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Greedy Algorithms
Hard to define exactly but can give general properties

• Solution is built in small steps

• Decisions on how to build the solution are made to 
maximize some criterion without looking to the future

• Want the ‘best’ current partial solution as if the current step were the 
last step

May be more than one greedy algorithm using different criteria to 
solve a given problem

• Not obvious which criteria will actually work
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Greedy Algorithms

• Greedy algorithms
• Easy to describe

• Fast running times

• Work only on certain classes of problems

• Hard part is showing that they are correct

• Focus on methods for proving that greedy algorithms do work 
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Interval Scheduling
Interval Scheduling: 

• Single resource

• Reservation requests of form:
“Can I reserve it from start time 𝒔 to finish time 𝒇?”

𝒔 <  𝒇
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Interval Scheduling
Interval scheduling:

• Job 𝒋 starts at 𝒔𝒋 and finishes at 𝒇𝒋 > 𝒔𝒋.

• Two jobs 𝒊 and 𝒋 are compatible if they don't overlap: 𝒇𝒊 
≤  𝒔𝒋 or 𝒇𝒋 

≤  𝒔𝒊

• Goal: find maximum size subset of mutually compatible jobs.
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Greedy Algorithms for Interval Scheduling

• What criterion should we try?
Shortest interval first
Earliest ending time
Maximize the longest free time
Fewest conflicts first
Pick from the hour with the most concurrent intervals
Earliest start time
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Greedy Algorithms for Interval Scheduling

• What criterion should we try?
• Earliest start time 𝒔𝒊

• Shortest request time 𝒇𝒊 − 𝒔𝒊

  

• Fewest conflicts
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Greedy Algorithms for Interval Scheduling

• What criterion should we try?
• Earliest start time 𝒔𝒊

• Doesn’t work

• Shortest request time 𝒇𝒊 − 𝒔𝒊
• Doesn’t work

• Fewest conflicts
• Doesn’t work

• Earliest finish time 𝒇𝒊
• Works!
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Greedy (by finish time) Algorithm for Interval Scheduling

𝑹 = set of all requests

𝑨 =   

while 𝑹   do:

  Choose request 𝒊𝑹 with smallest finish time 𝒇𝒊

  Add request 𝒊 to 𝑨

  Delete all requests in 𝑹 not compatible with request 𝒊

return 𝑨
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Greedy Analysis Strategies
Greedy algorithm stays ahead:  Show that after each step of the greedy 
algorithm, its solution is at least as good as any other algorithm’s

For interval scheduling: Show that after the greedy algorithm selects each 
interval, any alternative schedule’s selection would have also been non-
conflicting. 

Conclusion: Each choice from the alternative selections can be swapped with 
a greedy choice, making greedy no worse off.
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Interval Scheduling:  Analysis

Claim: 𝑨 is a compatible set of requests and      
  requests are added to 𝑨 in order of finish time

• When we add a request to 𝑨 we delete all incompatible ones from 𝑹

Name the finish times of requests in 𝑨 as a𝟏, a𝟐, ..., a𝒕 in order.

Claim: Let 𝑶 ⊆ 𝑹 be a set of compatible requests whose finish times in order are 
o𝟏, o𝟐, ..., o𝒔.   Then for every integer 𝒌 ≥ 1 we have:

a) if 𝑶 contains a 𝒌th request then 𝑨 does too, and

b)  a𝒌 ≤ o𝒌    “𝑨 is ahead of 𝑶”

Note that a) alone implies that 𝒕 ≥ 𝒔 which means that 𝑨 is optimal but we also 
need b) “stays ahead” to keep the induction going.
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Base Case 𝒌 = 𝟏: 𝑨 includes the request with smallest finish time, so     
   if 𝑶 is not empty then a𝟏 ≤ o𝟏

Inductive Step: Suppose that a𝒌 ≤ o𝒌 and there is a 𝒌+1st request in 𝑶.

 Then 𝒌+1st request in 𝑶 is compatible with a𝟏, a𝟐, ..., a𝒌 since a𝒌 ≤ o𝒌 
  and o𝒌 ≤ start time of 𝒌+1st request in 𝑶 whose finish time is o𝒌+1

⇒ There is a 𝒌+1st request in 𝑨 whose finish time is named a𝒌+1.

