
CSE 421 Winter 2025
Lecture 6: Greedy

Nathan Brunelle

http://www.cs.uw.edu/421

http://www.cs.uw.edu/421

Greedy Algorithms
Hard to define exactly but can give general properties

• Solution is built in small steps

• Decisions on how to build the solution are made to
maximize some criterion without looking to the future

• Want the ‘best’ current partial solution as if the current step were the
last step

May be more than one greedy algorithm using different criteria to
solve a given problem

• Not obvious which criteria will actually work

2

Greedy Algorithms

• Greedy algorithms
• Easy to describe

• Fast running times

• Work only on certain classes of problems

• Hard part is showing that they are correct

• Focus on methods for proving that greedy algorithms do work

3

Interval Scheduling
Interval Scheduling:

• Single resource

• Reservation requests of form:
“Can I reserve it from start time 𝒔 to finish time 𝒇?”

𝒔 < 𝒇

4

Interval Scheduling
Interval scheduling:

• Job 𝒋 starts at 𝒔𝒋 and finishes at 𝒇𝒋 > 𝒔𝒋.

• Two jobs 𝒊 and 𝒋 are compatible if they don't overlap: 𝒇𝒊
≤ 𝒔𝒋 or 𝒇𝒋

≤ 𝒔𝒊

• Goal: find maximum size subset of mutually compatible jobs.

5
Time0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

Greedy Algorithms for Interval Scheduling

• What criterion should we try?

6

Greedy Algorithms for Interval Scheduling

• What criterion should we try?
• Earliest start time 𝒔𝒊

• Shortest request time 𝒇𝒊 − 𝒔𝒊

• Fewest conflicts

7

Greedy Algorithms for Interval Scheduling

• What criterion should we try?
• Earliest start time 𝒔𝒊

• Doesn’t work

• Shortest request time 𝒇𝒊 − 𝒔𝒊
• Doesn’t work

• Fewest conflicts
• Doesn’t work

• Earliest finish time 𝒇𝒊
• Works!

8

Greedy (by finish time) Algorithm for Interval Scheduling

𝑹 = set of all requests

𝑨 =

while 𝑹 do:

 Choose request 𝒊𝑹 with smallest finish time 𝒇𝒊

 Add request 𝒊 to 𝑨

 Delete all requests in 𝑹 not compatible with request 𝒊

return 𝑨

9

Greedy Analysis Strategies
Greedy algorithm stays ahead: Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithm’s

For interval scheduling: Show that after the greedy algorithm selects each
interval, any alternative schedule’s selection would have also been non-
conflicting.

Conclusion: Each choice from the alternative selections can be swapped with
a greedy choice, making greedy no worse off.

10

Interval Scheduling: Analysis

Claim: 𝑨 is a compatible set of requests and
 requests are added to 𝑨 in order of finish time

• When we add a request to 𝑨 we delete all incompatible ones from 𝑹

Name the finish times of requests in 𝑨 as a𝟏, a𝟐, ..., a𝒕 in order.

Claim: Let 𝑶 ⊆ 𝑹 be a set of compatible requests whose finish times in order are
o𝟏, o𝟐, ..., o𝒔. Then for every integer 𝒌 ≥ 1 we have:

a) if 𝑶 contains a 𝒌th request then 𝑨 does too, and

b) a𝒌 ≤ o𝒌 “𝑨 is ahead of 𝑶”

Note that a) alone implies that 𝒕 ≥ 𝒔 which means that 𝑨 is optimal but we also
need b) “stays ahead” to keep the induction going.

11

Base Case 𝒌 = 𝟏: 𝑨 includes the request with smallest finish time, so
 if 𝑶 is not empty then a𝟏 ≤ o𝟏

Inductive Step: Suppose that a𝒌 ≤ o𝒌 and there is a 𝒌+1st request in 𝑶.

