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Graph Traversal
Learn the basic structure of a graph

Walk from a fixed starting vertex 𝒔 to find all vertices reachable from 𝒔

Three states of vertices
• unvisited

• visited/discovered  (in 𝑹, i.e. reachable)

• fully-explored (in 𝑹 and all neighbors have been visited)
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BFS(𝒔)

Global initialization: mark all vertices “unvisited”

BFS(𝒔) 
Mark 𝒔 “visited”
Add 𝒔 to 𝑸
𝒊 = 0 
Mark 𝒔 as “layer 𝒊”
while 𝑸 not empty

𝒖 = next item removed from 𝑸
𝒊 = “layer of 𝒖”
for each edge (𝒖, 𝒗)

 if (𝒗 is “unvisited”) 

            add v to Q

  mark 𝒗 “visited”
  mark 𝒗 as “layer 𝒊 + 𝟏”

   

mark 𝒖 “fully-explored” 3
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Properties of BFS

BFS(𝒔) visits 𝒙 iff there is a path in 𝑮 from 𝒔 to 𝒙.

Edges followed to undiscovered vertices define a                                             
                                    breadth first spanning tree of 𝑮

Layer 𝒊 in this tree: 

    𝑳𝒊 = set of vertices 𝒖 with shortest path in 𝑮 from root 𝒔 of length 𝒊.
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Properties of BFS
Claim: For undirected graphs:                                                                     

All edges join vertices on the same or adjacent layers of BFS tree

Proof:   Suppose not...

Then there would be vertices (𝒙, 𝒚) s.t. 𝒙𝑳𝒊 and 𝒚𝑳𝒋 and 𝒋  𝒊 + 𝟏.

Then, when vertices adjacent to 𝒙 are considered in BFS,                                         

𝒚 would be added with layer 𝒊 + 𝟏 and not layer 𝒋.

Contradiction.
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BFS Application: Shortest Paths
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paths from start vertex
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Applications of Graph Traversal: Bipartiteness Testing
Definition:  An undirected graph 𝑮 is bipartite iff we can color its 
vertices red and green so each edge has different color endpoints

Input: Undirected graph 𝑮                                                                             
Goal: If 𝑮 is bipartite, output a coloring;      
         otherwise, output “NOT Bipartite”.

Fact: Graph 𝑮 contains an odd-length cycle ⇒ it is not bipartite
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On a cycle the two colors must alternate, so 
• green every 2nd  vertex 
• red every 2nd vertex
Can’t have either if length is not divisible by 2.

Just coloring the cycle part 
of 𝑮 is impossible

green

green

green

red

red



Applications of Graph Traversal: Bipartiteness Testing

WLOG (“without loss of generality”): Can assume that 𝑮 is connected
• Otherwise run on each component

Simple idea: start coloring nodes starting at a given node 𝒔
• Color 𝒔 red
• Color all neighbors of 𝒔 green
• Color all their neighbors red, etc. 
• If you ever hit a node that was already colored

• the same color as you want to color it, ignore it
• the opposite color, output “NOT Bipartite” and halt
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BFS gives Bipartiteness
Run BFS assigning all vertices from layer 𝑳𝒊 the color 𝒊 mod 𝟐

• i.e., red if they are in an even layer, green if in an odd layer 

• if no edge joining two vertices of the same color 
• then it is a good coloring

• otherwise
• there is a bad edge; output “Not Bipartite”

Why is that “Not Bipartite” output correct?



Why does BFS work for Bipartiteness?
Recall: All edges join vertices on the same or adjacent BFS layers

⇒ Any “bad” edge must join two vertices 𝒖 and 𝒗 in the same layer

Say the layer with 𝒖 and 𝒗 is 𝑳𝒋 

𝒖 and 𝒗 have common ancestor at some level 𝑳𝒊 for 𝒊 < 𝒋
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Odd cycle of length 𝟐 𝒋 − 𝒊 + 𝟏
              ⇒ Not Bipartite

𝒔

𝑳𝒊

𝑳𝒋
𝒖 𝒗

𝒋 − 𝒊𝒋 − 𝒊

𝟏



Undirected Graph Search Application: Connected Components

Want to answer questions of the form:
Given: vertices 𝒖 and 𝒗 in 𝑮 

         Is there a path from 𝒖 to 𝒗?

Idea: create array 𝑨 s.t 
      𝑨[𝒖] = smallest numbered vertex connected to 𝒖

     Answer is yes iff 𝑨[𝒖] = 𝑨[𝒗]
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Q: Why is this better than  

 an array Path[𝒖, 𝒗]?
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Undirected Graph Search Application: Connected Components

Initial state: all 𝒗 unvisited
for 𝒔 from 1 to 𝒏 do:                                               

if state(𝒔)  fully-explored then                                     
  BFS(𝒔): setting 𝑨 𝒖 = 𝒔 for each 𝒖 found 

           (and marking 𝒖 visited/fully-explored)                                                                                                

Total cost: 𝑂(𝒏 + 𝒎)
• Each vertex is touched once in outer procedure and edges examined in 

different BFS runs are disjoint 

• Works also with Depth First Search ...



