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Greedy Algorithms
Hard to define exactly but can give general properties

• Solution is built in small steps

• Decisions on how to build the solution are made to 
maximize some criterion without looking to the future

• Want the ‘best’ current partial solution as if the current step were the 
last step

May be more than one greedy algorithm using different criteria to 
solve a given problem

• Not obvious which criteria will actually work
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Greedy Algorithms

• Greedy algorithms
• Easy to describe

• Fast running times

• Work only on certain classes of problems

• Hard part is showing that they are correct

• Focus on methods for proving that greedy algorithms do work 
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Interval Scheduling
Interval Scheduling: 

• Single resource

• Reservation requests of form:
“Can I reserve it from start time 𝒔 to finish time 𝒇?”

𝒔 <  𝒇
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Interval Scheduling
Interval scheduling:

• Job 𝒋 starts at 𝒔𝒋 and finishes at 𝒇𝒋 > 𝒔𝒋.

• Two jobs 𝒊 and 𝒋 are compatible if they don't overlap: 𝒇𝒊 
≤  𝒔𝒋 or 𝒇𝒋 

≤  𝒔𝒊

• Goal: find maximum size subset of mutually compatible jobs.
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Greedy Algorithms for Interval Scheduling

• What criterion should we try?
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Greedy Algorithms for Interval Scheduling

• What criterion should we try?
• Earliest start time 𝒔𝒊

• Shortest request time 𝒇𝒊 − 𝒔𝒊

  

• Fewest conflicts
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Greedy Algorithms for Interval Scheduling

• What criterion should we try?
• Earliest start time 𝒔𝒊

• Doesn’t work

• Shortest request time 𝒇𝒊 − 𝒔𝒊
• Doesn’t work

• Fewest conflicts
• Doesn’t work

• Earliest finish time 𝒇𝒊
• Works!
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Greedy (by finish time) Algorithm for Interval Scheduling

𝑹 = set of all requests

𝑨 =   

while 𝑹   do:

  Choose request 𝒊𝑹 with smallest finish time 𝒇𝒊

  Add request 𝒊 to 𝑨

  Delete all requests in 𝑹 not compatible with request 𝒊

return 𝑨
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Greedy Analysis Strategies
Greedy algorithm stays ahead:  Show that after each step of the greedy 
algorithm, its solution is at least as good as any other algorithm’s

For interval scheduling: Show that after the greedy algorithm selects each 
interval, any alternative schedule’s selection would have also been non-
conflicting. 

Conclusion: Each choice from the alternative selections can be swapped with 
a greedy choice, making greedy no worse off.
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Interval Scheduling:  Analysis

Claim: 𝑨 is a compatible set of requests and      
  requests are added to 𝑨 in order of finish time

• When we add a request to 𝑨 we delete all incompatible ones from 𝑹

Name the finish times of requests in 𝑨 as a𝟏, a𝟐, ..., a𝒕 in order.

Claim: Let 𝑶 ⊆ 𝑹 be a set of compatible requests whose finish times in order are 
o𝟏, o𝟐, ..., o𝒔.   Then for every integer 𝒌 ≥ 1 we have:

a) if 𝑶 contains a 𝒌th request then 𝑨 does too, and

b)  a𝒌 ≤ o𝒌    “𝑨 is ahead of 𝑶”

Note that a) alone implies that 𝒕 ≥ 𝒔 which means that 𝑨 is optimal but we also 
need b) “stays ahead” to keep the induction going.
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Base Case 𝒌 = 𝟏: 𝑨 includes the request with smallest finish time, so     
   if 𝑶 is not empty then a𝟏 ≤ o𝟏

Inductive Step: Suppose that a𝒌 ≤ o𝒌 and there is a 𝒌+1st request in 𝑶.

 Then 𝒌+1st request in 𝑶 is compatible with a𝟏, a𝟐, ..., a𝒌 since a𝒌 ≤ o𝒌 
  and o𝒌 ≤ start time of 𝒌+1st request in 𝑶 whose finish time is o𝒌+1

⇒ There is a 𝒌+1st request in 𝑨 whose finish time is named a𝒌+1.

