
CSE 421 Winter 2025
Lecture 5: Graph Search and

Greedy
Nathan Brunelle

http://www.cs.uw.edu/421

http://www.cs.uw.edu/421

Graph Traversal
Learn the basic structure of a graph

Walk from a fixed starting vertex 𝒔 to find all vertices reachable from 𝒔

Three states of vertices
• unvisited

• visited/discovered (in 𝑹, i.e. reachable)

• fully-explored (in 𝑹 and all neighbors have been visited)

2

BFS(𝒔)

Global initialization: mark all vertices “unvisited”

BFS(𝒔)
Mark 𝒔 “visited”
Add 𝒔 to 𝑸
𝒊 = 0
Mark 𝒔 as “layer 𝒊”
while 𝑸 not empty

𝒖 = next item removed from 𝑸
𝒊 = “layer of 𝒖”
for each edge (𝒖, 𝒗)

 if (𝒗 is “unvisited”)

 add v to Q

 mark 𝒗 “visited”
 mark 𝒗 as “layer 𝒊 + 𝟏”

mark 𝒖 “fully-explored” 3

4

Properties of BFS

BFS(𝒔) visits 𝒙 iff there is a path in 𝑮 from 𝒔 to 𝒙.

Edges followed to undiscovered vertices define a
 breadth first spanning tree of 𝑮

Layer 𝒊 in this tree:

 𝑳𝒊 = set of vertices 𝒖 with shortest path in 𝑮 from root 𝒔 of length 𝒊.

5

Properties of BFS
Claim: For undirected graphs:

All edges join vertices on the same or adjacent layers of BFS tree

Proof: Suppose not...

Then there would be vertices (𝒙, 𝒚) s.t. 𝒙𝑳𝒊 and 𝒚𝑳𝒋 and 𝒋  𝒊 + 𝟏.

Then, when vertices adjacent to 𝒙 are considered in BFS,

𝒚 would be added with layer 𝒊 + 𝟏 and not layer 𝒋.

Contradiction.

6

BFS Application: Shortest Paths
0

1

2

3

4
can label by distances from start

Tree gives shortest
paths from start vertex

𝑳𝟎

𝑳𝟏

𝑳𝟐

𝑳𝟑

𝑳𝟒

Applications of Graph Traversal: Bipartiteness Testing
Definition: An undirected graph 𝑮 is bipartite iff we can color its
vertices red and green so each edge has different color endpoints

Input: Undirected graph 𝑮
Goal: If 𝑮 is bipartite, output a coloring;
 otherwise, output “NOT Bipartite”.

Fact: Graph 𝑮 contains an odd-length cycle ⇒ it is not bipartite

7

On a cycle the two colors must alternate, so
• green every 2nd vertex
• red every 2nd vertex
Can’t have either if length is not divisible by 2.

Just coloring the cycle part
of 𝑮 is impossible

green

green

green

red

red

Applications of Graph Traversal: Bipartiteness Testing

WLOG (“without loss of generality”): Can assume that 𝑮 is connected
• Otherwise run on each component

Simple idea: start coloring nodes starting at a given node 𝒔
• Color 𝒔 red
• Color all neighbors of 𝒔 green
• Color all their neighbors red, etc.
• If you ever hit a node that was already colored

• the same color as you want to color it, ignore it
• the opposite color, output “NOT Bipartite” and halt

8

9

BFS gives Bipartiteness
Run BFS assigning all vertices from layer 𝑳𝒊 the color 𝒊 mod 𝟐

• i.e., red if they are in an even layer, green if in an odd layer

• if no edge joining two vertices of the same color
• then it is a good coloring

• otherwise
• there is a bad edge; output “Not Bipartite”

Why is that “Not Bipartite” output correct?

Why does BFS work for Bipartiteness?
Recall: All edges join vertices on the same or adjacent BFS layers

⇒ Any “bad” edge must join two vertices 𝒖 and 𝒗 in the same layer

Say the layer with 𝒖 and 𝒗 is 𝑳𝒋

𝒖 and 𝒗 have common ancestor at some level 𝑳𝒊 for 𝒊 < 𝒋

10

Odd cycle of length 𝟐 𝒋 − 𝒊 + 𝟏
 ⇒ Not Bipartite

𝒔

𝑳𝒊

𝑳𝒋
𝒖 𝒗

𝒋 − 𝒊𝒋 − 𝒊

𝟏

Undirected Graph Search Application: Connected Components

Want to answer questions of the form:
Given: vertices 𝒖 and 𝒗 in 𝑮

 Is there a path from 𝒖 to 𝒗?

Idea: create array 𝑨 s.t
 𝑨[𝒖] = smallest numbered vertex connected to 𝒖

 Answer is yes iff 𝑨[𝒖] = 𝑨[𝒗]

11

Q: Why is this better than

 an array Path[𝒖, 𝒗]?

