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Complexity analysis

• Problem size 𝒏
• Worst-case complexity: 

  maximum # steps algorithm takes on any input of size 𝒏

• Best-case complexity: 
minimum # steps algorithm takes on any input of size 𝒏

• Average-case complexity: 
Expected # steps algorithm takes on inputs of size 𝒏
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Complexity

• The complexity of an algorithm associates a number 𝑻(𝒏), the worst/average-
case/best time the algorithm takes, with each problem size n.

• Mathematically,

• 𝑻 is a function that maps positive integers giving problem size to positive real 
numbers giving number of steps.

• Sometimes we have more than one size parameter
• e.g. 𝒏=# of vertices, 𝒎=# of edges in a graph. 
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Efficient = Polynomial Time
• Polynomial time

• Running time 𝑻(𝒏)  𝒄𝒏𝒌 + 𝒅 for some 𝒄, 𝒅, 𝒌 ≥  𝟎

• Why polynomial time?
• If problem size grows by at most a constant factor then so does the running 

time

• e.g. 𝑻 𝟐𝒏 ≤ 𝒄 𝟐𝒏 𝒌 + 𝒅 = 𝟐𝒌𝒄𝒏𝒌 + 𝒅 ≤ 𝟐𝒌 𝒄𝒏𝒌 + 𝒅 = 𝟐𝒌 𝑻(𝒏)

• polynomial-time is exactly the set of running times that have this 
property

• Typical running times are small degree polynomials, mostly less than 𝒏𝟑, at 
worst 𝒏𝟔, not 𝒏𝟏𝟎𝟎



5

Complexity

Problem size  𝒏   

𝑻(𝒏)



O-notation etc
• Given two positive functions 𝒇 and 𝒈

• 𝒇(𝒏) is 𝑶(𝒈(𝒏)) iff there is a constant 𝒄  𝟎                                                          
         so that 𝒇(𝒏) is eventually always  𝒄 ⋅ 𝒈(𝒏)

• 𝒇(𝒏) is 𝒐(𝒈(𝒏)) iff for every constant 𝒄  𝟎                                                               
         𝒇(𝒏) is eventually always  𝒄 ⋅ 𝒈(𝒏)

• 𝒇(𝒏) is 𝛀(𝒈(𝒏)) iff there is a constant 𝜺 > 𝟎 so that 𝒇 𝒏 ≥ 𝜺 ⋅ 𝒈(𝒏) for 
       infinitely many values of 𝒏

• 𝒇(𝒏) is 𝝎(𝒈(𝒏)) iff for every constant 𝒄  𝟎                                                               
         𝒇(𝒏) is eventually always ≥  𝒄 ⋅ 𝒈(𝒏)

• 𝒇(𝒏) is 𝚯(𝒈(𝒏)) iff 𝒇(𝒏) is 𝑶(𝒈(𝒏)) and 𝒇(𝒏) is 𝛀(𝒈(𝒏)) 
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Note: The definition of “𝒇(𝒏) is 𝛀(𝒈(𝒏))” is almost the same as “𝒇(𝒏) is not 𝒐(𝒈(𝒏))”  

The definition of “𝒇(𝒏) is 𝛀(𝒈(𝒏))” is almost the same as “𝒇(𝒏) is not 𝒐(𝒈(𝒏))”



Asymptotic Notation intuition
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Ratio 𝒇(𝒏)/𝒈(𝒏)

𝒏   

𝒇 𝒏  is...

𝑶 𝒈 𝒏 : ratio eventually 

    below some line forever

𝒐(𝒈 𝒏 ): ratio eventually 
    below every line forever

𝛀(𝒈 𝒏 ): ratio eventually
    above some line forever

𝚯(𝒈 𝒏 ): both 𝑶 and 𝛀 

𝝎, 𝛀

𝐎, 𝛀, 𝚯

𝐨, 𝐎
𝝎(𝒈 𝒏 ): ratio eventually 
    above every line forever



Introduction to Algorithms

• Graph Search/Traversal
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Undirected Graph G = (V,E)
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Directed Graph G = (V,E)
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Graph Traversal

Learn the basic structure of a graph

Walk from a fixed starting vertex 𝒔 to find all vertices reachable from 𝒔
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Generic Graph Traversal Algorithm
Given: Graph graph 𝑮 = (𝑽, 𝑬) vertex 𝒔𝑽

Find: set 𝑹 of vertices reachable from 𝒔𝑽

Reachable(𝒔):
 Add 𝒔 to 𝑹

 while there is a 𝒖, 𝒗 ∈ 𝑬 where 𝒖 ∈ 𝑹 and 𝒗 ∉ 𝑹

       Add 𝒗 to 𝑹

 return 𝑹
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Generic Traversal Always Works
Claim: At termination, 𝑹 is the set of nodes reachable from 𝒔