DFS(𝒖) – Recursive Procedure

Global Initialization: mark all vertices "unvisited"

DFS(𝒖)

      mark  𝒖 “visited” and add 𝒖 to 𝑹
  for each edge (𝒖, 𝒗)

       if (𝒗 is “unvisited”)

            DFS(𝒗)

  mark 𝒖 “fully-explored”
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Properties of DFS(𝒔)

Like BFS(𝒔):
• DFS(𝒔) visits 𝒙 iff there is a path in 𝑮 from 𝒔 to 𝒙 

• Edges into undiscovered vertices define depth-first spanning tree of 𝑮

Unlike the BFS tree: 
• the DFS spanning tree isn't minimum depth

• its levels don't reflect min distance from the root

• non-tree edges never join vertices on the same or adjacent levels

BUT…
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Non-tree edges in DFS tree of undirected 
graphs

Claim: All non-tree edges join a vertex and one of its           
descendents/ancestors in the DFS tree

• In other words ... No “cross edges”.
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No cross edges in DFS on undirected graphs
Claim: During DFS(𝒙) every vertex marked “visited” is a descendant of 𝒙   

 in the DFS tree 𝑻

Claim: For every 𝒙, 𝒚 in the DFS tree 𝑻,  if (𝒙, 𝒚) is an edge not in 𝑻      
 then one of 𝒙 or 𝒚 is an ancestor of the other in 𝑻

Proof: 
• One of DFS(𝒙) or DFS(𝒚) is called first, suppose WLOG that DFS(𝒙) was 

called before DFS(𝒚)

• During DFS(𝒙), the edge (𝒙, 𝒚) is examined

• Since (𝒙, 𝒚) is a not an edge of 𝑻, 𝒚 was already visited when edge (𝒙, 𝒚) was 
examined during DFS(𝒙)

• Therefore 𝒚 was visited during the call to DFS(𝒙) so 𝒚 is a descendant of 𝒙.



DFS(𝒗) for a directed graph
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DFS(𝒗)
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Properties of Directed DFS

• Before DFS(𝒔) returns, it visits all previously unvisited vertices reachable 
via directed paths from 𝒔

• Every cycle contains a back edge in the DFS tree
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Directed Acyclic Graphs

A directed graph 𝑮 = (𝑽, 𝑬) is acyclic iff it has no directed cycles

Terminology: A directed acyclic graph is also called a DAG

After shrinking the strongly connected components of a directed graph to 
single vertices, the result is a DAG
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Topological Sort
Given: a directed acyclic graph (DAG) 𝑮 = (𝑽, 𝑬) 

Output: numbering of the vertices of 𝑮 with distinct numbers from 𝟏 to 𝒏 
so that edges only go from lower numbered to higher numbered vertices

Applications:
• nodes represent tasks

• edges represent precedence between tasks

• topological sort gives a sequential schedule for solving them 

Nice algorithmic paradigm for general directed graphs:
• Process strongly connected components one-by-one in the order given by 

topological sort of the DAG you get from shrinking them.
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Directed Acyclic Graph
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In-degree 0 vertices
Claim: Every DAG has a vertex of in-degree 0

Proof: By contradiction
Suppose every vertex has some incoming edge

Consider following procedure:
   while (true) do

  𝒗 = some predecessor of 𝒗

• After 𝒏 + 𝟏 steps where 𝒏 = |𝑽| there will be a repeated vertex
• This yields a cycle, contradicting that it is a DAG.
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Topological Sort
• Can do using DFS

• Alternative simpler idea:
• Any vertex of in-degree 0 can be given number 1 to start

• Remove it from the graph

• Then give a vertex of in-degree 0 number 2

• Etc. 
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Implementing Topological Sort
• Go through all edges, computing array with in-degree for each vertex    

𝑂(𝒎 + 𝒏)

• Maintain a list of vertices of in-degree 𝟎

• Remove any vertex in list and number it

• When a vertex is removed, decrease in-degree of each neighbor by 𝟏 
and add them to the list if their degree drops to 𝟎 

Total cost: 𝑂(𝒎 + 𝒏)
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Strongly Connected Components of Directed 
Graphs

Defn: Vertices 𝒖 and 𝒗 are strongly connected iff they are on a directed cycle (there are 
paths from 𝒖 to 𝒗 and from 𝒗 to 𝒖).  