12

Undirected Graph Search Application: Connected Components

Initial state: all 𝒗 unvisited
for 𝒔 from 1 to 𝒏 do:

if state(𝒔)  fully-explored then
 BFS(𝒔): setting 𝑨 𝒖 = 𝒔 for each 𝒖 found

 (and marking 𝒖 visited/fully-explored)

Total cost: 𝑂(𝒏 + 𝒎)
• Each vertex is touched once in outer procedure and edges examined in

different BFS runs are disjoint

• Works also with Depth First Search ...

DFS(𝒖) – Recursive Procedure

Global Initialization: mark all vertices "unvisited"

DFS(𝒖)

 mark 𝒖 “visited” and add 𝒖 to 𝑹
 for each edge (𝒖, 𝒗)

 if (𝒗 is “unvisited”)

 DFS(𝒗)

 mark 𝒖 “fully-explored”

13

14

Properties of DFS(𝒔)

Like BFS(𝒔):
• DFS(𝒔) visits 𝒙 iff there is a path in 𝑮 from 𝒔 to 𝒙

• Edges into undiscovered vertices define depth-first spanning tree of 𝑮

Unlike the BFS tree:
• the DFS spanning tree isn't minimum depth

• its levels don't reflect min distance from the root

• non-tree edges never join vertices on the same or adjacent levels

BUT…

15

Non-tree edges in DFS tree of undirected
graphs

Claim: All non-tree edges join a vertex and one of its
descendents/ancestors in the DFS tree

• In other words ... No “cross edges”.

16

No cross edges in DFS on undirected graphs
Claim: During DFS(𝒙) every vertex marked “visited” is a descendant of 𝒙

 in the DFS tree 𝑻

Claim: For every 𝒙, 𝒚 in the DFS tree 𝑻, if (𝒙, 𝒚) is an edge not in 𝑻
 then one of 𝒙 or 𝒚 is an ancestor of the other in 𝑻

Proof:
• One of DFS(𝒙) or DFS(𝒚) is called first, suppose WLOG that DFS(𝒙) was

called before DFS(𝒚)

• During DFS(𝒙), the edge (𝒙, 𝒚) is examined

• Since (𝒙, 𝒚) is a not an edge of 𝑻, 𝒚 was already visited when edge (𝒙, 𝒚) was
examined during DFS(𝒙)

• Therefore 𝒚 was visited during the call to DFS(𝒙) so 𝒚 is a descendant of 𝒙.

DFS(𝒗) for a directed graph

17

1

2
10

9

8

3

4

5

6

7

11
12

13

Nodes were visited in numeric order.
How can we tell?

 tree edges

DFS(𝒗)

18

1

2
10

9

8

3

4

5

6

7

11
12

13

NO → cross edges

forward
edge

 tree edges

Properties of Directed DFS

• Before DFS(𝒔) returns, it visits all previously unvisited vertices reachable
via directed paths from 𝒔

• Every cycle contains a back edge in the DFS tree

19

Directed Acyclic Graphs

A directed graph 𝑮 = (𝑽, 𝑬) is acyclic iff it has no directed cycles

Terminology: A directed acyclic graph is also called a DAG

After shrinking the strongly connected components of a directed graph to
single vertices, the result is a DAG

20

Topological Sort
Given: a directed acyclic graph (DAG) 𝑮 = (𝑽, 𝑬)

Output: numbering of the vertices of 𝑮 with distinct numbers from 𝟏 to 𝒏
so that edges only go from lower numbered to higher numbered vertices

Applications:
• nodes represent tasks

• edges represent precedence between tasks

• topological sort gives a sequential schedule for solving them

Nice algorithmic paradigm for general directed graphs:
• Process strongly connected components one-by-one in the order given by

topological sort of the DAG you get from shrinking them.

21

Directed Acyclic Graph

22

In-degree 0 vertices
Claim: Every DAG has a vertex of in-degree 0

Proof: By contradiction
Suppose every vertex has some incoming edge

Consider following procedure:
 while (true) do

 𝒗 = some predecessor of 𝒗

• After 𝒏 + 𝟏 steps where 𝒏 = |𝑽| there will be a repeated vertex
• This yields a cycle, contradicting that it is a DAG.

23

Topological Sort
• Can do using DFS

• Alternative simpler idea:
• Any vertex of in-degree 0 can be given number 1 to start

• Remove it from the graph

• Then give a vertex of in-degree 0 number 2

• Etc.