Also, since 𝑨 would have considered both requests and chosen the one 
with the earlier finish time, a𝒌+1 ≤ o𝒌+1.  

Inductive Proof of Claim

12

. . .o𝒌+1o1 o2 o𝒌

a1 a2 a𝒌
Greedy:

OPT:

a𝒌+1



Interval Scheduling:  Greedy Algorithm Implementation
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Sort jobs by finish times so that 0  f1  f2  ...  fn.

A = 

last = 0

for j = 1 to n {

    if (last  sj)

      A = A  {j}

      last = fj
}

return A  

𝑂(𝒏 log 𝒏)

𝑂(𝒏)



Scheduling All Intervals: Interval Partitioning
Interval Partitioning:

• Lecture 𝒋 starts at 𝒔𝒋 and finishes at 𝒇𝒋.

Goal:  find minimum number of rooms to schedule all lectures so that no two occur at the same 
time in the same room.

Example:  This schedule uses 4 rooms to schedule 10 lectures.
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Scheduling All Intervals: Interval Partitioning

Interval Partitioning:
• Lecture 𝒋 starts at 𝒔𝒋 and finishes at 𝒇𝒋.

Goal:  find minimum number of rooms to schedule all lectures so that no two occur at the same 
time in the same room.

Example:  This schedule uses only 3 rooms.
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Scheduling All Intervals: Interval Partitioning
Defn:  The depth of a set of open intervals is the maximum number that contain any given time.

Key observation:  # of rooms needed ≥ depth.

Example:  This schedule uses only 𝟑 rooms.   Since depth ≥ 𝟑 this is optimal.
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A simple greedy algorithm
Sort requests in increasing order of start times (𝒔𝟏, 𝒇𝟏), … , (𝒔𝒏, 𝒇𝒏)

  

𝒍𝒂𝒔𝒕𝟏= 𝟎  // finish time of last request currently scheduled in room 𝟏 

for 𝒊 = 𝟏 to 𝒏 {

 𝒋 = 𝟏

    while (request 𝒊 not scheduled) {

  if 𝒔𝒊 
 𝒍𝒂𝒔𝒕𝒋 then 

       schedule request 𝒊 in room 𝒋

    𝒍𝒂𝒔𝒕𝒋= 𝒇𝒊  

  𝒋 = 𝒋 + 𝟏

                if 𝒍𝒂𝒔𝒕𝒋 
undefined then 𝒍𝒂𝒔𝒕𝒋= 𝟎 

    }

}
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Look for the first room where the request 
will fit, opening a new room if all the 
others used so far are full.



Interval Partitioning:  Greedy Analysis

Observation:  Greedy algorithm never schedules two incompatible lectures in the 
             same room

• Only schedules request 𝒊 in room 𝒋  if 𝒔𝒊 ≥ 𝒍𝒂𝒔𝒕𝒋

Theorem:  Greedy algorithm is optimal.

Proof: 
Let 𝒅 = number of rooms that the greedy algorithm allocates.

• Room 𝒅 is allocated because we needed to schedule a request, say 𝒋, that is incompatible with 
some request in each of the other 𝒅 − 𝟏 rooms.

• Since we sorted by start time, these incompatibilities are caused by requests that start no later 
than 𝒔𝒋 and finish after 𝒔𝒋.

So… we have 𝒅 requests overlapping at time 𝒔𝒋 +   for some (maybe tiny)  > 𝟎.

Key observation    all schedules use  𝒅 rooms.  
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Sort requests in increasing order of start times (𝒔𝟏, 𝒇𝟏), … , (𝒔𝒏, 𝒇𝒏)

  

𝒍𝒂𝒔𝒕𝟏 
= 𝟎  // finish time of last request currently scheduled in room 𝟏 

for 𝒊 = 𝟏 to 𝒏 {

 𝒋  = 𝟏

    while (request 𝒊 not scheduled) {

  if 𝒔𝒊 
 𝒍𝒂𝒔𝒕𝒋 then 

       schedule request 𝒊 in room 𝒋

    𝒍𝒂𝒔𝒕𝒋= 𝒇𝒊  

  𝒋 = 𝒋 + 𝟏

                if 𝒍𝒂𝒔𝒕𝒋 
undefined then 𝒍𝒂𝒔𝒕𝒋 

=𝟎 

    }

}

A simple greedy algorithm
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Runtime analysis