Also, since 𝑨 would have considered both requests and chosen the one 
with the earlier finish time, a𝒌+1 ≤ o𝒌+1.  

Inductive Proof of Claim
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Interval Scheduling:  Greedy Algorithm Implementation
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Sort jobs by finish times so that 0  f1  f2  ...  fn.

A = 

last = 0

for j = 1 to n {

    if (last  sj)

      A = A  {j}

      last = fj
}

return A  

𝑂(𝒏 log 𝒏)

𝑂(𝒏)



Scheduling All Intervals: Interval Partitioning
Interval Partitioning:

• Lecture 𝒋 starts at 𝒔𝒋 and finishes at 𝒇𝒋.

Goal:  find minimum number of rooms to schedule all lectures so that no two occur at the same 
time in the same room.

Example:  This schedule uses 4 rooms to schedule 10 lectures.
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Scheduling All Intervals: Interval Partitioning

Interval Partitioning:
• Lecture 𝒋 starts at 𝒔𝒋 and finishes at 𝒇𝒋.

Goal:  find minimum number of rooms to schedule all lectures so that no two occur at the same 
time in the same room.

Example:  This schedule uses only 3 rooms.
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Scheduling All Intervals: Interval Partitioning
Defn:  The depth of a set of open intervals is the maximum number that contain any given time.

Key observation:  # of rooms needed ≥ depth.

Example:  This schedule uses only 𝟑 rooms.   Since depth ≥ 𝟑 this is optimal.
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A simple greedy algorithm
Sort requests in increasing order of start times (𝒔𝟏, 𝒇𝟏), … , (𝒔𝒏, 𝒇𝒏)

  

𝒍𝒂𝒔𝒕𝟏= 𝟎  // finish time of last request currently scheduled in room 𝟏 

for 𝒊 = 𝟏 to 𝒏 {

 𝒋 = 𝟏

    while (request 𝒊 not scheduled) {

  if 𝒔𝒊 
 𝒍𝒂𝒔𝒕𝒋 then 

       schedule request 𝒊 in room 𝒋

    𝒍𝒂𝒔𝒕𝒋= 𝒇𝒊  

  𝒋 = 𝒋 + 𝟏

                if 𝒍𝒂𝒔𝒕𝒋 
undefined then 𝒍𝒂𝒔𝒕𝒋= 𝟎 

    }

}
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Look for the first room where the request 
will fit, opening a new room if all the 
others used so far are full.



Interval Partitioning:  Greedy Analysis

Observation:  Greedy algorithm never schedules two incompatible lectures in the 
             same room

• Only schedules request 𝒊 in room 𝒋  if 𝒔𝒊 ≥ 𝒍𝒂𝒔𝒕𝒋

Theorem:  Greedy algorithm is optimal.

Proof: 
Let 𝒅 = number of rooms that the greedy algorithm allocates.

• Room 𝒅 is allocated because we needed to schedule a request, say 𝒋, that is incompatible with 
some request in each of the other 𝒅 − 𝟏 rooms.

• Since we sorted by start time, these incompatibilities are caused by requests that start no later 
than 𝒔𝒋 and finish after 𝒔𝒋.

So… we have 𝒅 requests overlapping at time 𝒔𝒋 +   for some (maybe tiny)  > 𝟎.

Key observation    all schedules use  𝒅 rooms.  
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Sort requests in increasing order of start times (𝒔𝟏, 𝒇𝟏), … , (𝒔𝒏, 𝒇𝒏)

  

𝒍𝒂𝒔𝒕𝟏 
= 𝟎  // finish time of last request currently scheduled in room 𝟏 

for 𝒊 = 𝟏 to 𝒏 {

 𝒋  = 𝟏

    while (request 𝒊 not scheduled) {

  if 𝒔𝒊 
 𝒍𝒂𝒔𝒕𝒋 then 

       schedule request 𝒊 in room 𝒋

    𝒍𝒂𝒔𝒕𝒋= 𝒇𝒊  

  𝒋 = 𝒋 + 𝟏

                if 𝒍𝒂𝒔𝒕𝒋 
undefined then 𝒍𝒂𝒔𝒕𝒋 

=𝟎 

    }

}

A simple greedy algorithm
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Runtime analysis

