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Greedy Algorithms

Hard to define exactly but can give general properties
e Solution is built in small steps

* Decisions on how to build the solution are made to
maximize some criterion without looking to the future

* Want the ‘best’ current partial solution as if the current step were the
last step

May be more than one greedy algorithm using different criteria to
solve a given problem

* Not obvious which criteria will actually work



Greedy Analysis Strategies

Greedy algorithm stays ahead: Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithm’s

* Consider an arbitrary other PB&J sandwich. Show that every ingredient | use increases
the deliciousness by at least as much as the other sandwich’s ingredient.

Structural: Discover a simple "structural” bound asserting that every possible
solution must have a certain value. Then show that your algorithm always
achieves this bound.

* Show that the maximum deliciousness of a PB&J sandwich is 9.5/10, then show that
my sandwich has a deliciousness score of 9.5.

Exchange argument: Gradually transform any solution to the one found by
the greedy algorithm without hurting its quality.

* Consider an arbitrary other PB&J sandwich. Show that, for each ingredient, swapping it
out with my choice won’t decrease the deliciousness.



Scheduling All Intervals: Interval Partitioning

Interval Partitioning:
* Lecture j starts at S; and finishes at fj.

Goal: find minimum number of rooms to schedule all lectures so that no two occur at the same
time in the same room.

Example: This schedule uses 4 rooms to schedule 10 lectures.

c J Can you do better?
c d g
b h
a f i

9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 Ti
ime



Scheduling All Intervals: Interval Partitioning

Interval Partitioning:
* Lecture j starts at S; and finishes at fj.

Goal: find minimum number of rooms to schedule all lectures so that no two occur at the same
time in the same room.

Example: This schedule uses only 3 rooms.

c d f j
b g i
e e

9 2:30 10 10:30 11 11:30 12 12:30 1 130 2 2:30 3 3:30 4 4:30 Ti
ime



Greedy Analysis Strategies

Greedy algorithm stays ahead: Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithm’s

* Consider an arbitrary other PB&J sandwich. Show that every ingredient | use increases
the deliciousness by at least as much as the other sandwich’s ingredient.

Structural: Discover a simple "structural” bound asserting that every possible
solution must have a certain value. Then show that your algorithm always
achieves this bound.

* Show that the maximum deliciousness of a PB&J sandwich is 9.5/10, then show that
my sandwich has a deliciousness score of 9.5.

Exchange argument: Gradually transform any solution to the one found by
the greedy algorithm without hurting its quality.

e Consider an arbitrary other PB&J sandwich. Show that, for each ingredient, swapping it
out with my choice won’t decrease the deliciousness.




Scheduling All Intervals: Interval Partitioning

Defn: The depth of a set of open intervals is the maximum number that contain any given time.

Key observation: # of rooms needed = depth.

Example: This schedule uses only 3 rooms. Since depth > 3 this is optimal.

depth = 3
C E d f J
b I g i
a e ok

9 9:30 10 10:30 11 1130 12 12:30 1 130 2 2:30 3 3:30 4 4:30 Ti
ime



A simple greedy algorithm

Sort requests in increasing order of start times (s4, 1), ---, (S,,, f,))

last,= 0 //finish time of last request currently scheduled in room 1
fori = 1ton{
Jj =1 -
while (request i not scheduled) {
if s;,> last; then

schedule request i in room j | Look for the first room where the request
~ will fit, opening a new room if all the
laSti_ fi others used so far are full.
j=j+1

if lastjundefined then lastj: 0



Interval Partitioning: Greedy Analysis

Observation: Greedy algorithm never schedules two incompatible lectures in the
same room
* Only schedules request i inroom j if s; = last;

Theorem: Greedy algorithm is optimal.

Proof:
Let d = number of rooms that the greedy algorithm allocates.

* Room d is allocated because we needed to schedule a request, say j, that is incompatible with
some request in each of the other d — 1 rooms.

* Since we sorted by start time, these incompatibilities are caused by requests that start no later
than s; and finish after s;.

So... we have d requests overlapping at time s; + & for some (maybe tiny) e > 0.

Key observation = all schedules use > d rooms.