24

Topological Sort

25

Topological Sort

26

1

Topological Sort

27

1 2

Topological Sort

28

1

3

2

Topological Sort

29

1

4
3

2

Topological Sort

30

1

4
3

5

2

Topological Sort

31

1

4
3

5
6

2

Topological Sort

32

1

4
3

5
6

7

2

Topological Sort

33

1

4
3

8

5
6

7

2

Topological Sort

34

1

4
3

8

9

5
6

7

2

Topological Sort

35

1

4
3

10

8

9

5
6

7

2

Topological Sort

36

1

4
3

10

8

9

11

5
6

7

2

Topological Sort

37

1

4
3

12

10

8

9

11

5
6

7

2

Topological Sort

38

1

4
3

12

10

8

9

11

13

5
6

7

2

39

Topological Sort 1

4
3

12

10

8

9

11

13

14

5
6

7

2

Implementing Topological Sort
• Go through all edges, computing array with in-degree for each vertex

𝑂(𝒎 + 𝒏)

• Maintain a list of vertices of in-degree 𝟎

• Remove any vertex in list and number it

• When a vertex is removed, decrease in-degree of each neighbor by 𝟏
and add them to the list if their degree drops to 𝟎

Total cost: 𝑂(𝒎 + 𝒏)

40

Strongly Connected Components of Directed
Graphs

Defn: Vertices 𝒖 and 𝒗 are strongly connected iff they are on a directed cycle (there are
paths from 𝒖 to 𝒗 and from 𝒗 to 𝒖).

Defn: Can partition vertices of any directed graph into strongly connected components:

1. all pairs of vertices in the same component are strongly connected

2. can’t merge components and keep property 1

• Strongly connected components can be stored efficiently just like connected components

• Can be found in 𝑂(𝒏 + 𝒎) time using a DFS then a BFS

• Do a depth-first sort, keeping track of the order nodes are marked “fully-explored”

• Going in order from least recent to most recent, run connected components

41

Strongly Connected Components

42

1

2
10

9

8

3

4

5

6

7

11
12

13

forward
edge

 tree edges

10

11
12

9

8

3

4

5

6

7

Strongly Connected Components

43

1

2

13

Strongly Connected Components

44

1

2

13

Strongly-Connected Components Usage

Common algorithmic paradigm for general directed graphs:
• Process strongly connected components one-by-one in the order given by

topological sort of the DAG you get from shrinking them.

45

Greedy Algorithms
Hard to define exactly but can give general properties

• Solution is built in small steps

• Decisions on how to build the solution are made to
maximize some criterion without looking to the future

• Want the ‘best’ current partial solution as if the current step were the
last step

May be more than one greedy algorithm using different criteria to
solve a given problem

• Not obvious which criteria will actually work

46

Greedy Algorithms

• Greedy algorithms
• Easy to describe

• Fast running times

• Work only on certain classes of problems

• Hard part is showing that they are correct

• Focus on methods for proving that greedy algorithms do work

47

Interval Scheduling
Interval Scheduling:

• Single resource

• Reservation requests of form:
“Can I reserve it from start time 𝒔 to finish time 𝒇?”

𝒔 < 𝒇

48

Interval Scheduling
Interval scheduling:

• Job 𝒋 starts at 𝒔𝒋 and finishes at 𝒇𝒋 > 𝒔𝒋.

• Two jobs 𝒊 and 𝒋 are compatible if they don't overlap: 𝒇𝒊
≤ 𝒔𝒋 or 𝒇𝒋

≤ 𝒔𝒊

• Goal: find maximum size subset of mutually compatible jobs.

49
Time0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

Greedy Algorithms for Interval Scheduling

• What criterion should we try?

50

Greedy Algorithms for Interval Scheduling

• What criterion should we try?
• Earliest start time 𝒔𝒊

• Shortest request time 𝒇𝒊 − 𝒔𝒊

• Fewest conflicts

51

Greedy Algorithms for Interval Scheduling

• What criterion should we try?
• Earliest start time 𝒔𝒊

• Doesn’t work

• Shortest request time 𝒇𝒊 − 𝒔𝒊
• Doesn’t work

• Fewest conflicts
• Doesn’t work

• Earliest finish time 𝒇𝒊
• Works!

52

Greedy (by finish time) Algorithm for Interval Scheduling

𝑹 = set of all requests

𝑨 = 

while 𝑹   do:

 Choose request 𝒊𝑹 with smallest finish time 𝒇𝒊

 Add request 𝒊 to 𝑨

 Delete all requests in 𝑹 not compatible with request 𝒊

return 𝑨

53

Greedy Analysis Strategies
Greedy algorithm stays ahead: Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithm’s

For interval scheduling: Show that after the greedy algorithm selects each
interval, any alternative schedule’s selection would have also been non-
conflicting.

Conclusion: Each choice from the alternative selections can be swapped with
a greedy choice, making greedy no worse off.

54

Interval Scheduling: Analysis

Claim: 𝑨 is a compatible set of requests and
 requests are added to 𝑨 in order of finish time

• When we add a request to 𝑨 we delete all incompatible ones from 𝑹

Name the finish times of requests in 𝑨 as a𝟏, a𝟐, ..., a𝒕 in order.

