CSE 421 Winter 2025 Lecture 4: Asymptotics and Graph Search

Nathan Brunelle

http://www.cs.uw.edu/421

Complexity analysis

- Problem size *n*
 - Worst-case complexity:

maximum # steps algorithm takes on any input of size n

• Best-case complexity:

minimum # steps algorithm takes on any input of size *n*

• Average-case complexity:

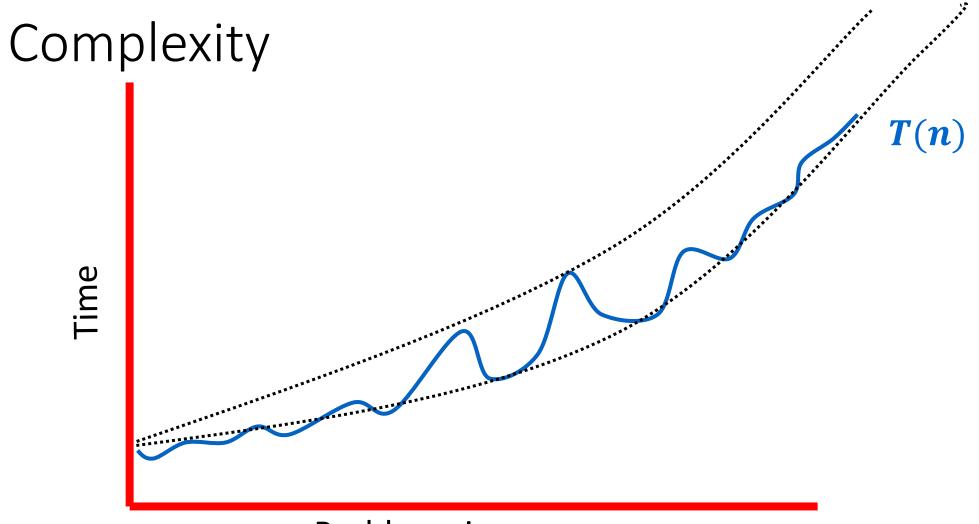
Expected # steps algorithm takes on inputs of size *n*

Complexity

- The complexity of an algorithm associates a number T(n), the worst/average-case/best time the algorithm takes, with each problem size **n**.
- Mathematically,
 - *T* is a function that maps positive integers giving problem size to positive real numbers giving number of steps.
- Sometimes we have more than one size parameter
 - e.g. *n*=# of vertices, *m*=# of edges in a graph.

Efficient = Polynomial Time

- Polynomial time
 - Running time $T(n) \leq cn^k + d$ for some $c, d, k \geq 0$
- Why polynomial time?
 - If problem size grows by at most a constant factor then so does the running time
 - e.g. $T(2n) \le c (2n)^k + d = 2^k cn^k + d \le 2^k (cn^k + d) = 2^k T(n)$
 - polynomial-time is exactly the set of running times that have this property
 - Typical running times are small degree polynomials, mostly less than n^3 , at worst n^6 , not n^{100}



Problem size *n*

O-notation etc

- Given two positive functions *f* and *g*
 - f(n) is O(g(n)) iff there is a constant c > 0

so that f(n) is eventually always $\leq c \cdot g(n)$

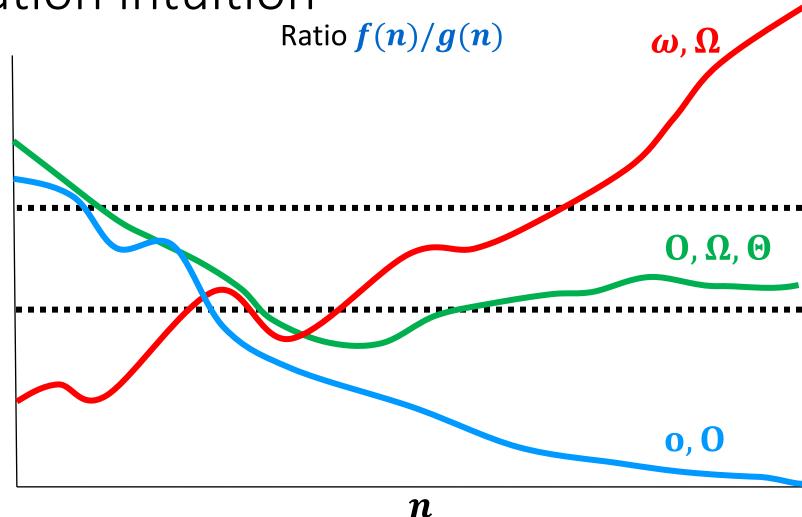
- f(n) is o(g(n)) iff for every constant c > 0f(n) is eventually always $\leq c \cdot g(n)$
- f(n) is $\Omega(g(n))$ iff there is a constant $\varepsilon > 0$ so that $f(n) \ge \varepsilon \cdot g(n)$ for infinitely many values of n
- f(n) is $\omega(g(n))$ iff for every constant c > 0f(n) is eventually always $\geq c \cdot g(n)$
- f(n) is $\Theta(g(n))$ iff f(n) is O(g(n)) and f(n) is $\Omega(g(n))$

Note: The definition of "f(n) is $\Omega(g(n))$ " is almost the same as "f(n) is **not** o(g(n))" The definition of "f(n) is $\Omega(g(n))$ " is almost the same as "f(n) is **not** o(g(n))"

Asymptotic Notation intuition

f(**n**) is...

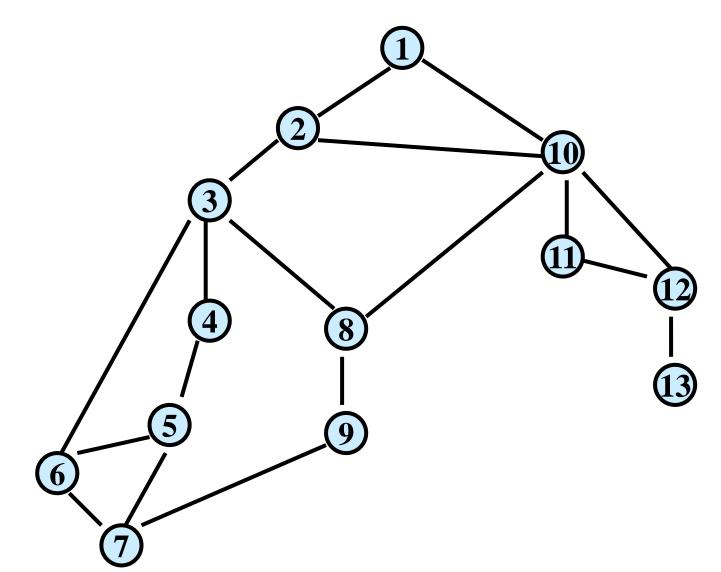
- O(g(n)): ratio eventually below some line forever
- o(g(n)): ratio eventually below every line forever
- $\Omega(g(n))$: ratio eventually above some line forever
- ω(g(n)): ratio eventually above every line forever Θ(g(n)): both O and Ω