A simple greedy algorithm
Sort requests in increasing order of start times (s, f1), -, (S,, [,,)

last, =0 // finish time of last request currently scheduled in room 1
fori = 1ton{

j=1

while (request i not scheduled) {

if s,> last; then
Might need to try all d
rooms to schedule a

last;= f; request
j=j+1
if last]- undefined then last]- =0

schedule request i in room j

Runtime analysis

O(nlogn)

O(nd)

d might be as bigasn
Worst case 0(n?)
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A more efficient implementation: Priority

queue O(nlogn)
Sort requests in increasing order of start times (s, f1), ..., (5, [,,)
d=1
schedule request 1 inroom 1
last,=f, 0(1)
insert 1 into priority queue Q with key = last,
for i=2ton{ O(nlogd)
J =findmin(Q)
if s;> last; then { O(log d)
schedule request i in room j
last; = f;
increasekey(j,Q) to last; }
else { ®(n log n) total
d=d+1 O(log d)
schedule request i in room d
last,; = f;

insert d into priority queue Q with key = last;}



Greedy Analysis Strategies

Greedy algorithm stays ahead: Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithm’s

* Consider an arbitrary other PB&J sandwich. Show that every ingredient | use increases
the deliciousness by at least as much as the other sandwich’s ingredient.

Structural: Discover a simple "structural” bound asserting that every possible
solution must have a certain value. Then show that your algorithm always
achieves this bound.

* Show that the maximum deliciousness of a PB&J sandwich is 9.5/10, then show that
my sandwich has a deliciousness score of 9.5.

Exchange argument: Gradually transform any solution to the one found by
the greedy algorithm without hurting its quality.

e Consider an arbitrary other PB&J sandwich. Show that, for each ingredient, swapping it
out with my choice won’t decrease the deliciousness.
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Interval Scheduling: Analysis (Exchange form)

Theorem: Greedy (by-finish-time) algorithm produces an optimal solution

Proof:
* Letaq,a,, ..., a; denote set of jobs selected by greedy algorithm.

* Let 04,05, ..., 0, denote set of jobs in an alternative optimal solution with
a; = 04,d, = 09, ..., A} = 0y (i.e. the solutions match for the first k intervals).

* We will show that exchanging out 0,4 in favor of a4 is also a valid schedule

* If 0,1 exists then a;, 1 must exist, since 0,1 is an example of an interval compatible with
allof a4, ..., ay.

Greedy: 4 2] A Aper1

v

OPT: 04 . Ok Ok+1

v
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Interval Scheduling: Analysis (Exchange form)

Theorem: Greedy (by-finish-time) algorithm produces an optimal solution

Proof:
* Letaq,a,, ..., a; denote set of jobs selected by greedy algorithm.

* Let 04,05, ..., 0, denote set of jobs in an alternative optimal solution with
a; = 04,d, = 09, ..., A} = 0y (i.e. the solutions match for the first k intervals).

* We will show that exchanging out 0,4 in favor of a4 is also a valid schedule

* If 0,1 exists then a;, 1 must exist, since 0,1 is an example of an interval compatible with
allof a4, ..., ay.
* Ifay,q # 041 then a4 the finish time of a;, 1 is less than or equal to that of 0y, ¢

Greedy: 4 2] Ay Aper1

v

OPT: 04 . Ok Ok+1

v
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Interval Scheduling: Analysis (Exchange form)
Theorem: Greedy (by-finish-time) algorithm produces an optimal solution

Proof:
* Letaq,a,, ..., a; denote set of jobs selected by greedy algorithm.

* Let 04,05, ..., 0, denote set of jobs in an alternative optimal solution with
a; = 04,d, = 09, ..., A} = 0y (i.e. the solutions match for the first k intervals).

* We will show that exchanging out 0,4 in favor of a4 is also a valid schedule

* If 0,1 exists then a;, 1 must exist, since 0,1 is an example of an interval compatible with
allof aq, ..., ay.

* Ifay,q # 041 then a4 the finish time of a;, 1 is less than or equal to that of 0y, ¢

* This means a1 is also compatible with 0;,,,,s0 04, ..., @j11, ..., 05 is a solution that
matches greedy for the first k + 1 intervals.

Greedy: 2] 2] Ay Aper1

v

OPT: 04 02 Ok g1

v
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Scheduling to Minimize Lateness

Scheduling to minimize lateness:

» Single resource as in interval scheduling but, instead of start and finish times,
request i has

* Time requirement t; which must be scheduled in a contiguous block
* Target deadline d; by which time the request would like to be finished
e Overall start time s for all jobs

Requests are scheduled by the algorithm into time intervals [s;, f;] s.t. &, = f; — s;
» Lateness of schedule for request i is
 If f; > d;thenrequestiislateby L, = f,— d;; otherwise its lateness L, = 0

* Maximum lateness L = max; Li

Goal: Find a schedule for all requests (values of s; and f; for each request i) to
minimize the maximum lateness, L.