𝑂(𝒏 log 𝒏)

Might need to try all 𝒅 
rooms to schedule a 
request

𝑂(𝒏 𝒅)

𝒅 might be as big as 𝒏

Worst case  𝚯(𝒏𝟐)



Sort requests in increasing order of start times 𝒔𝟏, 𝒇𝟏 , … , 𝒔𝒏, 𝒇𝒏

𝒅 = 𝟏 

schedule request 𝟏 in room 𝟏

𝒍𝒂𝒔𝒕𝟏 = 𝒇𝟏 

insert 𝟏 into priority queue 𝑸 with key = 𝒍𝒂𝒔𝒕𝟏

for 𝒊 = 𝟐 to 𝒏 {

       𝒋 = findmin(𝑸)

  if 𝒔𝒊 
 𝒍𝒂𝒔𝒕𝒋 then { 

             schedule request 𝒊 in room 𝒋

             𝒍𝒂𝒔𝒕𝒋  = 𝒇𝒊

         increasekey(𝒋,𝑸) to 𝒍𝒂𝒔𝒕𝒋 }

     else {

             𝒅 = 𝒅 + 𝟏

             schedule request 𝒊 in room 𝒅

             𝒍𝒂𝒔𝒕𝒅 = 𝒇𝒊

             insert 𝒅 into priority queue 𝑸 with key = 𝒍𝒂𝒔𝒕𝒅 
}

}

A more efficient implementation: Priority 
queue
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𝑂(𝒏 log 𝒏)

𝑂(𝒏 log 𝒅)

Θ(𝒏 log 𝒏) total

𝑂(log 𝒅)

𝑂(log 𝒅)

𝑂(𝟏)



Greedy Analysis Strategies
Greedy algorithm stays ahead:  Show that after each step of the greedy 
algorithm, its solution is at least as good as any other algorithm's

Structural:  Discover a simple "structural" bound asserting that every possible 
solution must have a certain value. Then show that your algorithm always 
achieves this bound.

Exchange argument:  Gradually transform any solution to the one found by 
the greedy algorithm without hurting its quality.
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Scheduling to Minimize Lateness
Scheduling to minimize lateness:

• Single resource as in interval scheduling but, instead of start and finish times, 
request 𝒊 has

• Time requirement 𝒕𝒊 which must be scheduled in a contiguous block

• Target deadline 𝒅𝒊 by which time the request would like to be finished

• Overall start time 𝒔 for all jobs

Requests are scheduled by the algorithm into time intervals [𝒔𝒊, 𝒇𝒊] s.t.  𝒕𝒊 = 𝒇𝒊 − 𝒔𝒊

• Lateness of schedule for request 𝒊 is

• If 𝒇𝒊 > 𝒅𝒊 then request 𝒊 is late by 𝑳𝒊 =  𝒇𝒊 − 𝒅𝒊 ; otherwise its lateness 𝑳𝒊 =  𝟎

• Maximum lateness 𝑳 = max𝒊 𝑳𝒊 

Goal: Find a schedule for all requests (values of 𝒔𝒊 and 𝒇𝒊 for each request 𝒊) to   
   minimize the maximum lateness, 𝑳.
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Scheduling to Minimizing Lateness

• Example:
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Minimizing Lateness:  Greedy Algorithms

Greedy template:  Consider jobs in some order. 

[Shortest processing time first]  Consider jobs in ascending order of 
               processing time 𝒕𝒋.

[Earliest deadline first] Consider jobs in ascending order of deadline 𝒅𝒋.

[Smallest slack]  Consider jobs in ascending order of slack 𝒅𝒋 −  𝒕𝒋.
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Minimizing Lateness:  Greedy Algorithms

Greedy template:  Consider jobs in some order. 

[Shortest processing time first]  Consider jobs in ascending order of 
               processing time 𝒕𝒋.

 

[Smallest slack]  Consider jobs in ascending order of slack 𝒅𝒋 −  𝒕𝒋.
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2 Will schedule 1 (length 1) before 2 (length 10).
2 can only be scheduled at time 1
1 will finish at time 11 >10. Lateness 1.
Lateness 0 possible If 1 goes last.

