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Greedy Algorithms
Hard to define exactly but can give general properties

• Solution is built in small steps

• Decisions on how to build the solution are made to 
maximize some criterion without looking to the future

• Want the ‘best’ current partial solution as if the current step were the 
last step

May be more than one greedy algorithm using different criteria to 
solve a given problem

• Not obvious which criteria will actually work
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Greedy Analysis Strategies
Greedy algorithm stays ahead:  Show that after each step of the greedy 
algorithm, its solution is at least as good as any other algorithm’s

• Consider an arbitrary other PB&J sandwich. Show that every ingredient I use increases 
the deliciousness by at least as much as the other sandwich’s ingredient.

Structural:  Discover a simple "structural" bound asserting that every possible 
solution must have a certain value. Then show that your algorithm always 
achieves this bound.

• Show that the maximum deliciousness of a PB&J sandwich is 9.5/10, then show that 
my sandwich has a deliciousness score of 9.5.

Exchange argument: Gradually transform any solution to the one found by 
the greedy algorithm without hurting its quality.

• Consider an arbitrary other PB&J sandwich. Show that, for each ingredient, swapping it 
out with my choice won’t decrease the deliciousness.
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Scheduling All Intervals: Interval Partitioning
Interval Partitioning:

• Lecture 𝒋 starts at 𝒔𝒋 and finishes at 𝒇𝒋.

Goal:  find minimum number of rooms to schedule all lectures so that no two occur at the same 
time in the same room.

Example:  This schedule uses 4 rooms to schedule 10 lectures.
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Scheduling All Intervals: Interval Partitioning

Interval Partitioning:
• Lecture 𝒋 starts at 𝒔𝒋 and finishes at 𝒇𝒋.

Goal:  find minimum number of rooms to schedule all lectures so that no two occur at the same 
time in the same room.

Example:  This schedule uses only 3 rooms.
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Greedy Analysis Strategies
Greedy algorithm stays ahead:  Show that after each step of the greedy 
algorithm, its solution is at least as good as any other algorithm’s

• Consider an arbitrary other PB&J sandwich. Show that every ingredient I use increases 
the deliciousness by at least as much as the other sandwich’s ingredient.

Structural:  Discover a simple "structural" bound asserting that every possible 
solution must have a certain value. Then show that your algorithm always 
achieves this bound.

• Show that the maximum deliciousness of a PB&J sandwich is 9.5/10, then show that 
my sandwich has a deliciousness score of 9.5.

Exchange argument: Gradually transform any solution to the one found by 
the greedy algorithm without hurting its quality.

• Consider an arbitrary other PB&J sandwich. Show that, for each ingredient, swapping it 
out with my choice won’t decrease the deliciousness.
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Scheduling All Intervals: Interval Partitioning
Defn:  The depth of a set of open intervals is the maximum number that contain any given time.

Key observation:  # of rooms needed ≥ depth.

Example:  This schedule uses only 𝟑 rooms.   Since depth ≥ 𝟑 this is optimal.
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A simple greedy algorithm
Sort requests in increasing order of start times (𝒔𝟏, 𝒇𝟏), … , (𝒔𝒏, 𝒇𝒏)

  

𝒍𝒂𝒔𝒕𝟏= 𝟎  // finish time of last request currently scheduled in room 𝟏 

for 𝒊 = 𝟏 to 𝒏 {

 𝒋 = 𝟏

    while (request 𝒊 not scheduled) {

  if 𝒔𝒊 
 𝒍𝒂𝒔𝒕𝒋 then 

       schedule request 𝒊 in room 𝒋

    𝒍𝒂𝒔𝒕𝒋= 𝒇𝒊  

  𝒋 = 𝒋 + 𝟏

                if 𝒍𝒂𝒔𝒕𝒋 
undefined then 𝒍𝒂𝒔𝒕𝒋= 𝟎 

    }

}
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Look for the first room where the request 
will fit, opening a new room if all the 
others used so far are full.



Interval Partitioning:  Greedy Analysis

Observation:  Greedy algorithm never schedules two incompatible lectures in the 
             same room

• Only schedules request 𝒊 in room 𝒋  if 𝒔𝒊 ≥ 𝒍𝒂𝒔𝒕𝒋

Theorem:  Greedy algorithm is optimal.