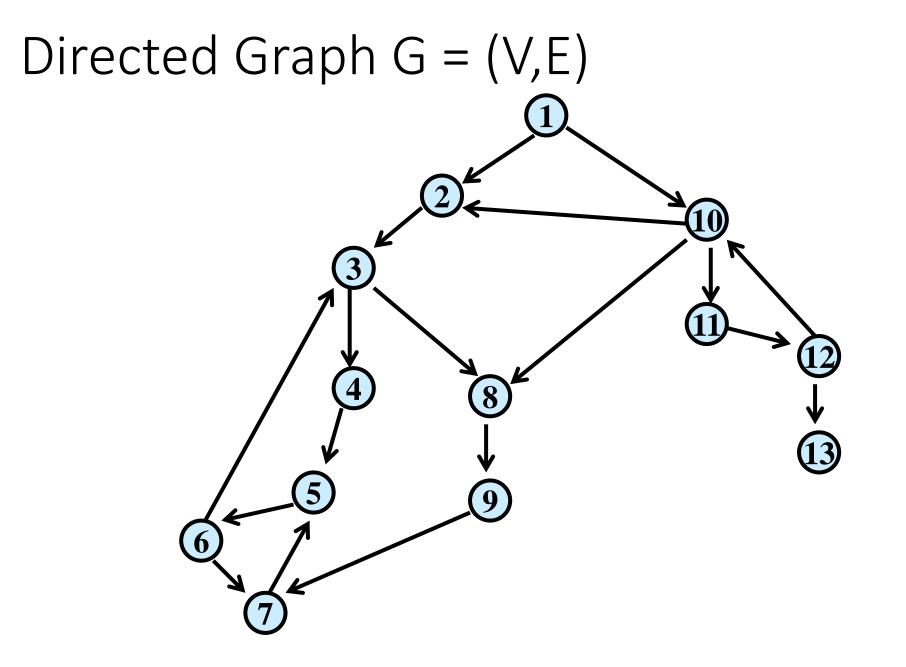


Introduction to Algorithms

• Graph Search/Traversal

Undirected Graph G = (V,E)





Graph Traversal

Learn the basic structure of a graph

Walk from a fixed starting vertex *s* to find all vertices reachable from *s*

Generic Graph Traversal Algorithm **Given:** Graph graph G = (V, E) vertex $s \in V$ **Find:** set R of vertices reachable from $s \in V$

```
Reachable(s):

Add s to R

while there is a (u, v) \in E where u \in R and v \notin R

Add v to R

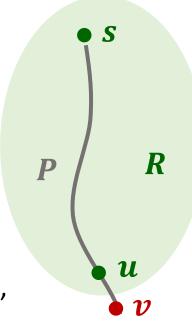
return R
```

Claim: At termination, **R** is the set of nodes reachable from **s**

Generic Traversal Always Works

Proof

- \subseteq : For every node $v \in R$ there is a path from s to v
 - Induction based on edges found.
 - Base case: **s** is reachable from **s**
 - Inductive step: If there is a path to every member of R after i iterations, then there is a path to every member of R after i + 1 iterations
- \supseteq : Suppose there is a node $w \notin R$ reachable from s via a path P
 - Take first node v on P such that $v \notin R$
 - Predecessor u of v in P satisfies
 - $u \in R$
 - $(\boldsymbol{u}, \boldsymbol{v}) \in \boldsymbol{E}$
 - But this contradicts the fact that the algorithm exited the while loop.



Graph Traversal

Learn the basic structure of a graph

Walk from a fixed starting vertex *s* to find all vertices reachable from *s*

Three states of vertices

- unvisited
- visited/discovered (in **R**)
- fully-explored (in R and all neighbors have been visited)

Breadth-First Search

Completely explore the vertices in order of their distance from *s*

Naturally implemented using a queue

$\mathsf{BFS}(s)$

Global initialization: mark all vertices "unvisited"

BFS(s)

```
Mark s "visited"
Add s to Q
\mathbf{i} = 0
Mark s as "layer i"
while Q not empty
    u = next item removed from Q
    i = "layer of u"
    for each edge (u, v)
          if (v is "unvisited")
             mark v "visited"
             mark s as "layer i + 1"
    mark u "fully-explored"
```

Properties of BFS

BFS(s) visits x iff there is a path in G from s to x.

Edges followed to undiscovered vertices define a breadth first spanning tree of G

Layer *i* in this tree:

 L_i = set of vertices u with shortest path in G from root s of length i.

Properties of BFS

Claim: For undirected graphs:

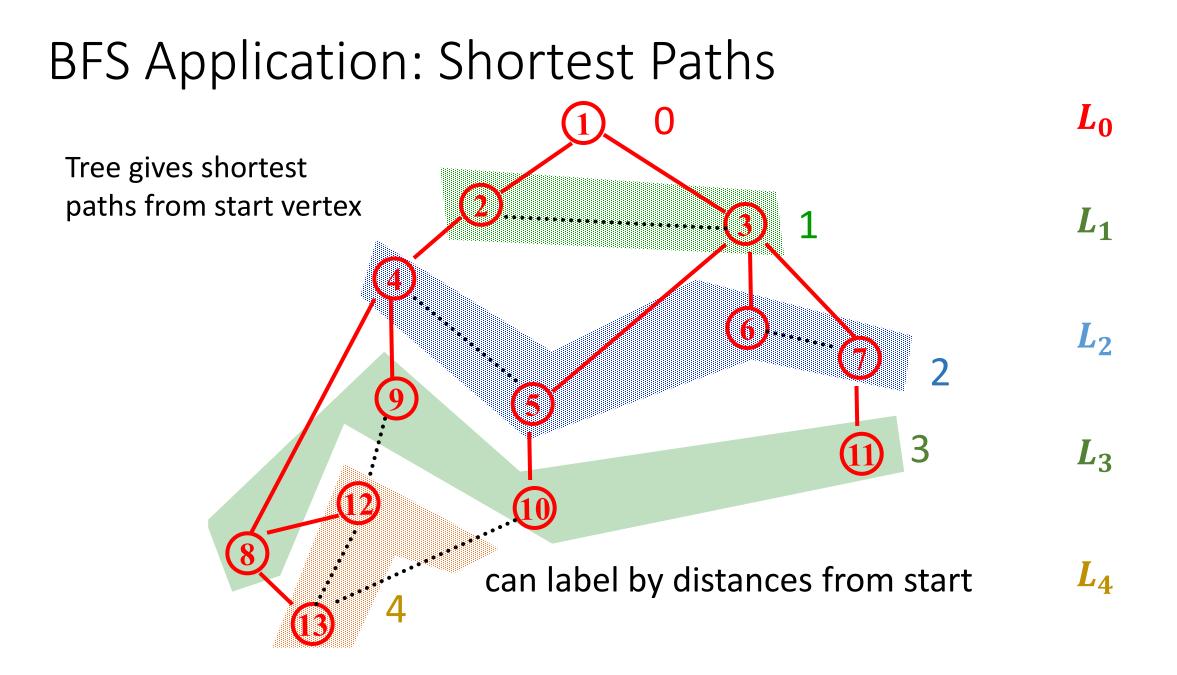
All edges join vertices on the same or adjacent layers of BFS tree

Proof: Suppose not...

Then there would be vertices (x, y) s.t. $x \in L_i$ and $y \in L_j$ and j > i + 1.

Then, when vertices adjacent to x are considered in BFS, y would be added with layer i + 1 and not layer j.

Contradiction.



Undirected Graph Search Application: Connected Components

Want to answer questions of the form:

Given: vertices $oldsymbol{u}$ and $oldsymbol{v}$ in $oldsymbol{G}$

Is there a path from \boldsymbol{u} to \boldsymbol{v} ?

Idea: create array A s.t

A[**u**] = smallest numbered vertex connected to **u**

Answer is yes iff A[u] = A[v]

Q: Why is this better than an array **Path**[*u*, *v*]?

Undirected Graph Search Application: Connected Components

```
Initial state: all v unvisited
for s from 1 to n do:
if state(s) \neq fully-explored then
BFS(s): setting A[u] = s for each u found
(and marking u visited/fully-explored)
```

Total cost: O(n + m)

- Each vertex is touched once in outer procedure and edges examined in different BFS runs are disjoint
- Works also with Depth First Search ...

