CSE 421 Winter 2025 Lecture 4: Asymptotics and Graph Search

Nathan Brunelle

<http://www.cs.uw.edu/421>

Complexity analysis

- Problem size n
	- **Worst-case complexity**:

maximum # steps algorithm takes on any input of size \boldsymbol{n}

• **Best-case complexity:**

minimum # steps algorithm takes on any input of size \boldsymbol{n}

• **Average-case complexity**:

Expected # steps algorithm takes on inputs of size \boldsymbol{n}

Complexity

- The complexity of an algorithm associates a number $T(n)$, the worst/averagecase/best time the algorithm takes, with each problem size **n**.
- Mathematically,
	- T is a function that maps positive integers giving problem size to positive real numbers giving number of steps.
- Sometimes we have more than one size parameter
	- e.g. $n=$ # of vertices, $m=$ # of edges in a graph.

Efficient = Polynomial Time

- Polynomial time
	- Running time $T(n) \le cn^k + d$ for some $c, d, k \ge 0$
- Why polynomial time?
	- If problem size grows by at most a constant factor then so does the running time
		- e.g. $T(2n) \le c (2n)^k + d = 2^k cn^k + d \le 2^k (cn^k + d) = 2^k T(n)$
		- polynomial-time is exactly the set of running times that have this property
	- Typical running times are small degree polynomials, mostly less than n^3 , at worst $\boldsymbol{n^6}$, not $\boldsymbol{n^{100}}$

Problem size n

O-notation etc

- Given two positive functions f and g
	- $f(n)$ is $O(g(n))$ iff there is a constant $c > 0$

so that $f(n)$ is eventually always $\leq c \cdot g(n)$

- $f(n)$ is $o(g(n))$ iff for every constant $c > 0$ $f(n)$ is eventually always $\leq c \cdot g(n)$
- $f(n)$ is $\Omega(g(n))$ iff there is a constant $\varepsilon > 0$ so that $f(n) \geq \varepsilon \cdot g(n)$ for infinitely many values of \boldsymbol{n}
- $f(n)$ is $\omega(g(n))$ iff for every constant $c > 0$ $f(n)$ is eventually always $\geq c \cdot g(n)$
- $f(n)$ is $\Theta(g(n))$ iff $f(n)$ is $\mathbf{O}(g(n))$ and $f(n)$ is $\Omega(g(n))$

Note: The definition of " $f(n)$ is $\Omega(g(n))$ " is *almost* the same as " $f(n)$ is **not** $o(g(n))$ " The definition of " $f(n)$ is $\Omega(g(n))$ " is almost the same as " $f(n)$ is **not** $o(g(n))$ "

Asymptotic Notation intuition

 $f(n)$ is...

- $O(g(n))$: ratio eventually below some line forever
- $o(g(n))$: ratio eventually below every line forever
- $\Omega(g(n))$: ratio eventually above some line forever
- $\Theta(g(n))$: both $\boldsymbol{0}$ and $\boldsymbol{\Omega}$ $\omega(g(n))$: ratio eventually above every line forever

Introduction to Algorithms

• **Graph Search/Traversal**

Undirected Graph G = (V,E)

Graph Traversal

Learn the basic structure of a graph

Walk from a fixed starting vertex s to find all vertices reachable from s

Generic Graph Traversal Algorithm **Given:** Graph graph $G = (V, E)$ vertex $s \in V$ **Find:** set **R** of vertices reachable from $s \in V$

```
Reachable(s):
     Add s to Rwhile there is a (u, v) \in E where u \in R and v \notin RAdd \boldsymbol{v} to \boldsymbol{R}return R
```
Claim: At termination, \bf{R} is the set of nodes reachable from \bf{s}

Generic Traversal Always Works

Proof

- \subseteq : For every node $v \in R$ there is a path from s to v
	- Induction based on edges found.
		- Base case: s is reachable from s
		- Inductive step: If there is a path to every member of *after <i>i* iterations, then there is a path to every member of **R** after $i + 1$ iterations
- \supseteq : Suppose there is a node $w \notin R$ reachable from s via a path P
	- Take first node \boldsymbol{v} on \boldsymbol{P} such that \boldsymbol{v} \notin \boldsymbol{R}
	- Predecessor \boldsymbol{u} of \boldsymbol{v} in \boldsymbol{P} satisfies
		- $u \in R$
		- $(u, v) \in E$
	- But this contradicts the fact that the algorithm exited the while loop.