Proof: 
Let 𝒅 = number of rooms that the greedy algorithm allocates.

• Room 𝒅 is allocated because we needed to schedule a request, say 𝒋, that is incompatible with 
some request in each of the other 𝒅 − 𝟏 rooms.

• Since we sorted by start time, these incompatibilities are caused by requests that start no later 
than 𝒔𝒋 and finish after 𝒔𝒋.

So… we have 𝒅 requests overlapping at time 𝒔𝒋 +   for some (maybe tiny)  > 𝟎.

Key observation    all schedules use  𝒅 rooms.  
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Sort requests in increasing order of start times (𝒔𝟏, 𝒇𝟏), … , (𝒔𝒏, 𝒇𝒏)

  

𝒍𝒂𝒔𝒕𝟏 
= 𝟎  // finish time of last request currently scheduled in room 𝟏 

for 𝒊 = 𝟏 to 𝒏 {

 𝒋 = 𝟏

    while (request 𝒊 not scheduled) {

  if 𝒔𝒊 
 𝒍𝒂𝒔𝒕𝒋 then 

       schedule request 𝒊 in room 𝒋

    𝒍𝒂𝒔𝒕𝒋= 𝒇𝒊  

  𝒋 = 𝒋 + 𝟏

                if 𝒍𝒂𝒔𝒕𝒋 
undefined then 𝒍𝒂𝒔𝒕𝒋 

=𝟎 

    }

}

A simple greedy algorithm
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Runtime analysis

𝑂(𝒏 log 𝒏)

Might need to try all 𝒅 
rooms to schedule a 
request

𝑂(𝒏 𝒅)

𝒅 might be as big as 𝒏

Worst case  𝚯(𝒏𝟐)



Sort requests in increasing order of start times 𝒔𝟏, 𝒇𝟏 , … , 𝒔𝒏, 𝒇𝒏

𝒅 = 𝟏 

schedule request 𝟏 in room 𝟏

𝒍𝒂𝒔𝒕𝟏 = 𝒇𝟏 

insert 𝟏 into priority queue 𝑸 with key = 𝒍𝒂𝒔𝒕𝟏

for 𝒊 = 𝟐 to 𝒏 {

       𝒋 = findmin(𝑸)

  if 𝒔𝒊 
 𝒍𝒂𝒔𝒕𝒋 then { 

             schedule request 𝒊 in room 𝒋

             𝒍𝒂𝒔𝒕𝒋  = 𝒇𝒊

         increasekey(𝒋,𝑸) to 𝒍𝒂𝒔𝒕𝒋 }

     else {

             𝒅 = 𝒅 + 𝟏

             schedule request 𝒊 in room 𝒅

             𝒍𝒂𝒔𝒕𝒅 = 𝒇𝒊

             insert 𝒅 into priority queue 𝑸 with key = 𝒍𝒂𝒔𝒕𝒅 
}

}

A more efficient implementation: Priority 
queue
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Greedy Analysis Strategies
Greedy algorithm stays ahead:  Show that after each step of the greedy 
algorithm, its solution is at least as good as any other algorithm’s

• Consider an arbitrary other PB&J sandwich. Show that every ingredient I use increases 
the deliciousness by at least as much as the other sandwich’s ingredient.

Structural:  Discover a simple "structural" bound asserting that every possible 
solution must have a certain value. Then show that your algorithm always 
achieves this bound.

• Show that the maximum deliciousness of a PB&J sandwich is 9.5/10, then show that 
my sandwich has a deliciousness score of 9.5.

Exchange argument: Gradually transform any solution to the one found by 
the greedy algorithm without hurting its quality.

• Consider an arbitrary other PB&J sandwich. Show that, for each ingredient, swapping it 
out with my choice won’t decrease the deliciousness.
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Interval Scheduling:  Analysis (Exchange form)
Theorem:   Greedy (by-finish-time) algorithm produces an optimal solution

Proof:
• Let 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒕 denote set of jobs selected by greedy algorithm.