 Then 𝒌+1st request in 𝑶 is compatible with a𝟏, a𝟐, ..., a𝒌 since a𝒌 ≤ o𝒌
 and o𝒌 ≤ start time of 𝒌+1st request in 𝑶 whose finish time is o𝒌+1

⇒ There is a 𝒌+1st request in 𝑨 whose finish time is named a𝒌+1.

Also, since 𝑨 would have considered both requests and chosen the one
with the earlier finish time, a𝒌+1 ≤ o𝒌+1.

Inductive Proof of Claim

12

. . .o𝒌+1o1 o2 o𝒌

a1 a2 a𝒌
Greedy:

OPT:

a𝒌+1

Interval Scheduling: Greedy Algorithm Implementation

13

Sort jobs by finish times so that 0 f1 f2 ... fn.

A =

last = 0

for j = 1 to n {

 if (last sj)

 A = A {j}

 last = fj
}

return A

𝑂(𝒏 log 𝒏)

𝑂(𝒏)

Scheduling All Intervals: Interval Partitioning
Interval Partitioning:

• Lecture 𝒋 starts at 𝒔𝒋 and finishes at 𝒇𝒋.

Goal: find minimum number of rooms to schedule all lectures so that no two occur at the same
time in the same room.

Example: This schedule uses 4 rooms to schedule 10 lectures.

14

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

b

a

e

d g

f i

j

3 3:30 4 4:30

Can you do better?

Scheduling All Intervals: Interval Partitioning

Interval Partitioning:
• Lecture 𝒋 starts at 𝒔𝒋 and finishes at 𝒇𝒋.

Goal: find minimum number of rooms to schedule all lectures so that no two occur at the same
time in the same room.

Example: This schedule uses only 3 rooms.

15

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

Scheduling All Intervals: Interval Partitioning
Defn: The depth of a set of open intervals is the maximum number that contain any given time.

Key observation: # of rooms needed ≥ depth.

Example: This schedule uses only 𝟑 rooms. Since depth ≥ 𝟑 this is optimal.

16

Time
9 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30

h

c

a e

f

g i

j

3 3:30 4 4:30

d

b

depth ≥ 𝟑

A simple greedy algorithm
Sort requests in increasing order of start times (𝒔𝟏, 𝒇𝟏), … , (𝒔𝒏, 𝒇𝒏)

𝒍𝒂𝒔𝒕𝟏= 𝟎 // finish time of last request currently scheduled in room 𝟏

for 𝒊 = 𝟏 to 𝒏 {

 𝒋 = 𝟏

 while (request 𝒊 not scheduled) {

 if 𝒔𝒊
 𝒍𝒂𝒔𝒕𝒋 then

 schedule request 𝒊 in room 𝒋

 𝒍𝒂𝒔𝒕𝒋= 𝒇𝒊

 𝒋 = 𝒋 + 𝟏

 if 𝒍𝒂𝒔𝒕𝒋
undefined then 𝒍𝒂𝒔𝒕𝒋= 𝟎

 }

}
17

Look for the first room where the request
will fit, opening a new room if all the
others used so far are full.

Interval Partitioning: Greedy Analysis

Observation: Greedy algorithm never schedules two incompatible lectures in the
 same room

• Only schedules request 𝒊 in room 𝒋 if 𝒔𝒊 ≥ 𝒍𝒂𝒔𝒕𝒋

Theorem: Greedy algorithm is optimal.

Proof:
Let 𝒅 = number of rooms that the greedy algorithm allocates.

• Room 𝒅 is allocated because we needed to schedule a request, say 𝒋, that is incompatible with
some request in each of the other 𝒅 − 𝟏 rooms.

• Since we sorted by start time, these incompatibilities are caused by requests that start no later
than 𝒔𝒋 and finish after 𝒔𝒋.

So… we have 𝒅 requests overlapping at time 𝒔𝒋 + for some (maybe tiny) > 𝟎.

Key observation all schedules use 𝒅 rooms.