Graph Traversal

Learn the basic structure of a graph

Walk from a fixed starting vertex s to find all vertices reachable from s

Three states of vertices

- **unvisited**
- **visited/discovered** (in R)
- **fully-explored** (in **R** and all neighbors have been visited)

Breadth-First Search

Completely explore the vertices in order of their distance from s

Naturally implemented using a queue

BFS(s)

Global initialization: mark all vertices "unvisited"

 $BFS(s)$

```
Mark s "visited"
Add s to Q
\boldsymbol{i} = \boldsymbol{0}Mark s as "layer i"
while \bm{Q} not empty
      \boldsymbol{u} = next item removed from \boldsymbol{Q}i = "layer of u"
      for each edge (\boldsymbol{u},\boldsymbol{v})if (v is "unvisited")
                 mark v "visited"
                 mark s as "layer i + 1"
      mark \boldsymbol{u} "fully-explored"
```
Properties of BFS

BFS(s) visits x iff there is a path in G from s to x.

Edges followed to undiscovered vertices define a breadth first spanning tree of $$

Layer *in this tree:*

 L_i = set of vertices \boldsymbol{u} with shortest path in G from root s of length i .

Properties of BFS **Claim:** For undirected graphs:

All edges join vertices on the same or adjacent layers of BFS tree

Proof: Suppose not...

Then there would be vertices (x, y) s.t. $x \in L_i$ and $y \in L_j$ and $j > i + 1$.

Then, when vertices adjacent to \boldsymbol{x} are considered in BFS, **y** would be added with layer $i + 1$ and not layer j.

Contradiction.

Undirected Graph Search Application: Connected Components

Want to answer questions of the form:

Given: vertices u and v in G

Is there a path from \boldsymbol{u} to \boldsymbol{v} ?

Idea: create array **A** s.t

 $\mathbf{A}[\mathbf{u}]$ = smallest numbered vertex connected to \mathbf{u}

Answer is yes iff $A[u] = A[v]$

Q: Why is this better than an array **Path** $[u, v]$? Undirected Graph Search Application: Connected Components

```
Initial state: all \nu unvisited
for s from 1 to n do:
    if state(s) \neq fully-explored then
           BFS(s): setting A[u] = s for each u found
                   (and marking \boldsymbol{u} visited/fully-explored)
```
Total cost: $O(n + m)$

- Each vertex is touched once in outer procedure and edges examined in different BFS runs are disjoint
- Works also with Depth First Search ...

$DFS(\boldsymbol{u})$ – Recursive Procedure

Global Initialization: mark all vertices "unvisited" $DFS(u)$

```
mark \boldsymbol{u} "visited" and add \boldsymbol{u} to \boldsymbol{R}for each edge (u, v)if (v is "unvisited")
         DFS(v)mark u "fully-explored"
```
Properties of $DFS(s)$

Like $BFS(s)$:

- DFS(s) visits x iff there is a path in G from s to x
- Edges into undiscovered vertices define depth-first spanning tree of $$

Unlike the BFS tree:

- the DFS spanning tree *isn't* minimum depth
- its levels *don't* reflect min distance from the root
- non-tree edges *never* join vertices on the same or adjacent levels

BUT…

Non-tree edges in DFS tree of undirected graphs

Claim: All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree

• In other words ... No "cross edges".

No cross edges in DFS on undirected graphs

Claim: During $DFS(x)$ every vertex marked "visited" is a descendant of x in the DFS tree T

Claim: For every x , y in the DFS tree T, if (x, y) is an edge *not* in T then one of x or y is an ancestor of the other in T

Proof:

- One of $DFS(x)$ or $DFS(y)$ is called first, suppose WLOG that $DFS(x)$ was called before $DFS(y)$
- During DFS (x) , the edge (x, y) is examined
- Since (x, y) is a *not* an edge of T, y was already visited when edge (x, y) was examined during $DFS(x)$
- Therefore y was visited during the call to $DFS(x)$ so y is a descendant of x.

Applications of Graph Traversal: Bipartiteness Testing **Definition:** An undirected graph G is bipartite iff we can color its vertices **red** and **green** so each edge has different color endpoints

Input: Undirected graph **Goal:** If G is bipartite, output a coloring; otherwise, output "NOT Bipartite".