• Let 𝒐𝟏, 𝒐𝟐, … , 𝒐𝒔 denote set of jobs in an alternative optimal solution with
𝒂𝟏 = 𝒐𝟏, 𝒂𝟐 = 𝒐𝟐, … , 𝒂𝒌 = 𝒐𝒌 (i.e. the solutions match for the first 𝒌 intervals).

• We will show that exchanging out 𝒐𝒌+𝟏 in favor of 𝒂𝒌+𝟏 is also a valid schedule

• If 𝒐𝒌+𝟏 exists then 𝒂𝒌+𝟏 must exist, since 𝒐𝒌+𝟏 is an example of an interval compatible with 
all of 𝒂𝟏, … , 𝒂𝒌.
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Interval Scheduling:  Analysis (Exchange form)
Theorem:   Greedy (by-finish-time) algorithm produces an optimal solution

Proof:
• Let 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒕 denote set of jobs selected by greedy algorithm.

• Let 𝒐𝟏, 𝒐𝟐, … , 𝒐𝒔 denote set of jobs in an alternative optimal solution with
𝒂𝟏 = 𝒐𝟏, 𝒂𝟐 = 𝒐𝟐, … , 𝒂𝒌 = 𝒐𝒌 (i.e. the solutions match for the first 𝒌 intervals).

• We will show that exchanging out 𝒐𝒌+𝟏 in favor of 𝒂𝒌+𝟏 is also a valid schedule

• If 𝒐𝒌+𝟏 exists then 𝒂𝒌+𝟏 must exist, since 𝒐𝒌+𝟏 is an example of an interval compatible with 
all of 𝒂𝟏, … , 𝒂𝒌.

• If 𝒂𝒌+𝟏 ≠ 𝒐𝒌+𝟏 then 𝒂𝒌+𝟏 the finish time of 𝒂𝒌+𝟏 is less than or equal to that of 𝒐𝒌+𝟏
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a𝒌+1

Interval Scheduling:  Analysis (Exchange form)
Theorem:   Greedy (by-finish-time) algorithm produces an optimal solution

Proof:
• Let 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒕 denote set of jobs selected by greedy algorithm.

• Let 𝒐𝟏, 𝒐𝟐, … , 𝒐𝒔 denote set of jobs in an alternative optimal solution with
𝒂𝟏 = 𝒐𝟏, 𝒂𝟐 = 𝒐𝟐, … , 𝒂𝒌 = 𝒐𝒌 (i.e. the solutions match for the first 𝒌 intervals).

• We will show that exchanging out 𝒐𝒌+𝟏 in favor of 𝒂𝒌+𝟏 is also a valid schedule

• If 𝒐𝒌+𝟏 exists then 𝒂𝒌+𝟏 must exist, since 𝒐𝒌+𝟏 is an example of an interval compatible with 
all of 𝒂𝟏, … , 𝒂𝒌.

• If 𝒂𝒌+𝟏 ≠ 𝒐𝒌+𝟏 then 𝒂𝒌+𝟏 the finish time of 𝒂𝒌+𝟏 is less than or equal to that of 𝒐𝒌+𝟏

• This means 𝒂𝒌+𝟏 is also compatible with 𝒐𝒌+𝟐, so 𝒐𝟏, … , 𝒂𝒌+𝟏, … , 𝒐𝒔 is a solution that 
matches greedy for the first 𝒌 + 𝟏 intervals.
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Scheduling to Minimize Lateness
Scheduling to minimize lateness:

• Single resource as in interval scheduling but, instead of start and finish times, 
request 𝒊 has

• Time requirement 𝒕𝒊 which must be scheduled in a contiguous block

• Target deadline 𝒅𝒊 by which time the request would like to be finished

• Overall start time 𝒔 for all jobs

Requests are scheduled by the algorithm into time intervals [𝒔𝒊, 𝒇𝒊] s.t.  𝒕𝒊 = 𝒇𝒊 − 𝒔𝒊

• Lateness of schedule for request 𝒊 is

• If 𝒇𝒊 > 𝒅𝒊 then request 𝒊 is late by 𝑳𝒊 =  𝒇𝒊 − 𝒅𝒊 ; otherwise its lateness 𝑳𝒊 =  𝟎

• Maximum lateness 𝑳 = max𝒊 𝑳𝒊 

Goal: Find a schedule for all requests (values of 𝒔𝒊 and 𝒇𝒊 for each request 𝒊) to   
   minimize the maximum lateness, 𝑳.
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Scheduling to Minimizing Lateness

• Example:
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lateness = 0lateness = 2 max lateness = 6
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Minimizing Lateness:  Greedy Algorithms

Greedy template:  Consider jobs in some order. 