Claim: Let 𝑶 ⊆ 𝑹 be a set of compatible requests whose finish times in order are
o𝟏, o𝟐, ..., o𝒔. Then for every integer 𝒌 ≥ 1 we have:

a) if 𝑶 contains a 𝒌th request then 𝑨 does too, and

b) a𝒌 ≤ o𝒌 “𝑨 is ahead of 𝑶”

Note that a) alone implies that 𝒕 ≥ 𝒔 which means that 𝑨 is optimal but we also
need b) “stays ahead” to keep the induction going.

55

Base Case 𝒌 = 𝟏: 𝑨 includes the request with smallest finish time, so
 if 𝑶 is not empty then a𝟏 ≤ o𝟏

Inductive Step: Suppose that a𝒌 ≤ o𝒌 and there is a 𝒌+1st request in 𝑶.

 Then 𝒌+1st request in 𝑶 is compatible with a𝟏, a𝟐, ..., a𝒌 since a𝒌 ≤ o𝒌
 and o𝒌 ≤ start time of 𝒌+1st request in 𝑶 whose finish time is o𝒌+1

⇒ There is a 𝒌+1st request in 𝑨 whose finish time is named a𝒌+1.

Also, since 𝑨 would have considered both requests and chosen the one
with the earlier finish time, a𝒌+1 ≤ o𝒌+1.

Inductive Proof of Claim

56

. . .o𝒌+1o1 o2 o𝒌

a1 a2 a𝒌
Greedy:

OPT:

a𝒌+1

Interval Scheduling: Greedy Algorithm Implementation

57

Sort jobs by finish times so that 0  f1  f2  ...  fn.

A = 

last = 0

for j = 1 to n {

 if (last  sj)

 A = A  {j}

 last = fj
}

return A

𝑂(𝒏 log 𝒏)

𝑂(𝒏)

	Slide 1: CSE 421 Winter 2025 Lecture 5: Graph Search and Greedy
	Slide 2: Graph Traversal
	Slide 3: BFS(bold italic s)
	Slide 4: Properties of BFS
	Slide 5: Properties of BFS
	Slide 6: BFS Application: Shortest Paths
	Slide 7: Applications of Graph Traversal: Bipartiteness Testing
	Slide 8: Applications of Graph Traversal: Bipartiteness Testing
	Slide 9: BFS gives Bipartiteness
	Slide 10: Why does BFS work for Bipartiteness?
	Slide 11: Undirected Graph Search Application: Connected Components
	Slide 12: Undirected Graph Search Application: Connected Components
	Slide 13: DFS(bold italic u) – Recursive Procedure
	Slide 14: Properties of DFS(bold italic s)
	Slide 15: Non-tree edges in DFS tree of undirected graphs
	Slide 16: No cross edges in DFS on undirected graphs
	Slide 17: DFS(bold italic v) for a directed graph
	Slide 18: DFS(bold italic v)
	Slide 19: Properties of Directed DFS
	Slide 20: Directed Acyclic Graphs
	Slide 21: Topological Sort
	Slide 22: Directed Acyclic Graph
	Slide 23: In-degree 0 vertices
	Slide 24: Topological Sort
	Slide 25: Topological Sort
	Slide 26: Topological Sort
	Slide 27: Topological Sort
	Slide 28: Topological Sort
	Slide 29: Topological Sort
	Slide 30: Topological Sort
	Slide 31: Topological Sort
	Slide 32: Topological Sort
	Slide 33: Topological Sort
	Slide 34: Topological Sort
	Slide 35: Topological Sort
	Slide 36: Topological Sort
	Slide 37: Topological Sort
	Slide 38: Topological Sort
	Slide 39: Topological Sort
	Slide 40: Implementing Topological Sort
	Slide 41: Strongly Connected Components of Directed Graphs
	Slide 42: Strongly Connected Components
	Slide 43: Strongly Connected Components
	Slide 44: Strongly Connected Components
	Slide 45: Strongly-Connected Components Usage
	Slide 46: Greedy Algorithms
	Slide 47: Greedy Algorithms
	Slide 48: Interval Scheduling
	Slide 49: Interval Scheduling
	Slide 50: Greedy Algorithms for Interval Scheduling
	Slide 51: Greedy Algorithms for Interval Scheduling
	Slide 52: Greedy Algorithms for Interval Scheduling
	Slide 53: Greedy (by finish time) Algorithm for Interval Scheduling
	Slide 54: Greedy Analysis Strategies
	Slide 55: Interval Scheduling: Analysis
	Slide 56: Inductive Proof of Claim
	Slide 57: Interval Scheduling: Greedy Algorithm Implementation