$DFS(\boldsymbol{u}) - Recursive Procedure$

Global Initialization: mark all vertices "unvisited" DFS(*u*)

```
mark u "visited" and add u to R
for each edge (u, v)
if (v is "unvisited")
DFS(v)
mark u "fully-explored"
```

Properties of DFS(**s**)

Like BFS(s):

- DFS(s) visits x iff there is a path in G from s to x
- Edges into undiscovered vertices define depth-first spanning tree of G

Unlike the BFS tree:

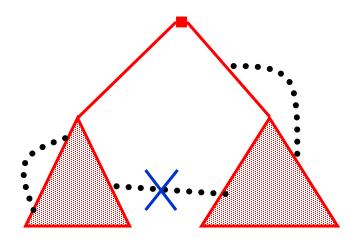
- the DFS spanning tree *isn't* minimum depth
- its levels *don't* reflect min distance from the root
- non-tree edges *never* join vertices on the same or adjacent levels

BUT...

Non-tree edges in DFS tree of undirected graphs

Claim: All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree

• In other words ... No "cross edges".



No cross edges in DFS on undirected graphs

Claim: During DFS(x) every vertex marked "visited" is a descendant of x in the DFS tree T

Claim: For every *x*, *y* in the DFS tree *T*, if (*x*, *y*) is an edge *not* in *T* then one of *x* or *y* is an ancestor of the other in *T*

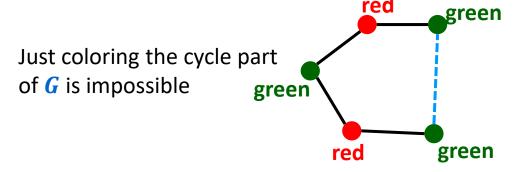
Proof:

- One of DFS(x) or DFS(y) is called first, suppose WLOG that DFS(x) was called before DFS(y)
- During DFS(x), the edge (x, y) is examined
- Since (x, y) is a not an edge of T, y was already visited when edge (x, y) was examined during DFS(x)
- Therefore y was visited during the call to DFS(x) so y is a descendant of x.

Applications of Graph Traversal: Bipartiteness Testing **Definition:** An undirected graph *G* is bipartite iff we can color its vertices red and green so each edge has different color endpoints

Input: Undirected graph G
Goal: If G is bipartite, output a coloring;
otherwise, output "NOT Bipartite".

Fact: Graph **G** contains an odd-length cycle \Rightarrow it is not bipartite



On a cycle the two colors must alternate, so • green every 2nd vertex

• red every 2nd vertex

Can't have either if length is not divisible by 2.

Applications of Graph Traversal: Bipartiteness Testing

WLOG ("without loss of generality"): Can assume that G is connected

• Otherwise run on each component

Simple idea: start coloring nodes starting at a given node s

- Color <u>s</u> red
- Color all neighbors of *s* green
- Color all their neighbors red, etc.
- If you ever hit a node that was already colored
 - the same color as you want to color it, ignore it
 - the opposite color, output "NOT Bipartite" and halt

BFS gives Bipartiteness

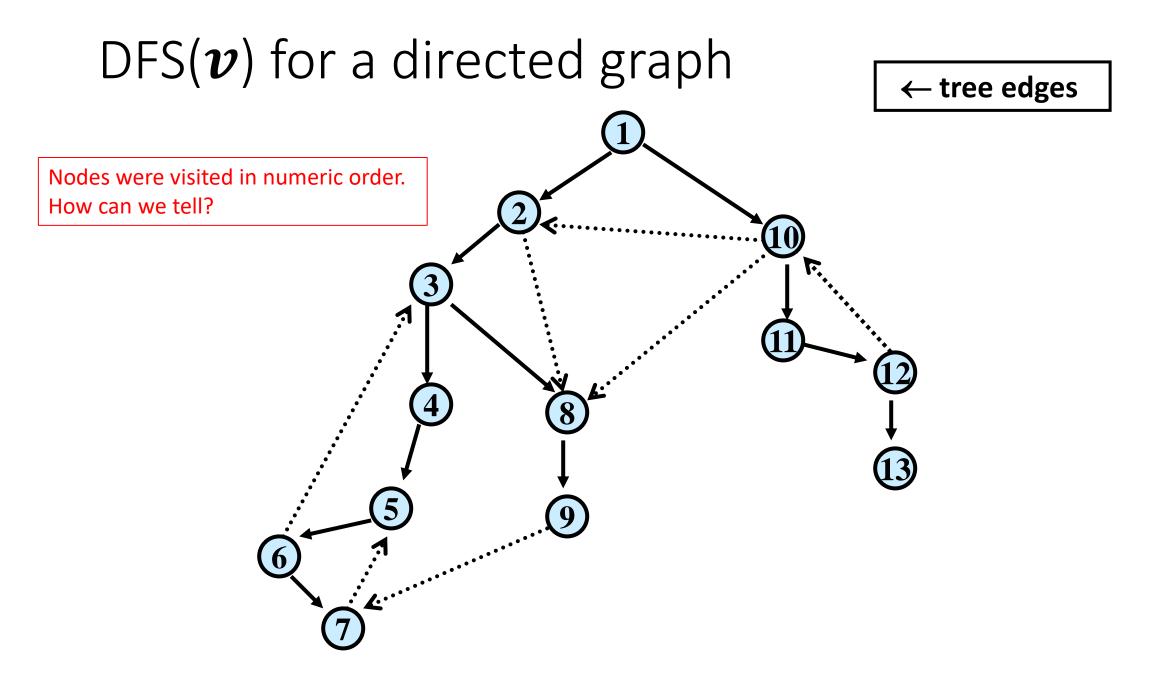
Run BFS assigning all vertices from layer L_i the color $i \mod 2$

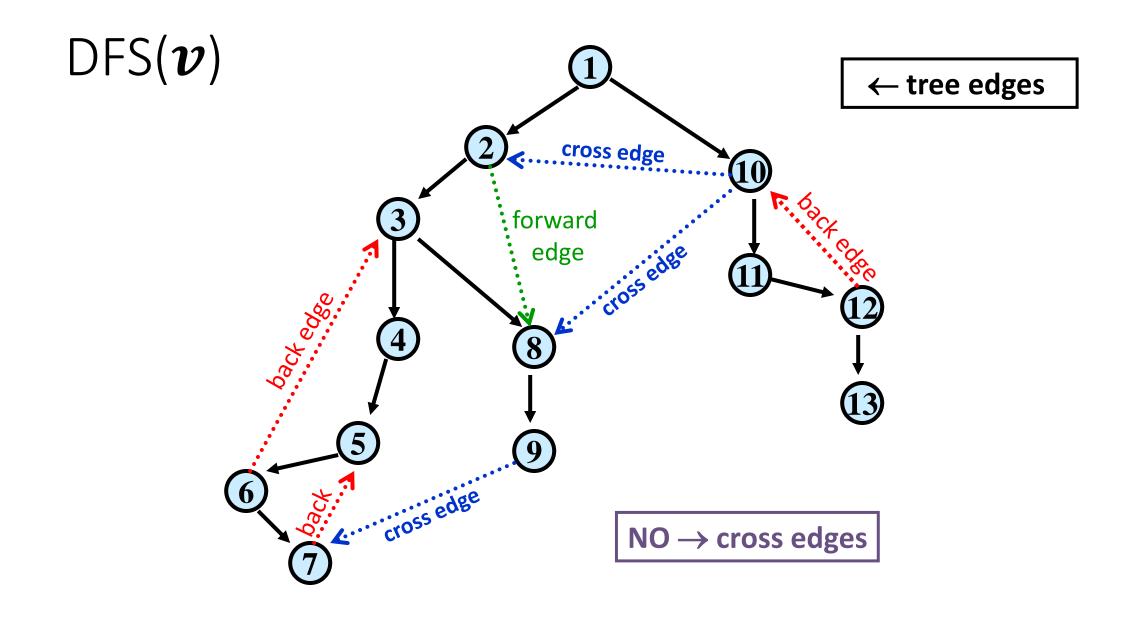
- i.e., red if they are in an even layer, green if in an odd layer
- if no edge joining two vertices of the same color
 - then it is a good coloring
- otherwise
 - there is a bad edge; output "Not Bipartite"

Why is that "Not Bipartite" output correct?

