝𝑙 on

the left that’s within 𝛿 of the divide on
the left:

• compare it to each point on the
right that is within 𝛿 of the divide
and no more than 𝛿 above 𝑝𝑙

Combine:
• Find the closest pair crossing the middle
• Return the closest of the left, right, and

crossing pairs
𝛿

𝛿 𝛿

𝛿
This will only fit within our budget if we compare
each 𝒑𝒍 to a constant number of other points

Divide and Conquer (Closest Pair of Points)
• Preprocessing:

• Sort the points by 𝑥 coordinate (call this list 𝐿𝑥)
• Make a copy of the points and sort by 𝑦 coordinate (call this list 𝐿𝑦)

• Base Case:
• If there’s 1 point then return ∞, If there’s 2 or 3 points, solve naively

• Divide:
• Find the median 𝑥 coordinate
• Partition 𝐿𝑥 and 𝐿𝑦 into the points on the left vs. right of the median

• Conquer:
• Recursively find the closest pair from among the left and right of the median

• Combine:
• Let 𝛿 be the closest from the left and the right solutions
• Filter 𝐿𝑦 to include only the points within 𝛿 of the median 𝑥
• For each point 𝑝 still in 𝐿𝑦:

• For each point within 𝛿 of 𝑝 vertically:
• Compare 𝑝 with that point and save if the distance is less than 𝛿

• Return minimum of the saved pair and the one used for 𝛿

Surprisingly, This works!
• Preprocessing:

• Sort the points by 𝑥 coordinate (call this list 𝐿𝑥)
• Make a copy of the points and sort by 𝑦 coordinate (call this list 𝐿𝑦)

• Base Case:
• If there’s 1 point then return ∞, If there’s 2 or 3 points, solve naively

• Divide:
• Find the median 𝑥 coordinate
• Partition 𝐿𝑥 and 𝐿𝑦 into the points on the left vs. right of the median

• Conquer:
• Recursively find the closest pair from among the left and right of the median

• Combine:
• Let 𝛿 be the closest from the left and the right solutions
• Filter 𝐿𝑦 to include only the points within 𝛿 of the median 𝑥
• For each point 𝑝 still in 𝐿𝑦:

• For the next 7 points vertically:
• Compare 𝑝 with that point and save if the distance is less than 𝛿

• Return minimum of the saved pair and the one used for 𝛿

Why is 7 enough?

25

Proof:

• Consider a grid of
𝛿

2
×

𝛿

2
 squares starting from 𝑝

• Any two points within the same square are at most
𝛿

2
 apart.

• Because 2 > 1, we know that
𝛿

2
< 𝛿

• Therefore, there is at most one point per square
• Besides the one which contains 𝑝 there are only 7

other squares within range 𝛿

Claim:
• For any point 𝑝 in the “strip”, the 8th point above it

is guaranteed to be more than 𝛿 away.

𝛿 𝛿

𝛿

2

𝛿

2

𝛿/2

𝛿

2

𝛿/2

Full Algorithm

ClosestPair(𝐿):
 𝐿𝑥 = 𝐿 sorted by 𝑥 coordinate
 𝐿𝑦 = 𝐿 sorted by 𝑦 coordinate

 return ClosestPairRec(𝐿𝑥, 𝐿𝑦)

ClosestPairRec(𝐿𝑥, 𝐿𝑦):

 # Base cases omitted
 𝑚 = median 𝑥 coordinate
 𝑃𝑥1 = the points from 𝐿𝑥 to the left of the median
 𝑃𝑦1 = the points from 𝐿𝑦 to the left of the median

 𝑃𝑥2 = the points from 𝐿𝑥 to the right of the median
 𝑃𝑦2 = the points from 𝐿𝑦 to the right of the median

 𝑎1 = ClosestPair(𝑃𝑥1, 𝑃𝑦1)

 𝑎2 = ClosestPair(𝑃𝑥2, 𝑃𝑦2)

 𝑎 = closer of 𝑎1 and 𝑎2

 𝛿 = distance(𝑎)
 for each 𝑝 in 𝐿𝑦:

 if 𝑝’s x coordinate is more than 𝛿 from 𝑚:
 remove 𝑝 from 𝐿𝑦

 for each 𝑝 in 𝐿𝑦:

 for each of the next 7 points 𝑞 in 𝐿𝑦:

 if distance(𝑝, 𝑞):
 𝑎 = (𝑝, 𝑞)
 return 𝑎

	Slide 1: CSE 421 Winter 2025 Lecture 9: Divide and Conquer
	Slide 2: Trominos Tiling
	Slide 3: Trominoes Puzzle Solution
	Slide 4: Trominoes Puzzle Solution
	Slide 5: Trominoes Puzzle Solution
	Slide 6: Trominoes Puzzle Solution
	Slide 7: Trominoes Puzzle Solution
	Slide 8: Divide and Conquer
	Slide 9: Trominoes Puzzle Solution
	Slide 10: Divide and Conquer (Trominoes)
	Slide 11: Divide and Conquer (Merge Sort)
	Slide 12: Divide and Conquer (Running Time)
	Slide 13: Closest Pair of Tomatoes
	Slide 14: Closest Pair of Points
	Slide 15: Closest Pair of Point D&C Idea
	Slide 16: Closest Pair: Base Cases
	Slide 17: Closest Pair: First Idea
	Slide 18: Closest Pair: First Idea - Problem
	Slide 19: Finding the Closest Crossing Pair – 1st Idea
	Slide 20: Finding the Closest Crossing Pair – 2nd Idea
	Slide 21: Problem with the 2nd Idea
	Slide 22: Finding the Closest Crossing Pair – 3rd Idea
	Slide 23: Divide and Conquer (Closest Pair of Points)
	Slide 24: Surprisingly, This works!
	Slide 25: Why is 7 enough?
	Slide 26: Full Algorithm