𝑂(𝒏 log 𝒏)

Might need to try all 𝒅 
rooms to schedule a 
request

𝑂(𝒏 𝒅)

𝒅 might be as big as 𝒏

Worst case  𝚯(𝒏𝟐)



Sort requests in increasing order of start times 𝒔𝟏, 𝒇𝟏 , … , 𝒔𝒏, 𝒇𝒏

𝒅 = 𝟏 

schedule request 𝟏 in room 𝟏

𝒍𝒂𝒔𝒕𝟏 = 𝒇𝟏 

insert 𝟏 into priority queue 𝑸 with key = 𝒍𝒂𝒔𝒕𝟏

for 𝒊 = 𝟐 to 𝒏 {

       𝒋 = findmin(𝑸)

  if 𝒔𝒊 
 𝒍𝒂𝒔𝒕𝒋 then { 

             schedule request 𝒊 in room 𝒋

             𝒍𝒂𝒔𝒕𝒋  = 𝒇𝒊

         increasekey(𝒋,𝑸) to 𝒍𝒂𝒔𝒕𝒋 }

     else {

             𝒅 = 𝒅 + 𝟏

             schedule request 𝒊 in room 𝒅

             𝒍𝒂𝒔𝒕𝒅 = 𝒇𝒊

             insert 𝒅 into priority queue 𝑸 with key = 𝒍𝒂𝒔𝒕𝒅 
}

}

A more efficient implementation: Priority 
queue
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𝑂(𝒏 log 𝒏)

𝑂(𝒏 log 𝒅)

Θ(𝒏 log 𝒏) total

𝑂(log 𝒅)

𝑂(log 𝒅)

𝑂(𝟏)



Greedy Analysis Strategies
Greedy algorithm stays ahead:  Show that after each step of the greedy 
algorithm, its solution is at least as good as any other algorithm's

Structural:  Discover a simple "structural" bound asserting that every possible 
solution must have a certain value. Then show that your algorithm always 
achieves this bound.

Exchange argument:  Gradually transform any solution to the one found by 
the greedy algorithm without hurting its quality.
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Scheduling to Minimize Lateness
Scheduling to minimize lateness:

• Single resource as in interval scheduling but, instead of start and finish times, 
request 𝒊 has

• Time requirement 𝒕𝒊 which must be scheduled in a contiguous block

• Target deadline 𝒅𝒊 by which time the request would like to be finished

• Overall start time 𝒔 for all jobs

Requests are scheduled by the algorithm into time intervals [𝒔𝒊, 𝒇𝒊] s.t.  𝒕𝒊 = 𝒇𝒊 − 𝒔𝒊

• Lateness of schedule for request 𝒊 is

• If 𝒇𝒊 > 𝒅𝒊 then request 𝒊 is late by 𝑳𝒊 =  𝒇𝒊 − 𝒅𝒊 ; otherwise its lateness 𝑳𝒊 =  𝟎

• Maximum lateness 𝑳 = max𝒊 𝑳𝒊 

Goal: Find a schedule for all requests (values of 𝒔𝒊 and 𝒇𝒊 for each request 𝒊) to   
   minimize the maximum lateness, 𝑳.
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Scheduling to Minimizing Lateness

• Example:
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Minimizing Lateness:  Greedy Algorithms

Greedy template:  Consider jobs in some order. 

[Shortest processing time first]  Consider jobs in ascending order of 
               processing time 𝒕𝒋.

[Earliest deadline first] Consider jobs in ascending order of deadline 𝒅𝒋.

[Smallest slack]  Consider jobs in ascending order of slack 𝒅𝒋 −  𝒕𝒋.
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Minimizing Lateness:  Greedy Algorithms

Greedy template:  Consider jobs in some order. 

[Shortest processing time first]  Consider jobs in ascending order of 
               processing time 𝒕𝒋.

 

[Smallest slack]  Consider jobs in ascending order of slack 𝒅𝒋 −  𝒕𝒋.

counterexample
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2 Will schedule 1 (length 1) before 2 (length 10).
2 can only be scheduled at time 1
1 will finish at time 11 >10. Lateness 1.
Lateness 0 possible If 1 goes last.