Why does BFS work for Bipartiteness? **Recall:** All edges join vertices on the same or adjacent BFS layers \Rightarrow Any "bad" edge must join two vertices u and v in the same layer

Say the layer with u and v is L_j u and v have common ancestor at some level L_i for i < jOdd cycle of length 2(j - i) + 1 \Rightarrow Not Bipartite j - i L_j L_j J - i L_j L_j J - i L_j L_j J - i L_j L_j L_j





Properties of Directed DFS

- Before DFS(s) returns, it visits all previously unvisited vertices reachable via directed paths from s
- Every cycle contains a back edge in the DFS tree

A directed graph G = (V, E) is acyclic iff it has no directed cycles

Terminology: A directed acyclic graph is also called a DAG

After shrinking the strongly connected components of a directed graph to single vertices, the result is a DAG

Topological Sort

Given: a directed acyclic graph (DAG) G = (V, E)

Output: numbering of the vertices of **G** with distinct numbers from **1** to **n** so that edges only go from lower numbered to higher numbered vertices

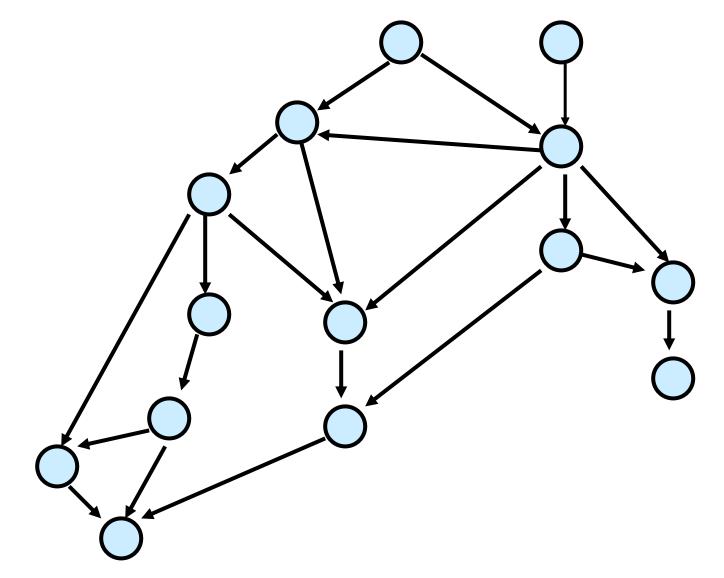
Applications:

- nodes represent tasks
- edges represent precedence between tasks
- topological sort gives a sequential schedule for solving them

Nice algorithmic paradigm for general directed graphs:

 Process strongly connected components one-by-one in the order given by topological sort of the DAG you get from shrinking them.

Directed Acyclic Graph



In-degree 0 vertices

Claim: Every DAG has a vertex of in-degree 0

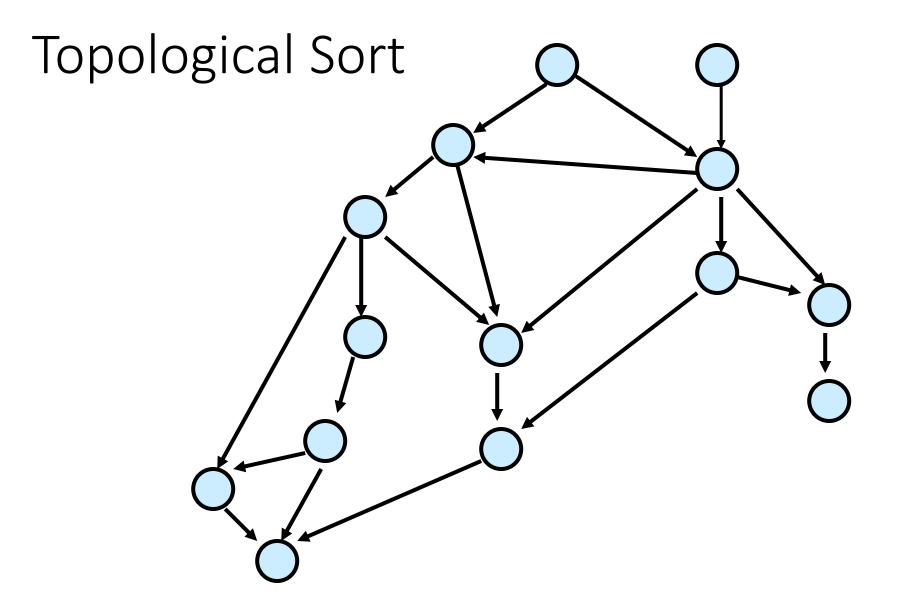
Proof: By contradiction

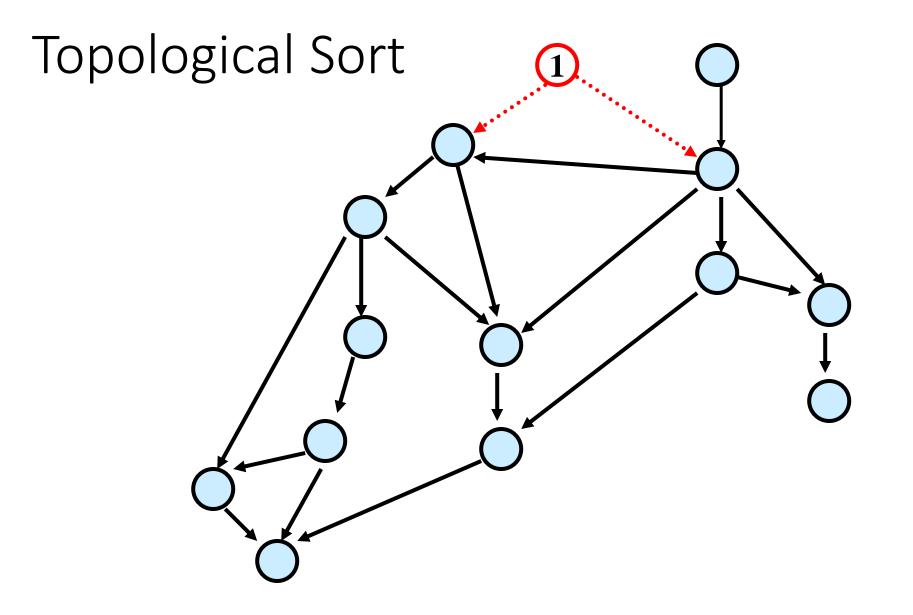
Suppose every vertex has some incoming edge Consider following procedure: while (true) do v = some predecessor of v

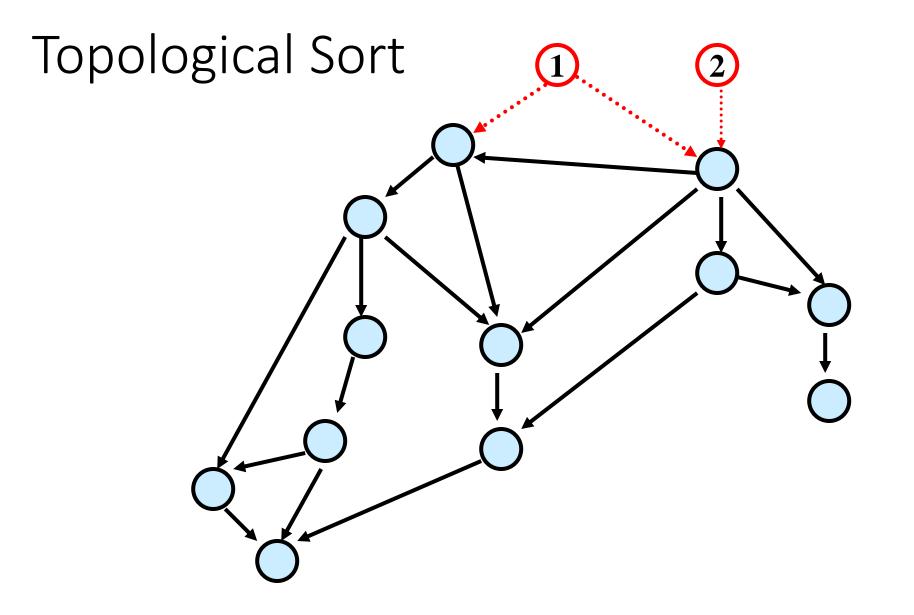
- After n + 1 steps where n = |V| there will be a repeated vertex
 - This yields a cycle, contradicting that it is a DAG.