Proof
: For every node 𝒗𝑹 there is a path from 𝒔 to 𝒗

• Induction based on edges found.
• Base case: 𝒔 is reachable from 𝒔
• Inductive step: If there is a path to every member of 𝑹 after 𝑖 iterations, 

then there is a path to every member of 𝑹 after 𝑖 + 1 iterations

: Suppose there is a node 𝒘𝑹 reachable from 𝒔 via a path 𝑷
• Take first node 𝒗 on 𝑷 such that 𝒗𝑹
• Predecessor 𝒖 of 𝒗 in 𝑷 satisfies

•  𝒖 ∈ 𝑹

• 𝒖, 𝒗 ∈ 𝑬

• But this contradicts the fact that the algorithm exited the while loop. 

𝒔

𝒘

𝑹𝑷

𝒖
𝒗



Graph Traversal
Learn the basic structure of a graph

Walk from a fixed starting vertex 𝒔 to find all vertices reachable from 𝒔

Three states of vertices
• unvisited

• visited/discovered  (in 𝑹)

• fully-explored (in 𝑹 and all neighbors have been visited)
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Breadth-First Search
Completely explore the vertices in order of their distance from 𝒔

Naturally implemented using a queue



BFS(𝒔)

Global initialization: mark all vertices “unvisited”

BFS(𝒔) 
Mark 𝒔 “visited”
Add 𝒔 to 𝑸
𝒊 = 0 
Mark 𝒔 as “layer 𝒊”
while 𝑸 not empty

𝒖 = next item removed from 𝑸
𝒊 = “layer of 𝒖”
for each edge (𝒖, 𝒗)

 if (𝒗 is “unvisited”) 
  mark 𝒗 “visited”
  mark 𝒔 as “layer 𝒊 + 𝟏”

mark 𝒖 “fully-explored”
16
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Properties of BFS

BFS(𝒔) visits 𝒙 iff there is a path in 𝑮 from 𝒔 to 𝒙.

Edges followed to undiscovered vertices define a                                             
                                    breadth first spanning tree of 𝑮

Layer 𝒊 in this tree: 

    𝑳𝒊 = set of vertices 𝒖 with shortest path in 𝑮 from root 𝒔 of length 𝒊.
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Properties of BFS
Claim: For undirected graphs:                                                                     

All edges join vertices on the same or adjacent layers of BFS tree

Proof:   Suppose not...

Then there would be vertices (𝒙, 𝒚) s.t. 𝒙𝑳𝒊 and 𝒚𝑳𝒋 and 𝒋  𝒊 + 𝟏.

Then, when vertices adjacent to 𝒙 are considered in BFS,                                         

𝒚 would be added with layer 𝒊 + 𝟏 and not layer 𝒋.

Contradiction.
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BFS Application: Shortest Paths
0

1

2

3

4
can label by distances from start

Tree gives shortest 
paths from start vertex
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Undirected Graph Search Application: Connected Components

Want to answer questions of the form:
Given: vertices 𝒖 and 𝒗 in 𝑮 

         Is there a path from 𝒖 to 𝒗?

Idea: create array 𝑨 s.t 
      𝑨[𝒖] = smallest numbered vertex connected to 𝒖

     Answer is yes iff 𝑨[𝒖] = 𝑨[𝒗]
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Q: Why is this better than  

 an array Path[𝒖, 𝒗]?
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Undirected Graph Search Application: Connected Components

Initial state: all 𝒗 unvisited
for 𝒔 from 1 to 𝒏 do:                                               

if state(𝒔)  fully-explored then                                     
  BFS(𝒔): setting 𝑨 𝒖 = 𝒔 for each 𝒖 found 

           (and marking 𝒖 visited/fully-explored)                                                                                                

Total cost: 𝑂(𝒏 + 𝒎)
• Each vertex is touched once in outer procedure and edges examined in 

different BFS runs are disjoint 

• Works also with Depth First Search ...