18

Sort requests in increasing order of start times (𝒔𝟏, 𝒇𝟏), … , (𝒔𝒏, 𝒇𝒏)

𝒍𝒂𝒔𝒕𝟏
= 𝟎 // finish time of last request currently scheduled in room 𝟏

for 𝒊 = 𝟏 to 𝒏 {

 𝒋 = 𝟏

 while (request 𝒊 not scheduled) {

 if 𝒔𝒊
 𝒍𝒂𝒔𝒕𝒋 then

 schedule request 𝒊 in room 𝒋

 𝒍𝒂𝒔𝒕𝒋= 𝒇𝒊

 𝒋 = 𝒋 + 𝟏

 if 𝒍𝒂𝒔𝒕𝒋
undefined then 𝒍𝒂𝒔𝒕𝒋

=𝟎

 }

}

A simple greedy algorithm

19

Runtime analysis

𝑂(𝒏 log 𝒏)

Might need to try all 𝒅
rooms to schedule a
request

𝑂(𝒏 𝒅)

𝒅 might be as big as 𝒏

Worst case 𝚯(𝒏𝟐)

Sort requests in increasing order of start times 𝒔𝟏, 𝒇𝟏 , … , 𝒔𝒏, 𝒇𝒏

𝒅 = 𝟏

schedule request 𝟏 in room 𝟏

𝒍𝒂𝒔𝒕𝟏 = 𝒇𝟏

insert 𝟏 into priority queue 𝑸 with key = 𝒍𝒂𝒔𝒕𝟏

for 𝒊 = 𝟐 to 𝒏 {

 𝒋 = findmin(𝑸)

 if 𝒔𝒊
 𝒍𝒂𝒔𝒕𝒋 then {

 schedule request 𝒊 in room 𝒋

 𝒍𝒂𝒔𝒕𝒋 = 𝒇𝒊

 increasekey(𝒋,𝑸) to 𝒍𝒂𝒔𝒕𝒋 }

 else {

 𝒅 = 𝒅 + 𝟏

 schedule request 𝒊 in room 𝒅

 𝒍𝒂𝒔𝒕𝒅 = 𝒇𝒊

 insert 𝒅 into priority queue 𝑸 with key = 𝒍𝒂𝒔𝒕𝒅
}

}

A more efficient implementation: Priority
queue

20

𝑂(𝒏 log 𝒏)

𝑂(𝒏 log 𝒅)

Θ(𝒏 log 𝒏) total

𝑂(log 𝒅)

𝑂(log 𝒅)

𝑂(𝟏)

Greedy Analysis Strategies
Greedy algorithm stays ahead: Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithm's

Structural: Discover a simple "structural" bound asserting that every possible
solution must have a certain value. Then show that your algorithm always
achieves this bound.

Exchange argument: Gradually transform any solution to the one found by
the greedy algorithm without hurting its quality.

21

Scheduling to Minimize Lateness
Scheduling to minimize lateness:

• Single resource as in interval scheduling but, instead of start and finish times,
request 𝒊 has

• Time requirement 𝒕𝒊 which must be scheduled in a contiguous block

• Target deadline 𝒅𝒊 by which time the request would like to be finished

• Overall start time 𝒔 for all jobs

Requests are scheduled by the algorithm into time intervals [𝒔𝒊, 𝒇𝒊] s.t. 𝒕𝒊 = 𝒇𝒊 − 𝒔𝒊

• Lateness of schedule for request 𝒊 is

• If 𝒇𝒊 > 𝒅𝒊 then request 𝒊 is late by 𝑳𝒊 = 𝒇𝒊 − 𝒅𝒊 ; otherwise its lateness 𝑳𝒊 = 𝟎

• Maximum lateness 𝑳 = max𝒊 𝑳𝒊

Goal: Find a schedule for all requests (values of 𝒔𝒊 and 𝒇𝒊 for each request 𝒊) to
 minimize the maximum lateness, 𝑳.