[Shortest processing time first]  Consider jobs in ascending order of 
               processing time 𝒕𝒋.

[Earliest deadline first] Consider jobs in ascending order of deadline 𝒅𝒋.

[Smallest slack]  Consider jobs in ascending order of slack 𝒅𝒋 −  𝒕𝒋.
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Minimizing Lateness:  Greedy Algorithms

Greedy template:  Consider jobs in some order. 

[Shortest processing time first]  Consider jobs in ascending order of 
               processing time 𝒕𝒋.

 

[Smallest slack]  Consider jobs in ascending order of slack 𝒅𝒋 −  𝒕𝒋.

counterexample
dj

tj

2

1

1

10

10

2

counterexample

dj

tj

100

1

1

10

10

2 Will schedule 1 (length 1) before 2 (length 10).
2 can only be scheduled at time 1
1 will finish at time 11 >10. Lateness 1.
Lateness 0 possible If 1 goes last.

Will schedule 2 (slack 0) before 1 (slack 1).
1 can only be scheduled at time 10
1 will finish at time 11 >10. Lateness 9.
Lateness 1 possible if 1 goes first.
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Minimizing Lateness:  Greedy Algorithms

Greedy template:  Consider jobs in some order. 

 

                

[Earliest deadline first]  Consider jobs in ascending order of deadline 𝒅𝒋.



Greedy Algorithm: Earliest Deadline First

Consider requests in increasing order of deadlines

Schedule the request with the earliest deadline as soon as the resource is available
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Scheduling to Minimizing Lateness

• Example:
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d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2 max lateness = 6
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d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9
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Original Schedule

EDF Schedule
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Proof for Greedy EDF Algorithm: Exchange Argument

Show that if there is another schedule O (think optimal schedule) 
then we can gradually change O so that… 

• at each step the maximum lateness in O never gets worse

• it eventually becomes the same cost as A

This means that A is at least as good as O, so A is also optimal!
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Minimizing Lateness: No Idle Time
Observation:  There exists an optimal schedule with no idle time

Observation: The greedy EDF schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12At least as good



Defn:  An inversion in schedule 𝑺 is a pair of jobs 𝒊 and 𝒋    
          such that 𝒅𝒊 < 𝒅𝒋 but 𝒋 is scheduled before 𝒊.

Observation: Greedy EDF schedule has no inversions.

Observation:  If schedule 𝑺 (with no idle time) has an inversion   
      it has two adjacent jobs that are inverted

• Any job in between would be inverted w.r.t. one of the two ends
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Minimizing Lateness: Inversions

ij

inversion𝒅𝒊 𝒅𝒋



Defn:  An inversion in schedule 𝑺 is a pair of jobs 𝒊 and 𝒋    
          such that 𝒅𝒊 < 𝒅𝒋 but 𝒋 is scheduled before 𝒊.

Claim:  Swapping two adjacent, inverted jobs 

• reduces the # of inversions by 𝟏       

• does not increase the max lateness.
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Minimizing Lateness: Inversions

ij

i j

before swap

after swap

𝒇′𝒋

𝒇𝒊
inversion𝒅𝒊 𝒅𝒋

𝒇𝒊
′



Defn:  An inversion in schedule 𝑺 is a pair of jobs 𝒊 and 𝒋    
          such that 𝒅𝒊 < 𝒅𝒋 but 𝒋 is scheduled before 𝒊.