Will schedule 2 (slack 0) before 1 (slack 1).
1 can only be scheduled at time 10
1 will finish at time 11 >10. Lateness 9.
Lateness 1 possible if 1 goes first.



29

Minimizing Lateness:  Greedy Algorithms

Greedy template:  Consider jobs in some order. 

 

                

[Earliest deadline first]  Consider jobs in ascending order of deadline 𝒅𝒋.



Greedy Algorithm: Earliest Deadline First

Consider requests in increasing order of deadlines

Schedule the request with the earliest deadline as soon as the resource is available
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Scheduling to Minimizing Lateness

• Example:
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Proof for Greedy EDF Algorithm: Exchange Argument

Show that if there is another schedule O (think optimal schedule) 
then we can gradually change O so that… 

• at each step the maximum lateness in O never gets worse

• it eventually becomes the same cost as A

This means that A is at least as good as O, so A is also optimal!
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Minimizing Lateness: No Idle Time
Observation:  There exists an optimal schedule with no idle time

Observation: The greedy EDF schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12At least as good



Defn:  An inversion in schedule 𝑺 is a pair of jobs 𝒊 and 𝒋    
          such that 𝒅𝒊 < 𝒅𝒋 but 𝒋 is scheduled before 𝒊.

Observation: Greedy EDF schedule has no inversions.

Observation:  If schedule 𝑺 (with no idle time) has an inversion   
      it has two adjacent jobs that are inverted

• Any job in between would be inverted w.r.t. one of the two ends
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Minimizing Lateness: Inversions
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Defn:  An inversion in schedule 𝑺 is a pair of jobs 𝒊 and 𝒋    
          such that 𝒅𝒊 < 𝒅𝒋 but 𝒋 is scheduled before 𝒊.

Claim:  Swapping two adjacent, inverted jobs 

• reduces the # of inversions by 𝟏       

• does not increase the max lateness.
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Minimizing Lateness: Inversions
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Defn:  An inversion in schedule 𝑺 is a pair of jobs 𝒊 and 𝒋    
          such that 𝒅𝒊 < 𝒅𝒋 but 𝒋 is scheduled before 𝒊.

Claim:  Maximum lateness does not increase
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Minimizing Lateness: Inversions

ij
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𝒇𝒊
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new lateness 𝑳𝒋
′
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Optimal schedules and inversions

Claim: There is an optimal schedule with no idle time and no inversions

Proof:

By previous argument there is an optimal schedule O with no idle time

If O has an inversion then it has an adjacent pair of requests in its schedule 
that are inverted and can be swapped without increasing lateness

…  we just need to show one more claim that eventually this swapping stops 
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Optimal schedules and inversions

Claim:  Eventually these swaps will produce an optimal schedule with no inversions.

Proof:

Each swap decreases the # of inversions by 𝟏

There are a bounded # of inversions possible in the worst case

• at most  𝒏(𝒏 − 𝟏)/𝟐 but we only care that this is finite.

The # of inversions can’t be negative so this must stop.



39

Idleness and Inversions are the only issue
Claim: All schedules with no inversions and no idle time have the same maximum 

lateness.

Proof:

Schedules can differ only in how they order requests with equal deadlines

Consider all requests having some common deadline 𝒅.

• Maximum lateness of these jobs is based only on finish time of the last one … 

and the set of these requests occupies the same time segment in both schedules.

⇒  The last of these requests finishes at the same time in any such schedule.
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Earliest Deadline First is optimal
We know that

• There is an optimal schedule with no idle time or inversions

• All schedules with no idle time or inversions have the same maximum lateness

• EDF produces a schedule with no idle time or inversions

So …

• EDF produces an optimal schedule



Greedy Analysis Strategies
Greedy algorithm stays ahead:  Show that after each step of the greedy 
algorithm, its solution is at least as good as any other algorithm's

Structural:  Discover a simple "structural" bound asserting that every possible 
solution must have a certain value. Then show that your algorithm always 
achieves this bound.

Exchange argument:  Gradually transform any solution to the one found by 
the greedy algorithm without hurting its quality.
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