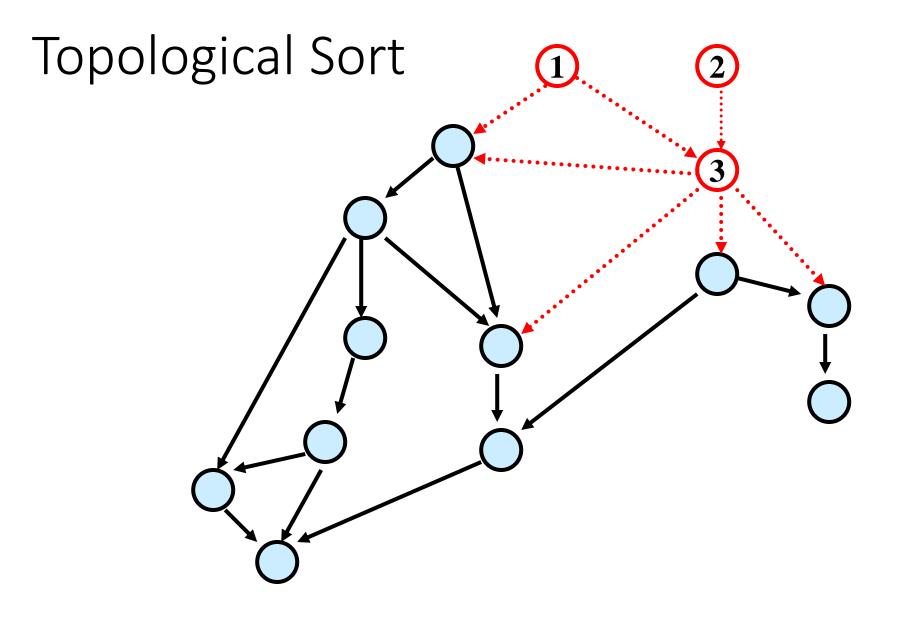
Topological Sort

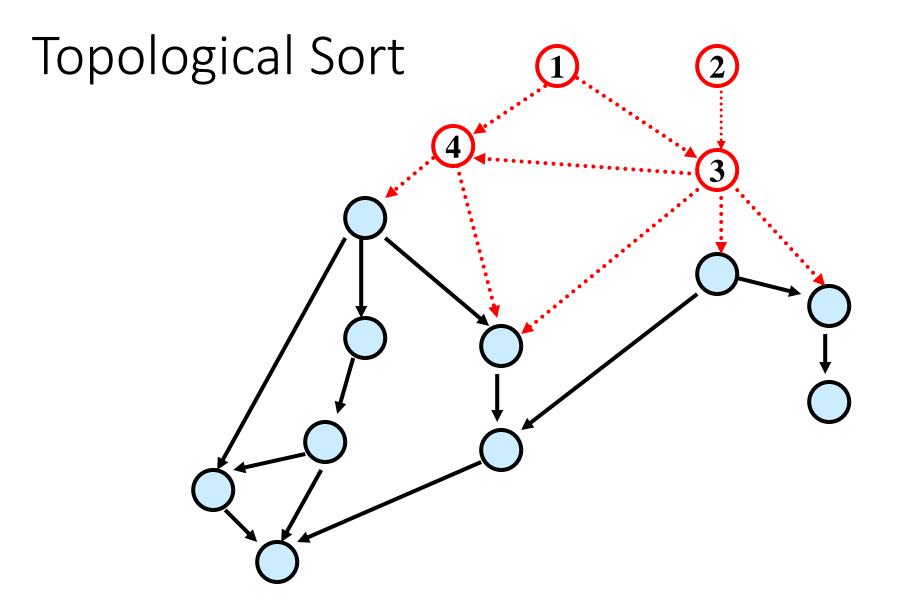
- Can do using DFS
- Alternative simpler idea:
 - Any vertex of in-degree 0 can be given number 1 to start
 - Remove it from the graph
 - Then give a vertex of in-degree 0 number 2
 - Etc.