25

Scheduling to Minimizing Lateness

• Example:

26

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2 max lateness = 6

27

Minimizing Lateness: Greedy Algorithms

Greedy template: Consider jobs in some order.

[Shortest processing time first] Consider jobs in ascending order of
 processing time 𝒕𝒋.

[Earliest deadline first] Consider jobs in ascending order of deadline 𝒅𝒋.

[Smallest slack] Consider jobs in ascending order of slack 𝒅𝒋 − 𝒕𝒋.

28

Minimizing Lateness: Greedy Algorithms

Greedy template: Consider jobs in some order.

[Shortest processing time first] Consider jobs in ascending order of
 processing time 𝒕𝒋.

[Smallest slack] Consider jobs in ascending order of slack 𝒅𝒋 − 𝒕𝒋.

counterexample
dj

tj

2

1

1

10

10

2

counterexample

dj

tj

100

1

1

10

10

2 Will schedule 1 (length 1) before 2 (length 10).
2 can only be scheduled at time 1
1 will finish at time 11 >10. Lateness 1.
Lateness 0 possible If 1 goes last.

Will schedule 2 (slack 0) before 1 (slack 1).
1 can only be scheduled at time 10
1 will finish at time 11 >10. Lateness 9.
Lateness 1 possible if 1 goes first.

29

Minimizing Lateness: Greedy Algorithms

Greedy template: Consider jobs in some order.

[Earliest deadline first] Consider jobs in ascending order of deadline 𝒅𝒋.

Greedy Algorithm: Earliest Deadline First

Consider requests in increasing order of deadlines

Schedule the request with the earliest deadline as soon as the resource is available

30

Scheduling to Minimizing Lateness

• Example:

31

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2 max lateness = 6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness = 1

Original Schedule

EDF Schedule

32

Proof for Greedy EDF Algorithm: Exchange Argument

Show that if there is another schedule O (think optimal schedule)
then we can gradually change O so that…

• at each step the maximum lateness in O never gets worse

• it eventually becomes the same cost as A

This means that A is at least as good as O, so A is also optimal!

33

Minimizing Lateness: No Idle Time
Observation: There exists an optimal schedule with no idle time

Observation: The greedy EDF schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12At least as good

Defn: An inversion in schedule 𝑺 is a pair of jobs 𝒊 and 𝒋
 such that 𝒅𝒊 < 𝒅𝒋 but 𝒋 is scheduled before 𝒊.

Observation: Greedy EDF schedule has no inversions.

Observation: If schedule 𝑺 (with no idle time) has an inversion
 it has two adjacent jobs that are inverted

• Any job in between would be inverted w.r.t. one of the two ends

34

Minimizing Lateness: Inversions

ij

inversion𝒅𝒊 𝒅𝒋

Defn: An inversion in schedule 𝑺 is a pair of jobs 𝒊 and 𝒋
 such that 𝒅𝒊 < 𝒅𝒋 but 𝒋 is scheduled before 𝒊.

Claim: Swapping two adjacent, inverted jobs

• reduces the # of inversions by 𝟏

• does not increase the max lateness.

35

Minimizing Lateness: Inversions

ij

i j

before swap

after swap

𝒇′𝒋

𝒇𝒊
inversion𝒅𝒊 𝒅𝒋

𝒇𝒊
′

Defn: An inversion in schedule 𝑺 is a pair of jobs 𝒊 and 𝒋
 such that 𝒅𝒊 < 𝒅𝒋 but 𝒋 is scheduled before 𝒊.