19



Scheduling to Minimizing Lateness

1]2]3[4[5]6
3 2 1 4 3 2

e Example: J
P 6 8 9 9 14 15
lateness = 2 lateness =0 max lateness = 6
| | |
d3=9 d2=8 d6:15 d1=6 d5:14 d4:9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Minimizing Lateness: Greedy Algorithms

Greedy template: Consider jobs in some order.

[Shortest processing time first] Consider jobs in ascending order of
processing time ;.

[Earliest deadline first] Consider jobs in ascending order of deadline d]-.

[Smallest slack] Consider jobs in ascending order of slack d]- —

21



Minimizing Lateness: Greedy Algorithms

Greedy template: Consider jobs in some order.

[Shortest processing time first] Consider jobs in ascending order of
processing time ;.

Will schedule 1 (length 1) before 2 (length 10).
i 1 10 counterexample 2 ca.n qn!y be sc.heduled at time 1
100 10 1 will finish at time 11 >10. Lateness 1.

Lateness O possible If 1 goes last.

[ISmallest slack] Consider jobs in ascending order of slack dj — ;.

Will schedule 2 (slack 0) before 1 (slack 1).
1 10 1 can only be scheduled at time 10
> 10 counterexample 1 will finish at time 11 >10. Lateness 9.

Lateness 1 possible if 1 goes first.
22



Minimizing Lateness: Greedy Algorithms

Greedy template: Consider jobs in some order.

[Earliest deadline first] Consider jobs in ascending order of deadline dj.

23



Greedy Algorithm: Earliest Deadline First

Consider requests in increasing order of deadlines

Schedule the request with the earliest deadline as soon as the resource is available

24



Scheduling to Minimizing Lateness

1]2]3[4[5]6
3 2 1 4 3 2

i
* Example: 6 8 9 9 14 15
lateness = 2 lateness = 0 max lateness = 6
| | |
Original Schedule d;=9 d,=8 dy, =15 d, =6 ds = 14 d,;=9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

max lateness = 1

|
EDF SChEdU|e d1=6 d2: 8 d3:9 d4:9 d5: 14 d6: 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Proof for Greedy EDF Algorithm: Exchange Argument

Show that if there is another schedule O (think optimal schedule)
then we can gradually change O so that...

e at each step the maximum lateness in O never gets worse
* it eventually becomes the same cost as A

This means that A is at least as good as O, so A is also optimal!

26



Minimizing Lateness: No Idle Time

Observation: There exists an optimal schedule with no idle time

At least as good d

Observation: The greedy EDF schedule has no idle time.

11

11
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Minimizing Lateness: Inversions

Defn: Aninversion in schedule § is a pair of jobs i and j
such that d; < d; but j is scheduled before i.

inversion

| e -

Observation: Greedy EDF schedule has no inversions.

Observation: If schedule S (with no idle time) has an inversion
it has two adjacent jobs that are inverted

* Any job in between would be inverted w.r.t. one of the two ends

28



Minimizing Lateness: Inversions

Defn: An inversion in schedule § is a pair of jobs i and j

such that d; < d; but j is scheduled before i.

d d inversion

fi
vetoreswap [ | N N

after swap [ T D B
fi f

Claim: Swapping two adjacent, inverted jobs
* reduces the # of inversions by 1
e does not increase the max lateness.

29



Minimizing Lateness: Inversions

Defn: An inversion in schedule § is a pair of jobs i and j

such that d; < d; but j is scheduled before i.

d, d,
A fj fi

petore swep [N I N

ster swop [ ——
fi fi
new lateness L; :

old lateness L;

Claim: Maximum lateness does not increase

30



Optimal schedules and inversions

Claim: There is an optimal schedule with no idle time and no inversions

Proof:
By previous argument there is an optimal schedule O with no idle time

If O has an inversion then it has an adjacent pair of requests in its schedule
that are inverted and can be swapped without increasing lateness

.. we just need to show one more claim that eventually this swapping stops

31



Optimal schedules and inversions

Claim: Eventually these swaps will produce an optimal schedule with no inversions.

Proof:
Each swap decreases the # of inversions by 1

There are a bounded # of inversions possible in the worst case
* at most n(n — 1)/2 but we only care that this is finite.

The # of inversions can’t be negative so this must stop.

32



ldleness and Inversions are the only issue

Claim: All schedules with no inversions and no idle time have the same maximum
lateness.

Proof:
Schedules can differ only in how they order requests with equal deadlines

Consider all requests having some common deadline d.

 Maximum lateness of these jobs is based only on finish time of the last one ...
and the set of these requests occupies the same time segment in both schedules.

= The last of these requests finishes at the same time in any such schedule.