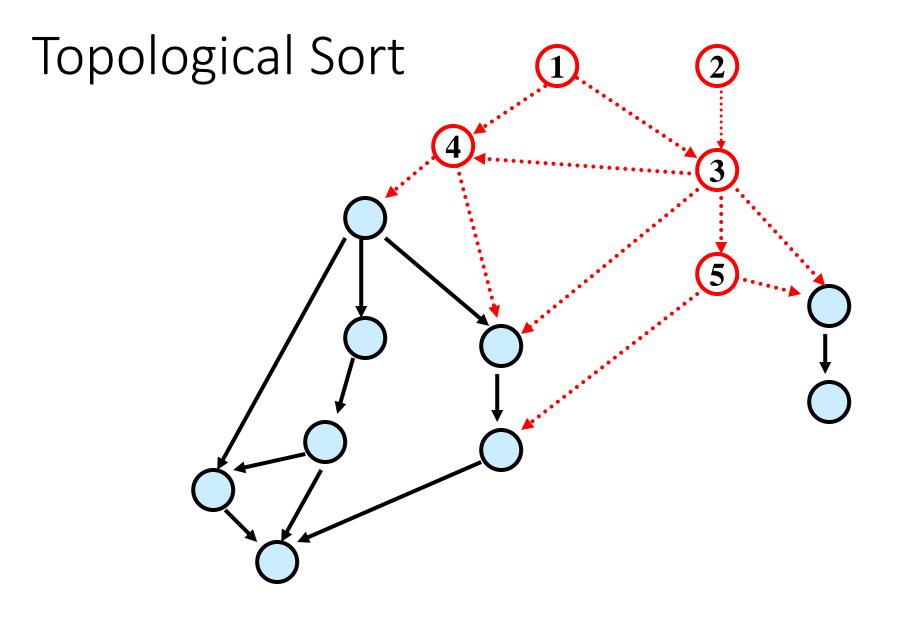


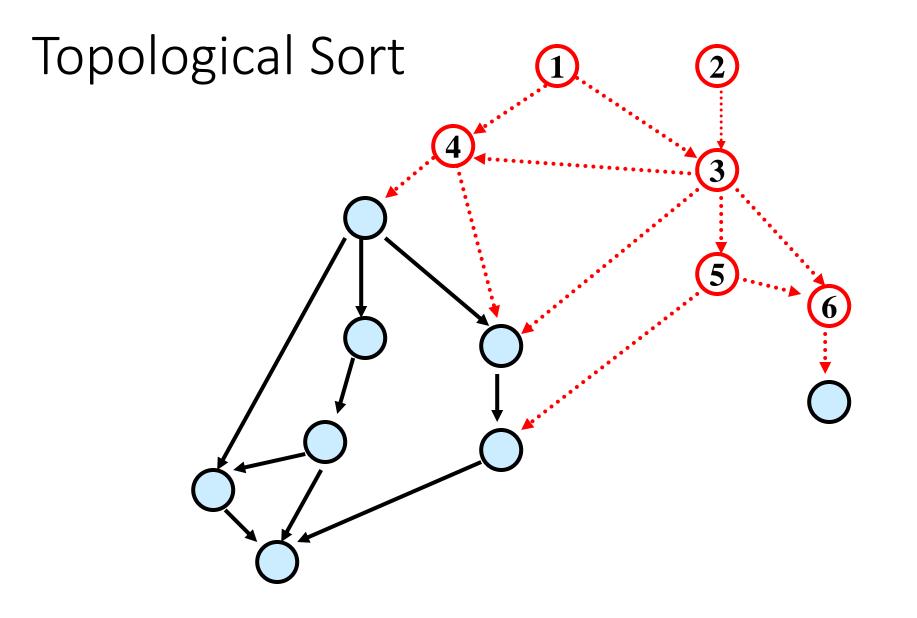


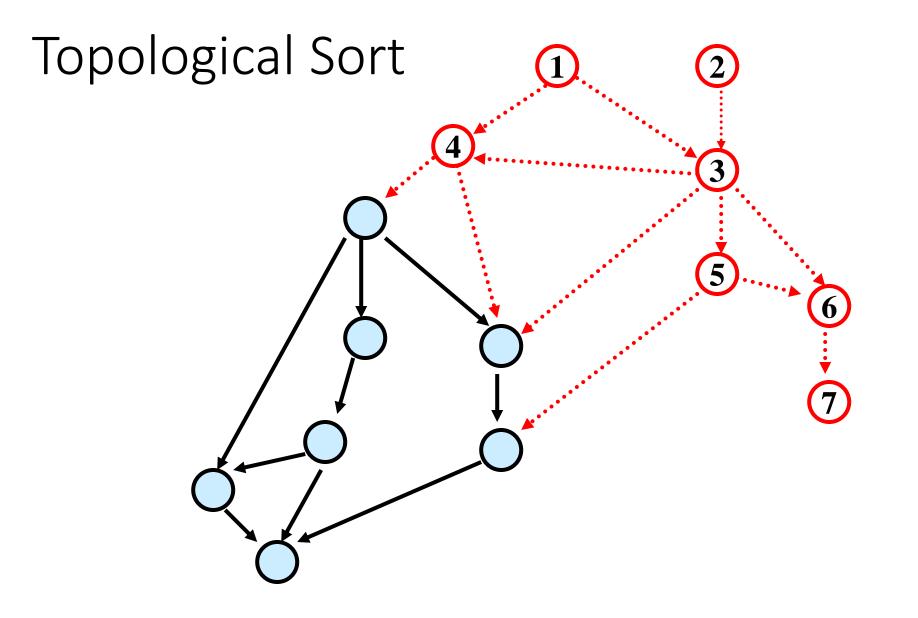


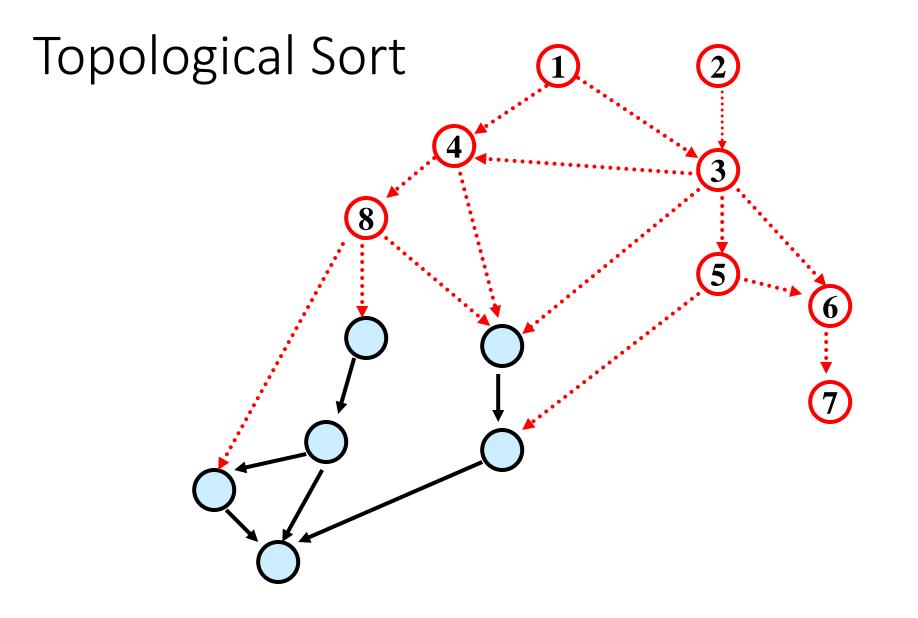


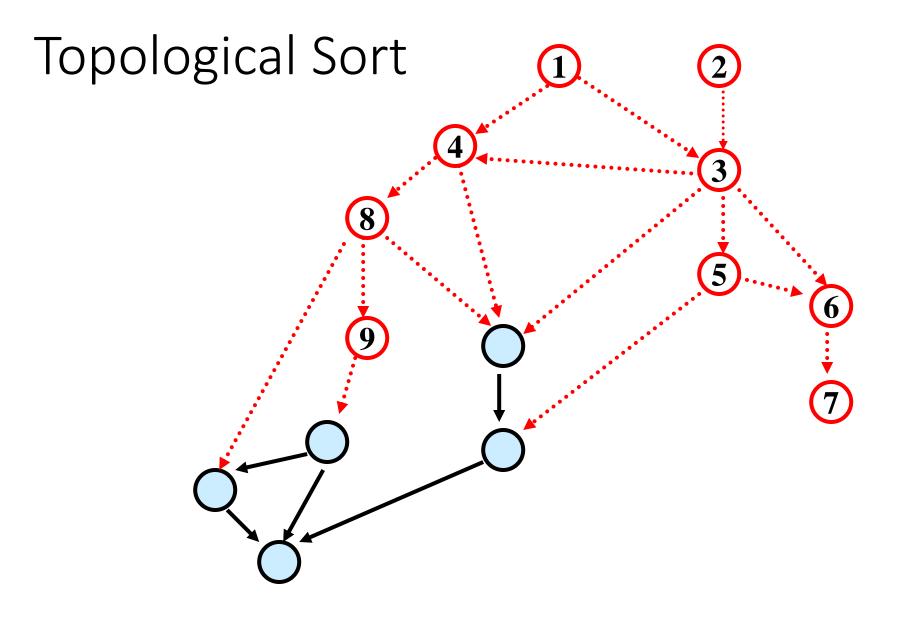


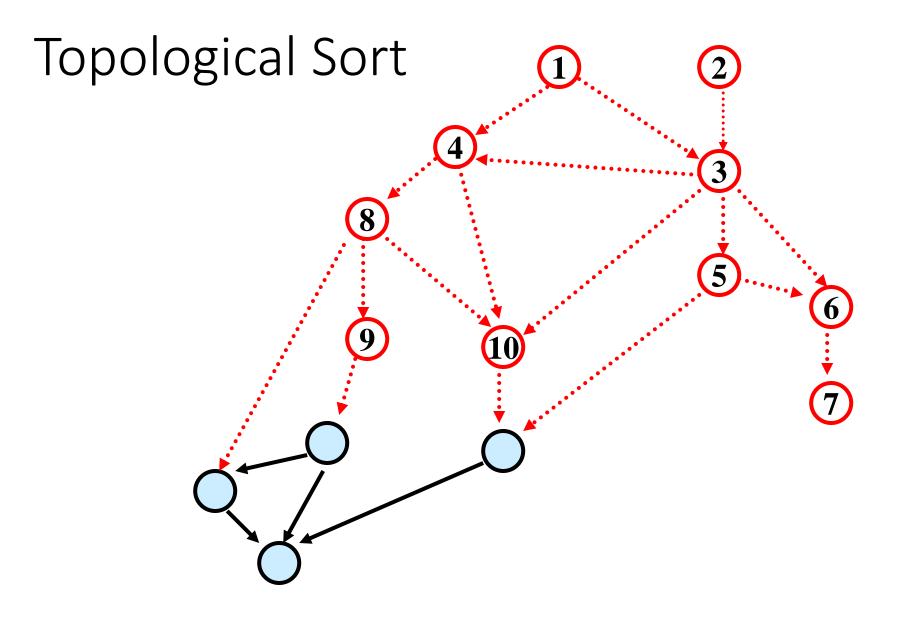


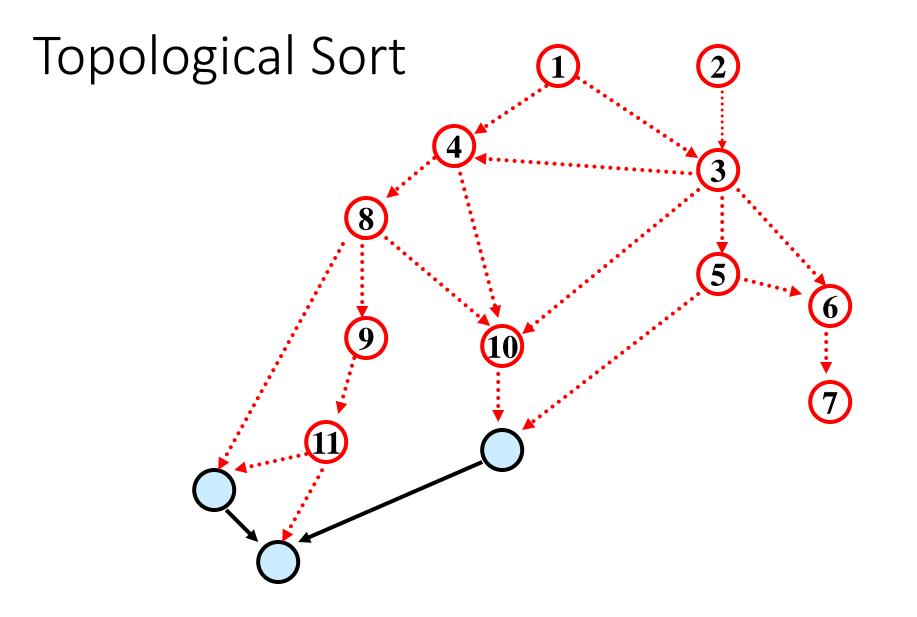


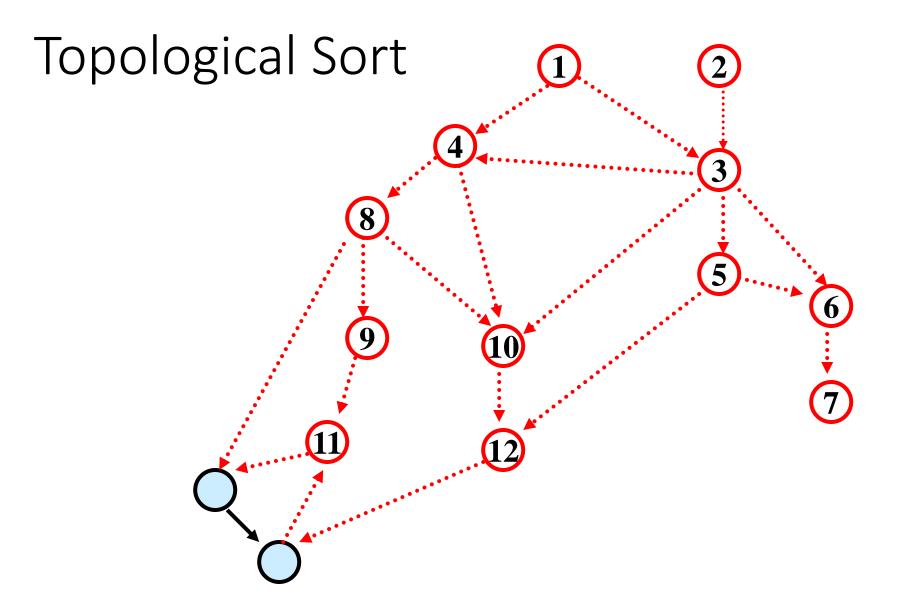


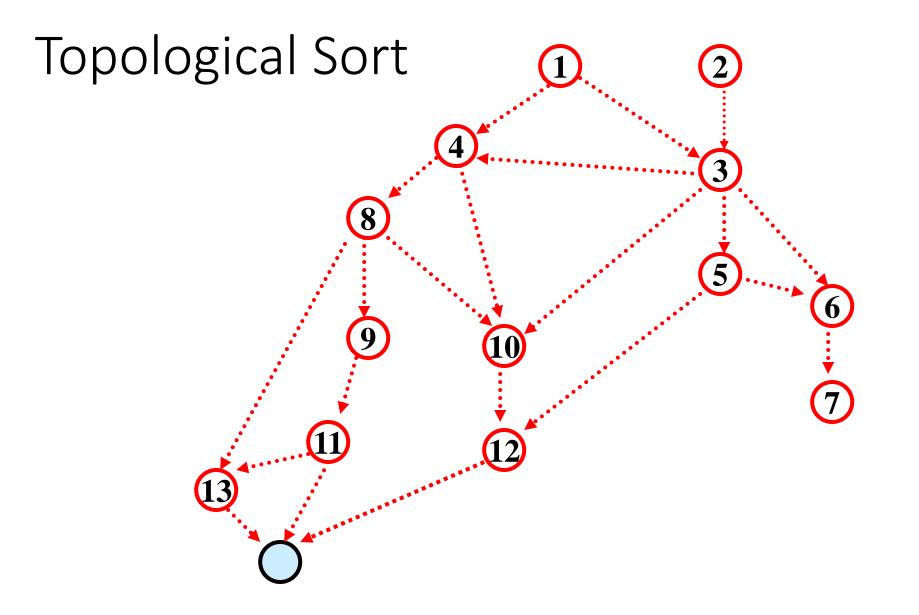