Claim: Maximum lateness does not increase

36

Minimizing Lateness: Inversions

ij

i j

before swap

after swap

𝒇𝒋
′

𝒇𝒊

𝒇𝒊
′

𝒇𝒋

𝒅𝒊 𝒅𝒋

old lateness 𝑳𝒊

new lateness 𝑳𝒋
′

37

Optimal schedules and inversions

Claim: There is an optimal schedule with no idle time and no inversions

Proof:

By previous argument there is an optimal schedule O with no idle time

If O has an inversion then it has an adjacent pair of requests in its schedule
that are inverted and can be swapped without increasing lateness

… we just need to show one more claim that eventually this swapping stops

38

Optimal schedules and inversions

Claim: Eventually these swaps will produce an optimal schedule with no inversions.

Proof:

Each swap decreases the # of inversions by 𝟏

There are a bounded # of inversions possible in the worst case

• at most 𝒏(𝒏 − 𝟏)/𝟐 but we only care that this is finite.

The # of inversions can’t be negative so this must stop.

39

Idleness and Inversions are the only issue
Claim: All schedules with no inversions and no idle time have the same maximum

lateness.

Proof:

Schedules can differ only in how they order requests with equal deadlines

Consider all requests having some common deadline 𝒅.

• Maximum lateness of these jobs is based only on finish time of the last one …

and the set of these requests occupies the same time segment in both schedules.

⇒ The last of these requests finishes at the same time in any such schedule.

40

Earliest Deadline First is optimal
We know that

• There is an optimal schedule with no idle time or inversions

• All schedules with no idle time or inversions have the same maximum lateness

• EDF produces a schedule with no idle time or inversions

So …

• EDF produces an optimal schedule

Greedy Analysis Strategies
Greedy algorithm stays ahead: Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithm's

Structural: Discover a simple "structural" bound asserting that every possible
solution must have a certain value. Then show that your algorithm always
achieves this bound.

Exchange argument: Gradually transform any solution to the one found by
the greedy algorithm without hurting its quality.

41

	Slide 1: CSE 421 Winter 2025 Lecture 6: Greedy
	Slide 2: Greedy Algorithms
	Slide 3: Greedy Algorithms
	Slide 4: Interval Scheduling
	Slide 5: Interval Scheduling
	Slide 6: Greedy Algorithms for Interval Scheduling
	Slide 7: Greedy Algorithms for Interval Scheduling
	Slide 8: Greedy Algorithms for Interval Scheduling
	Slide 9: Greedy (by finish time) Algorithm for Interval Scheduling
	Slide 10: Greedy Analysis Strategies
	Slide 11: Interval Scheduling: Analysis
	Slide 12: Inductive Proof of Claim
	Slide 13: Interval Scheduling: Greedy Algorithm Implementation
	Slide 14: Scheduling All Intervals: Interval Partitioning
	Slide 15: Scheduling All Intervals: Interval Partitioning
	Slide 16: Scheduling All Intervals: Interval Partitioning
	Slide 17: A simple greedy algorithm
	Slide 18: Interval Partitioning: Greedy Analysis
	Slide 19: A simple greedy algorithm
	Slide 20: A more efficient implementation: Priority queue
	Slide 21: Greedy Analysis Strategies
	Slide 25: Scheduling to Minimize Lateness
	Slide 26: Scheduling to Minimizing Lateness
	Slide 27: Minimizing Lateness: Greedy Algorithms
	Slide 28: Minimizing Lateness: Greedy Algorithms
	Slide 29: Minimizing Lateness: Greedy Algorithms
	Slide 30: Greedy Algorithm: Earliest Deadline First
	Slide 31: Scheduling to Minimizing Lateness
	Slide 32: Proof for Greedy EDF Algorithm: Exchange Argument
	Slide 33: Minimizing Lateness: No Idle Time
	Slide 34: Minimizing Lateness: Inversions
	Slide 35: Minimizing Lateness: Inversions
	Slide 36: Minimizing Lateness: Inversions
	Slide 37: Optimal schedules and inversions
	Slide 38: Optimal schedules and inversions
	Slide 39: Idleness and Inversions are the only issue
	Slide 40: Earliest Deadline First is optimal
	Slide 41: Greedy Analysis Strategies