Will schedule 2 (slack 0) before 1 (slack 1).
1 can only be scheduled at time 10
1 will finish at time 11 >10. Lateness 9.
Lateness 1 possible if 1 goes first.
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Minimizing Lateness:  Greedy Algorithms

Greedy template:  Consider jobs in some order. 

 

                

[Earliest deadline first]  Consider jobs in ascending order of deadline 𝒅𝒋.



Greedy Algorithm: Earliest Deadline First

Consider requests in increasing order of deadlines

Schedule the request with the earliest deadline as soon as the resource is available
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Scheduling to Minimizing Lateness

• Example:
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Proof for Greedy EDF Algorithm: Exchange Argument

Show that if there is another schedule O (think optimal schedule) 
then we can gradually change O so that… 

• at each step the maximum lateness in O never gets worse

• it eventually becomes the same cost as A

This means that A is at least as good as O, so A is also optimal!
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Minimizing Lateness: No Idle Time
Observation:  There exists an optimal schedule with no idle time

Observation: The greedy EDF schedule has no idle time.

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6

7 8 9 10 11

d = 12At least as good



Defn:  An inversion in schedule 𝑺 is a pair of jobs 𝒊 and 𝒋    
          such that 𝒅𝒊 < 𝒅𝒋 but 𝒋 is scheduled before 𝒊.

Observation: Greedy EDF schedule has no inversions.

Observation:  If schedule 𝑺 (with no idle time) has an inversion   
      it has two adjacent jobs that are inverted

• Any job in between would be inverted w.r.t. one of the two ends
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Minimizing Lateness: Inversions

ij
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Defn:  An inversion in schedule 𝑺 is a pair of jobs 𝒊 and 𝒋    
          such that 𝒅𝒊 < 𝒅𝒋 but 𝒋 is scheduled before 𝒊.

Claim:  Swapping two adjacent, inverted jobs 

• reduces the # of inversions by 𝟏       

• does not increase the max lateness.
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Minimizing Lateness: Inversions

ij
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Defn:  An inversion in schedule 𝑺 is a pair of jobs 𝒊 and 𝒋    
          such that 𝒅𝒊 < 𝒅𝒋 but 𝒋 is scheduled before 𝒊.

Claim:  Maximum lateness does not increase

36

Minimizing Lateness: Inversions

ij
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′
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Optimal schedules and inversions

Claim: There is an optimal schedule with no idle time and no inversions

Proof:

By previous argument there is an optimal schedule O with no idle time

If O has an inversion then it has an adjacent pair of requests in its schedule 
that are inverted and can be swapped without increasing lateness

…  we just need to show one more claim that eventually this swapping stops 
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Optimal schedules and inversions

Claim:  Eventually these swaps will produce an optimal schedule with no inversions.

Proof:

Each swap decreases the # of inversions by 𝟏

There are a bounded # of inversions possible in the worst case

• at most  𝒏(𝒏 − 𝟏)/𝟐 but we only care that this is finite.

The # of inversions can’t be negative so this must stop.
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Idleness and Inversions are the only issue
Claim: All schedules with no inversions and no idle time have the same maximum 

lateness.

Proof:

Schedules can differ only in how they order requests with equal deadlines

Consider all requests having some common deadline 𝒅.

• Maximum lateness of these jobs is based only on finish time of the last one … 

and the set of these requests occupies the same time segment in both schedules.

⇒  The last of these requests finishes at the same time in any such schedule.
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Earliest Deadline First is optimal
We know that

• There is an optimal schedule with no idle time or inversions

• All schedules with no idle time or inversions have the same maximum lateness

• EDF produces a schedule with no idle time or inversions

So …

• EDF produces an optimal schedule



Greedy Analysis Strategies
Greedy algorithm stays ahead:  Show that after each step of the greedy 
algorithm, its solution is at least as good as any other algorithm's

Structural:  Discover a simple "structural" bound asserting that every possible 
solution must have a certain value. Then show that your algorithm always 
achieves this bound.

Exchange argument:  Gradually transform any solution to the one found by 
the greedy algorithm without hurting its quality.
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