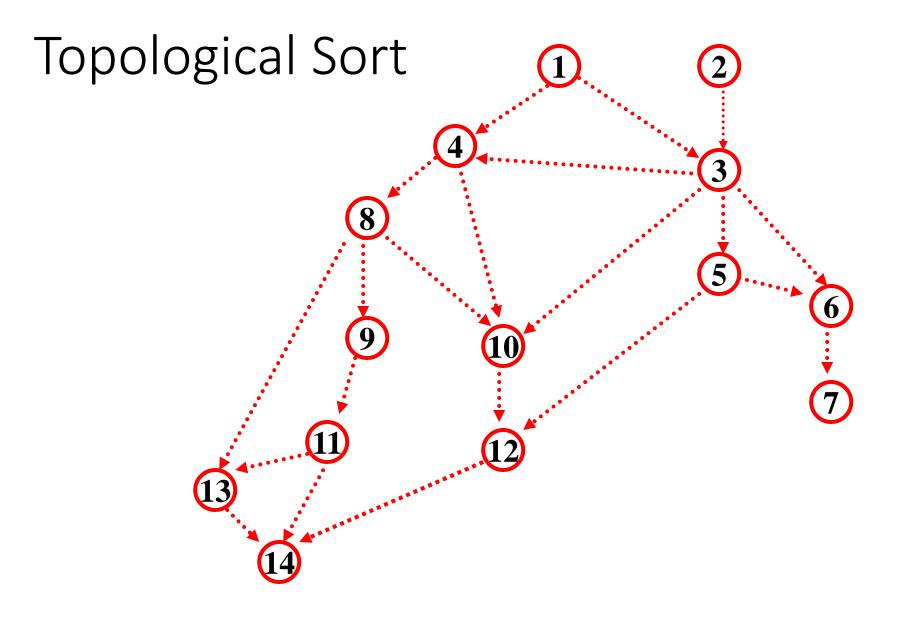












Implementing Topological Sort

- Go through all edges, computing array with in-degree for each vertex O(m + n)
- Maintain a list of vertices of in-degree **0**
- Remove any vertex in list and number it
- When a vertex is removed, decrease in-degree of each neighbor by 1 and add them to the list if their degree drops to 0