Defn: Can partition vertices of any directed graph into strongly connected components: 

1. all pairs of vertices in the same component are strongly connected

2. can’t merge components and keep property 1

• Strongly connected components can be stored efficiently just like connected components

• Can be found in 𝑂(𝒏 + 𝒎) time using a DFS then a BFS

• Do a depth-first sort, keeping track of the order nodes are marked “fully-explored”

• Going in order from least recent to most recent, run connected components

41



Strongly Connected Components
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Strongly Connected Components
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Strongly-Connected Components Usage

Common algorithmic paradigm for general directed graphs:
• Process strongly connected components one-by-one in the order given by 

topological sort of the DAG you get from shrinking them.
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Greedy Algorithms
Hard to define exactly but can give general properties

• Solution is built in small steps

• Decisions on how to build the solution are made to           
maximize some criterion without looking to the future

• Want the ‘best’ current partial solution as if the current step were the 
last step

May be more than one greedy algorithm using different criteria to 
solve a given problem

• Not obvious which criteria will actually work
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Greedy Algorithms

• Greedy algorithms
• Easy to describe

• Fast running times

• Work only on certain classes of problems

• Hard part is showing that they are correct

• Focus on methods for proving that greedy algorithms do work 
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Interval Scheduling
Interval Scheduling: 

• Single resource

• Reservation requests of form:
“Can I reserve it from start time 𝒔 to finish time 𝒇?”

𝒔 <  𝒇
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Interval Scheduling
Interval scheduling:

• Job 𝒋 starts at 𝒔𝒋 and finishes at 𝒇𝒋 > 𝒔𝒋.

• Two jobs 𝒊 and 𝒋 are compatible if they don't overlap: 𝒇𝒊 
≤  𝒔𝒋 or 𝒇𝒋 

≤  𝒔𝒊

• Goal: find maximum size subset of mutually compatible jobs.
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Greedy Algorithms for Interval Scheduling

• What criterion should we try?

50



Greedy Algorithms for Interval Scheduling

• What criterion should we try?
• Earliest start time 𝒔𝒊

• Shortest request time 𝒇𝒊 − 𝒔𝒊

  

• Fewest conflicts
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Greedy Algorithms for Interval Scheduling

• What criterion should we try?
• Earliest start time 𝒔𝒊

• Doesn’t work

• Shortest request time 𝒇𝒊 − 𝒔𝒊
• Doesn’t work

• Fewest conflicts
• Doesn’t work

• Earliest finish time 𝒇𝒊
• Works!
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Greedy (by finish time) Algorithm for Interval Scheduling

𝑹 = set of all requests

𝑨 =   

while 𝑹   do:

  Choose request 𝒊𝑹 with smallest finish time 𝒇𝒊

  Add request 𝒊 to 𝑨

  Delete all requests in 𝑹 not compatible with request 𝒊

return 𝑨
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Greedy Analysis Strategies
Greedy algorithm stays ahead:  Show that after each step of the greedy 
algorithm, its solution is at least as good as any other algorithm’s

For interval scheduling: Show that after the greedy algorithm selects each 
interval, any alternative schedule’s selection would have also been non-
conflicting. 

Conclusion: Each choice from the alternative selections can be swapped with 
a greedy choice, making greedy no worse off.

54



Interval Scheduling:  Analysis

Claim: 𝑨 is a compatible set of requests and      
  requests are added to 𝑨 in order of finish time

• When we add a request to 𝑨 we delete all incompatible ones from 𝑹

Name the finish times of requests in 𝑨 as a𝟏, a𝟐, ..., a𝒕 in order.

Claim: Let 𝑶 ⊆ 𝑹 be a set of compatible requests whose finish times in order are 
o𝟏, o𝟐, ..., o𝒔.   Then for every integer 𝒌 ≥ 1 we have:

a) if 𝑶 contains a 𝒌th request then 𝑨 does too, and

b)  a𝒌 ≤ o𝒌    “𝑨 is ahead of 𝑶”

Note that a) alone implies that 𝒕 ≥ 𝒔 which means that 𝑨 is optimal but we also 
need b) “stays ahead” to keep the induction going.
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Base Case 𝒌 = 𝟏: 𝑨 includes the request with smallest finish time, so     
   if 𝑶 is not empty then a𝟏 ≤ o𝟏

Inductive Step: Suppose that a𝒌 ≤ o𝒌 and there is a 𝒌+1st request in 𝑶.

 Then 𝒌+1st request in 𝑶 is compatible with a𝟏, a𝟐, ..., a𝒌 since a𝒌 ≤ o𝒌 
  and o𝒌 ≤ start time of 𝒌+1st request in 𝑶 whose finish time is o𝒌+1

⇒ There is a 𝒌+1st request in 𝑨 whose finish time is named a𝒌+1.

Also, since 𝑨 would have considered both requests and chosen the one 
with the earlier finish time, a𝒌+1 ≤ o𝒌+1.  

Inductive Proof of Claim
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Interval Scheduling:  Greedy Algorithm Implementation
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Sort jobs by finish times so that 0  f1  f2  ...  fn.

A = 

last = 0

for j = 1 to n {

    if (last  sj)

      A = A  {j}

      last = fj
}

return A  

𝑂(𝒏 log 𝒏)

𝑂(𝒏)
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