Claim:  Maximum lateness does not increase
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Minimizing Lateness: Inversions

ij

i j

before swap

after swap

𝒇𝒋
′

𝒇𝒊

𝒇𝒊
′

𝒇𝒋

𝒅𝒊 𝒅𝒋

old lateness 𝑳𝒊

new lateness 𝑳𝒋
′
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Optimal schedules and inversions

Claim: There is an optimal schedule with no idle time and no inversions

Proof:

By previous argument there is an optimal schedule O with no idle time

If O has an inversion then it has an adjacent pair of requests in its schedule 
that are inverted and can be swapped without increasing lateness

…  we just need to show one more claim that eventually this swapping stops 
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Optimal schedules and inversions

Claim:  Eventually these swaps will produce an optimal schedule with no inversions.

Proof:

Each swap decreases the # of inversions by 𝟏

There are a bounded # of inversions possible in the worst case

• at most  𝒏(𝒏 − 𝟏)/𝟐 but we only care that this is finite.

The # of inversions can’t be negative so this must stop.
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Idleness and Inversions are the only issue
Claim: All schedules with no inversions and no idle time have the same maximum 

lateness.

Proof:

Schedules can differ only in how they order requests with equal deadlines

Consider all requests having some common deadline 𝒅.

• Maximum lateness of these jobs is based only on finish time of the last one … 

and the set of these requests occupies the same time segment in both schedules.

⇒  The last of these requests finishes at the same time in any such schedule.
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Earliest Deadline First is optimal
We know that

• There is an optimal schedule with no idle time or inversions

• All schedules with no idle time or inversions have the same maximum lateness

• EDF produces a schedule with no idle time or inversions

So …

• EDF produces an optimal schedule



Greedy Analysis Strategies
Greedy algorithm stays ahead:  Show that after each step of the greedy 
algorithm, its solution is at least as good as any other algorithm's

Structural:  Discover a simple "structural" bound asserting that every possible 
solution must have a certain value. Then show that your algorithm always 
achieves this bound.

Exchange argument:  Gradually transform any solution to the one found by 
the greedy algorithm without hurting its quality.
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Single-source shortest paths
Given:  an (un)directed graph 𝑮 = (𝑽, 𝑬) with each edge 𝒆 having a 
non-negative weight 𝒘(𝒆) and a vertex 𝒔

Find: (length of) shortest paths from 𝒔 to each vertex in 𝑮
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A Greedy Algorithm
Dijkstra’s Algorithm:

• Maintain a set 𝑺 of vertices whose shortest paths are known

• initially 𝑺 = {𝒔}

• Maintaining current best lengths of paths that only go through 𝑺 to 
each of the vertices in 𝑮

• path-lengths to elements of 𝑺 will be right,  to 𝑽 ∖ 𝑺 they might 
not be right

• Repeatedly add vertex 𝒗 to 𝑺 that has the shortest path-length of 
any vertex in 𝑽 ∖ 𝑺 

• update path lengths based on new paths through 𝒗
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Dijkstra’s Algorithm
Dijkstra(𝑮,𝒘,s)

 𝑺 = {𝒔}

 𝒅[𝒔] = 𝟎

 while 𝑺𝑽 {

 among all edges 𝒆 = (𝒖, 𝒗) s.t. 𝒗𝑺 and 𝒖𝑺 select* one  with the minimum value of 𝒅[𝒖] + 𝒘(𝒆)   
𝑺 = 𝑺 ∪ 𝒗

   𝒅[𝒗] =𝒅 𝒖 + 𝒘 𝒆

   𝒑𝒓𝒆𝒅[𝒗]=𝒖

} 

*For each 𝒗𝑺 maintain 𝒅’ 𝒗  = minimum value of 𝒅[𝒖] + 𝒘(𝒆)                                                                      
              over all vertices 𝒖𝑺 s.t. 𝒆 = (𝒖, 𝒗) is in 𝑮
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm Correctness

64

Suppose that all distances to vertices in 𝑺 are correct
and 𝒗 has smallest current value 𝒅′[𝒗] in 𝑽 ∖ 𝑺

Since 𝒗 was smallest, 𝒅’ 𝒗 ≤  𝒅’[𝒙]

𝒙 → 𝒗 path length  0

⇒ 𝒅′[𝒗] = length of shortest path from 𝒔 to 𝒗 with only last edge leaving 𝑺 

𝒔

𝒗

𝒙
𝑺 Suppose some other path 𝑷 to 𝒗.        