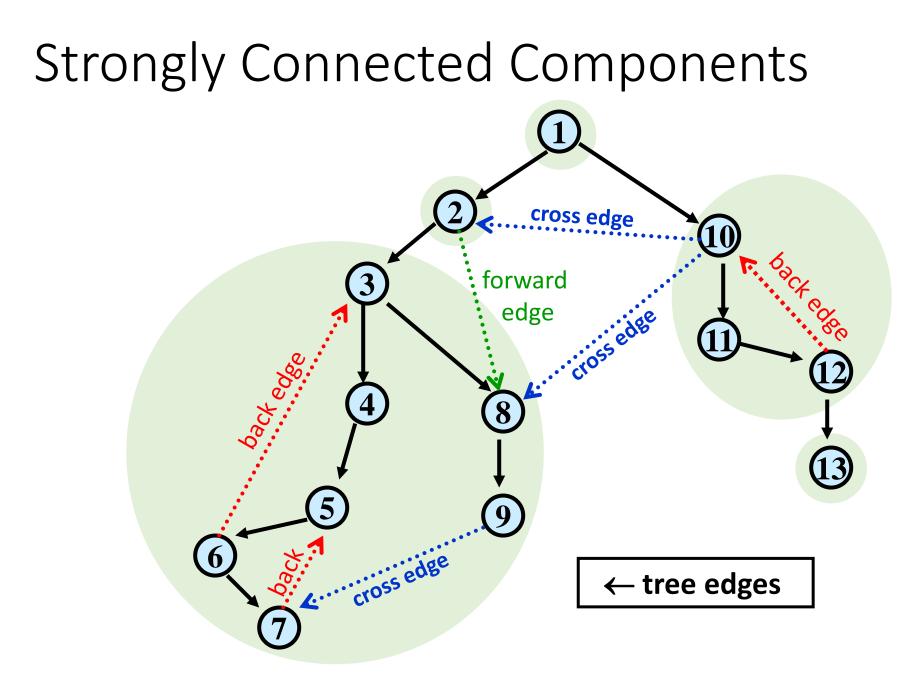
Total cost: O(m + n)

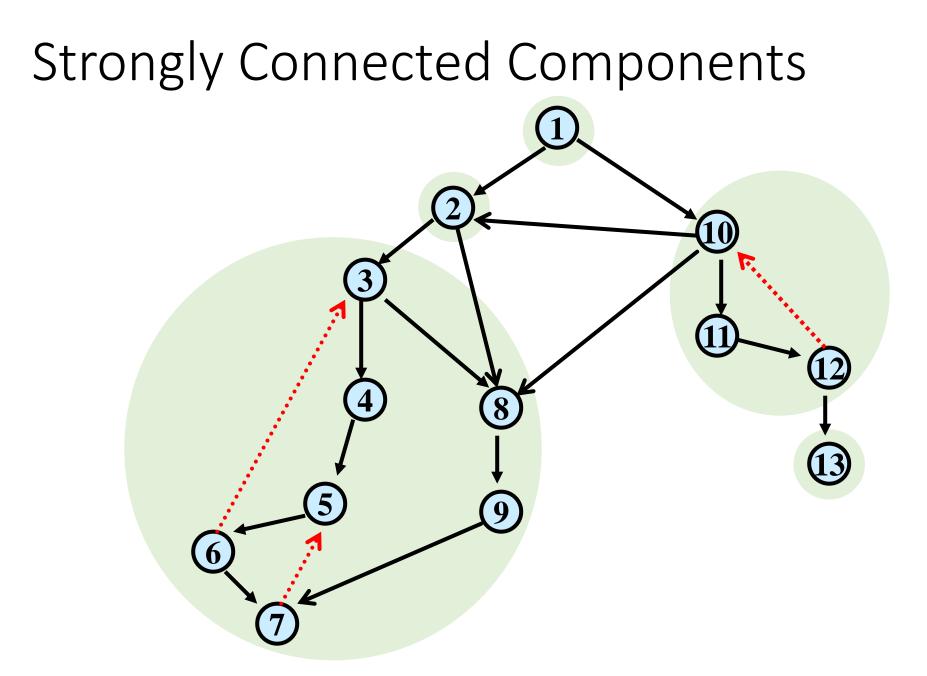
Strongly Connected Components of Directed Graphs

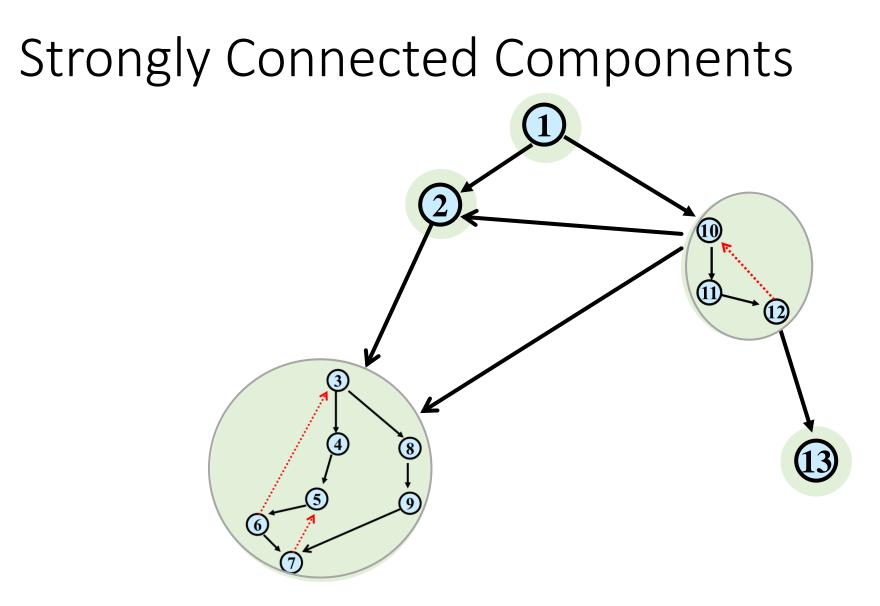
Defn: Vertices \boldsymbol{u} and \boldsymbol{v} are strongly connected iff they are on a directed cycle (there are paths from \boldsymbol{u} to \boldsymbol{v} and from \boldsymbol{v} to \boldsymbol{u}).

Defn: Can partition vertices of any directed graph into strongly connected components:

- 1. all pairs of vertices in the same component are strongly connected
- 2. can't merge components and keep property 1
- Strongly connected components can be stored efficiently just like connected components
- Can be found in O(n + m) time using a DFS then a BFS
 - Do a depth-first sort, keeping track of the order nodes are marked "fully-explored"
 - Going in order from least recent to most recent, run connected components







Strongly-Connected Components Usage

Common algorithmic paradigm for general directed graphs:

• Process strongly connected components one-by-one in the order given by topological sort of the DAG you get from shrinking them.