33



Earliest Deadline First is optimal

We know that
* There is an optimal schedule with no idle time or inversions
* All schedules with no idle time or inversions have the same maximum lateness
* EDF produces a schedule with no idle time or inversions

So ...
* EDF produces an optimal schedule

34



Greedy Analysis Strategies

Greedy algorithm stays ahead: Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithm's

Structural: Discover a simple "structural" bound asserting that every possible
solution must have a certain value. Then show that your algorithm always
achieves this bound.

Exchange argument: Gradually transform any solution to the one found by
the greedy algorithm without hurting its quality.
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Single-source shortest paths

Given: an (un)directed graph G = (V, E') with each edge e having a
non-negative weight w(e) and a vertex s

Find: (length of) shortest paths from s to each vertex in G



A Greedy Algorithm

Dijkstra’s Algorithm:
* Maintain a set § of vertices whose shortest paths are known
* initially § = {s}
* Maintaining current best lengths of paths that only go through S to
each of the vertices in G

* path-lengths to elements of S will be right, to V' \ S they might
not be right
* Repeatedly add vertex v to S that has the shortest path-length of
any vertexinlV \ §

* update path lengths based on new paths through v



Dijkstra’s Algorithm

Dijkstra(G,w,s)

S = {s}

dis]=0

while S#V {
among all edges e = (u, V) s.t. v¢S and u<S select* one with the minimum value of d|u| + w(e)
S=Su{v}
d[v] =d[u] + w(e)
pred|v]=u

}

*For each v¢S maintain d’[v] = minimum value of d[u] + w(e)
over all verticesueS st.e = (1, v)isin G



Dijkstra’s Algorithm 2.....@%%4 Add to S



Update distances

Dijkstra’s Algorithm 2..“.@,\%04



Dijkstra’s Algorithm

Addto S
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Dijkstra’s Algorithm

Update distances
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm - @_ 4
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Dijkstra’s Algorithm
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Dijkstra’s Algorithm Correctness

Suppose that all distances to vertices in S are correct
and v has smallest current value d'[v] inV \ S

= d'[v] = length of shortest path from s to v with only last edge leaving S

Suppose some other path P to v.
Let x = 15t vertex on this path notin S

Since v was smallest, d’[v] < d’[x]

X — v path length=0

= length of P is at least d'| V]

Therefore adding v to S maintains that all distances inside S are correct



Dijkstra’s Algorithm

* Algorithm also produces a tree of shortest paths to v following the
inverse of pred links

* From v follow its ancestors in the tree back to s reversing edges along the
path

* If all you care about is the shortest path from s to v simply stop
the algorithm when vis added to S



Dijkstra’s Algorithm

Dijkstra(G,w,s)

S = {s}

dis]=0

while S#V {
among all edges e = (u, V) s.t. v¢S and u<S select* one with the minimum value of d|u| + w(e)
S=Su{v}
d[v] =d[u] + w(e)
pred|v]=u

}

*For each v¢S maintain d’[v] = minimum value of d[u] + w(e)
over all verticesueS st.e = (1, v)isin G



vbplementing Dijkstra’s Algorithm

* keep current distance values d’[:] for nodesinV \ S
* find minimum current distance value d’|v]
* reduce distances in d’[-| when vertex v moved to S



Data Structure Review

Priority Queue:
* Elements each with an associated key
* Operations
* Insert
* Find-min
e Return the element with the smallest key
* Delete-min
* Return the element with the smallest key and delete it from the data structure
* Decrease-key
* Decrease the key value of some element

Implementations
* Arrays: O(n) time find/delete-min, O(1) time insert/decrease-key
* Heaps: O(logn) time insert/decrease-key/delete-min, O (1) time find-min



Dijkstra’s Algorithm with Priority Queues

* For each vertex v not in tree maintain cost d'[v]| of current
cheapest path through tree to v

e Store v in priority queue with key = length of this path

* Operations:
* n — 1 insertions (each vertex added once)
* n — 1 delete-mins (each vertex deleted once)

* pick the vertex of smallest key, remove it from the priority
gueue and add its edge to the graph

< m decrease-keys (each edge updates one vertex)



Dijskstra’s Algorithm with Priority Queues

Priority queue implementations
* Array
* insert 0(1), delete-min O(n), decrease-key O(1)
* total O(n + n? + m) = 0(n?)
* Heap
* insert, delete-min, decrease-key all O(logn) Worse if m = ©(n?)
* total O(m logn)
* d-Heap (d = m/n)
m * insert, decrease-key O (log, /n,n)
n—1 ¢ delete-min O((m/n)log,,;, n) Better for all values of m

* total O(m logy, /nn)
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