Let 𝒙 = 1st vertex on this path not in 𝑺

⇒ length of 𝑷 is at least 𝒅’[𝒗]  

Therefore adding 𝒗 to 𝑺 maintains that all distances inside 𝑺 are correct

𝑽 ∖ 𝑺

edge
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Dijkstra’s Algorithm
• Algorithm also produces a tree of shortest paths to 𝒗 following the 

inverse of 𝒑𝒓𝒆𝒅 links
• From 𝒗 follow its ancestors in the tree back to 𝒔 reversing edges along the 

path

• If all you care about is the shortest path from 𝒔 to 𝒗 simply stop 
the algorithm when 𝒗 is added to 𝑺



66

Dijkstra’s Algorithm
Dijkstra(𝑮,𝒘,s)

 𝑺 = {𝒔}

 𝒅[𝒔] = 𝟎

 while 𝑺𝑽 {

 among all edges 𝒆 = (𝒖, 𝒗) s.t. 𝒗𝑺 and 𝒖𝑺 select* one  with the minimum value of 𝒅[𝒖] + 𝒘(𝒆)   
𝑺 = 𝑺 ∪ 𝒗

   𝒅[𝒗] =𝒅 𝒖 + 𝒘 𝒆

   𝒑𝒓𝒆𝒅[𝒗]=𝒖

} 

*For each 𝒗𝑺 maintain 𝒅’ 𝒗  = minimum value of 𝒅[𝒖] + 𝒘(𝒆)                                                                      
              over all vertices 𝒖𝑺 s.t. 𝒆 = (𝒖, 𝒗) is in 𝑮



Implementing Dijkstra’s AlgorithmNeed to 
• keep current distance values 𝒅’ ⋅  for nodes in 𝑽 ∖ 𝑺

• find minimum current distance value 𝒅’ 𝒗

• reduce distances in 𝒅’ ⋅  when vertex 𝒗 moved to 𝑺

67
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Data Structure Review
Priority Queue:

• Elements each with an associated key

• Operations

• Insert

• Find-min

• Return the element with the smallest key

• Delete-min

• Return the element with the smallest key and delete it from the data structure

• Decrease-key

• Decrease the key value of some element

Implementations

• Arrays:   𝑂(𝒏) time find/delete-min,  𝑂(𝟏) time insert/decrease-key

• Heaps:  𝑂(log 𝒏) time insert/decrease-key/delete-min, 𝑂(𝟏) time find-min
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Dijkstra’s Algorithm with Priority Queues

• For each vertex 𝒗 not in tree maintain cost 𝒅′[𝒗] of current 
cheapest path through tree to 𝒗
• Store 𝒗 in priority queue with key = length of this path

• Operations:  
• 𝒏 − 𝟏 insertions (each vertex added once)

• 𝒏 − 𝟏 delete-mins (each vertex deleted once)

• pick the vertex of smallest key, remove it from the priority 
queue and add its edge to the graph

• < 𝒎 decrease-keys (each edge updates one vertex)
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Dijskstra’s Algorithm with Priority Queues
Priority queue implementations

• Array

• insert 𝑂(𝟏), delete-min 𝑂(𝒏), decrease-key 𝑂(𝟏)

• total 𝑂(𝒏 + 𝒏𝟐 + 𝒎) = 𝑂(𝒏2)

• Heap

• insert, delete-min, decrease-key all 𝑂(log 𝒏)

• total 𝑂(𝒎 log 𝒏)

• 𝒅-Heap  (𝒅 = 𝒎/𝒏)

• insert, decrease-key 𝑂(log𝒎/𝒏𝒏)

• delete-min 𝑂((𝒎/𝒏)log𝒎/𝒏 𝒏)

• total 𝑂(𝒎 log𝒎/𝒏𝒏)

Worse if 𝒎 = 𝚯(𝒏𝟐)

Better for all values of 𝒎

𝒎

𝒏 − 𝟏 
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