Fact: Graph G contains an odd-length cycle \Rightarrow it is not bipartite

On a cycle the two colors must alternate, so

- green every 2nd vertex
- red every 2nd vertex

Can't have either if length is not divisible by 2.

Applications of Graph Traversal: Bipartiteness Testing

WLOG ("without loss of generality"): Can assume that G is connected

• Otherwise run on each component

Simple idea: start coloring nodes starting at a given node

- Color **red**
- Color all neighbors of **green**
- Color all their neighbors **red**, etc*.*
- If you ever hit a node that was already colored
	- the **same** color as you want to color it, ignore it
	- the **opposite** color, output *"*NOT Bipartite*"* and halt

BFS gives Bipartiteness

Run BFS assigning all vertices from layer L_i the color i mod 2

- i.e., **red** if they are in an even layer, **green** if in an odd layer
- if no edge joining two vertices of the same color
	- then it is a good coloring
- otherwise
	- there is a bad edge; output "Not Bipartite"

Why is that "Not Bipartite" output correct?

Why does BFS work for Bipartiteness? **Recall:** All edges join vertices on the same or adjacent BFS layers \Rightarrow Any "bad" edge must join two vertices **u** and **v** in the same layer

Say the layer with u and v is L_i u and v have common ancestor at some level L_i for $i < j$ Odd cycle of length $2(j - i) + 1$ ⇒ Not Bipartite \boldsymbol{S} $\boldsymbol{L_i}$ $\bm{L}_{\bm{j}}$ \boldsymbol{u} \boldsymbol{v} $j-i$) $j-i$ $\mathbf{1}$

Properties of Directed DFS

- Before DFS(s) returns, it visits all previously unvisited vertices reachable via directed paths from s
- Every cycle contains a back edge in the DFS tree

Directed Acyclic Graphs

A directed graph $G = (V, E)$ is acyclic iff it has no directed cycles

Terminology: A directed acyclic graph is also called a DAG

After shrinking the strongly connected components of a directed graph to single vertices, the result is a DAG

Topological Sort

Given: a directed acyclic graph (DAG) $G = (V, E)$

Output: numbering of the vertices of G with distinct numbers from 1 to n so that edges only go from lower numbered to higher numbered vertices

Applications:

- nodes represent tasks
- edges represent precedence between tasks
- topological sort gives a sequential schedule for solving them

Nice algorithmic paradigm for general directed graphs:

• Process strongly connected components one-by-one in the order given by topological sort of the DAG you get from shrinking them.

Directed Acyclic Graph

In-degree 0 vertices

Claim: Every DAG has a vertex of in-degree 0

Proof: By contradiction

Suppose every vertex has some incoming edge Consider following procedure: while (true) do $v =$ some predecessor of $v =$

• After $n + 1$ steps where $n = |V|$ there will be a repeated vertex

• This yields a cycle, contradicting that it is a DAG.

Topological Sort

- Can do using DFS
- Alternative simpler idea:
	- Any vertex of in-degree 0 can be given number 1 to start
	- Remove it from the graph
	- Then give a vertex of in-degree 0 number 2
	- Etc.

Implementing Topological Sort

- Go through all edges, computing array with in-degree for each vertex $\theta (m + n)$
- Maintain a list of vertices of in-degree 0
- Remove any vertex in list and number it
- When a vertex is removed, decrease in-degree of each neighbor by 1 and add them to the list if their degree drops to $\mathbf 0$

Total cost: $O(m + n)$

Strongly Connected Components of Directed Graphs

Defn: Vertices u and v are strongly connected iff they are on a directed cycle (there are paths from \boldsymbol{u} to \boldsymbol{v} and from \boldsymbol{v} to \boldsymbol{u}).

Defn: Can partition vertices of any directed graph into strongly connected components:

- 1. all pairs of vertices in the same component are strongly connected
- 2. can't merge components and keep property 1
- Strongly connected components can be stored efficiently just like connected components
- Can be found in $O(n + m)$ time using a DFS then a BFS
	- Do a depth-first sort, keeping track of the order nodes are marked "fully-explored"
	- Going in order from least recent to most recent, run connected components

Strongly-Connected Components Usage

Common algorithmic paradigm for general directed graphs:

• Process strongly connected components one-by-one in the order given by topological sort of the DAG you get from shrinking them.