DFS(𝒖) – Recursive Procedure

Global Initialization: mark all vertices "unvisited"

DFS(𝒖)

      mark  𝒖 “visited” and add 𝒖 to 𝑹
  for each edge (𝒖, 𝒗)

       if (𝒗 is “unvisited”)

            DFS(𝒗)

  mark 𝒖 “fully-explored”
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Properties of DFS(𝒔)

Like BFS(𝒔):
• DFS(𝒔) visits 𝒙 iff there is a path in 𝑮 from 𝒔 to 𝒙 

• Edges into undiscovered vertices define depth-first spanning tree of 𝑮

Unlike the BFS tree: 
• the DFS spanning tree isn't minimum depth

• its levels don't reflect min distance from the root

• non-tree edges never join vertices on the same or adjacent levels

BUT…
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Non-tree edges in DFS tree of undirected 
graphs

Claim: All non-tree edges join a vertex and one of its           
descendents/ancestors in the DFS tree

• In other words ... No “cross edges”.
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No cross edges in DFS on undirected graphs
Claim: During DFS(𝒙) every vertex marked “visited” is a descendant of 𝒙   

 in the DFS tree 𝑻

Claim: For every 𝒙, 𝒚 in the DFS tree 𝑻,  if (𝒙, 𝒚) is an edge not in 𝑻      
 then one of 𝒙 or 𝒚 is an ancestor of the other in 𝑻

Proof: 
• One of DFS(𝒙) or DFS(𝒚) is called first, suppose WLOG that DFS(𝒙) was 

called before DFS(𝒚)

• During DFS(𝒙), the edge (𝒙, 𝒚) is examined

• Since (𝒙, 𝒚) is a not an edge of 𝑻, 𝒚 was already visited when edge (𝒙, 𝒚) was 
examined during DFS(𝒙)

• Therefore 𝒚 was visited during the call to DFS(𝒙) so 𝒚 is a descendant of 𝒙.



Applications of Graph Traversal: Bipartiteness Testing
Definition:  An undirected graph 𝑮 is bipartite iff we can color its 
vertices red and green so each edge has different color endpoints

Input: Undirected graph 𝑮                                                                             
Goal: If 𝑮 is bipartite, output a coloring;      
         otherwise, output “NOT Bipartite”.

Fact: Graph 𝑮 contains an odd-length cycle ⇒ it is not bipartite
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On a cycle the two colors must alternate, so 
• green every 2nd  vertex 
• red every 2nd vertex
Can’t have either if length is not divisible by 2.

Just coloring the cycle part 
of 𝑮 is impossible

green

green

green

red

red



Applications of Graph Traversal: Bipartiteness Testing

WLOG (“without loss of generality”): Can assume that 𝑮 is connected
• Otherwise run on each component

Simple idea: start coloring nodes starting at a given node 𝒔
• Color 𝒔 red
• Color all neighbors of 𝒔 green
• Color all their neighbors red, etc. 
• If you ever hit a node that was already colored

• the same color as you want to color it, ignore it
• the opposite color, output “NOT Bipartite” and halt

27
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BFS gives Bipartiteness
Run BFS assigning all vertices from layer 𝑳𝒊 the color 𝒊 mod 𝟐

• i.e., red if they are in an even layer, green if in an odd layer 

• if no edge joining two vertices of the same color 
• then it is a good coloring

• otherwise
• there is a bad edge; output “Not Bipartite”

Why is that “Not Bipartite” output correct?



Why does BFS work for Bipartiteness?
Recall: All edges join vertices on the same or adjacent BFS layers

⇒ Any “bad” edge must join two vertices 𝒖 and 𝒗 in the same layer

Say the layer with 𝒖 and 𝒗 is 𝑳𝒋 

𝒖 and 𝒗 have common ancestor at some level 𝑳𝒊 for 𝒊 < 𝒋
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Odd cycle of length 𝟐 𝒋 − 𝒊 + 𝟏
              ⇒ Not Bipartite

𝒔

𝑳𝒊

𝑳𝒋
𝒖 𝒗

𝒋 − 𝒊𝒋 − 𝒊

𝟏



DFS(𝒗) for a directed graph

30

1

2
10

9

8

3

4

5

6

7

11
12

13

Nodes were visited in numeric order.
How can we tell?

 tree edges   



DFS(𝒗)
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Properties of Directed DFS

• Before DFS(𝒔) returns, it visits all previously unvisited vertices reachable 
via directed paths from 𝒔

• Every cycle contains a back edge in the DFS tree
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Directed Acyclic Graphs

A directed graph 𝑮 = (𝑽, 𝑬) is acyclic iff it has no directed cycles

Terminology: A directed acyclic graph is also called a DAG

After shrinking the strongly connected components of a directed graph to 
single vertices, the result is a DAG
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Topological Sort
Given: a directed acyclic graph (DAG) 𝑮 = (𝑽, 𝑬) 

Output: numbering of the vertices of 𝑮 with distinct numbers from 𝟏 to 𝒏 
so that edges only go from lower numbered to higher numbered vertices

Applications:
• nodes represent tasks

• edges represent precedence between tasks

• topological sort gives a sequential schedule for solving them 

Nice algorithmic paradigm for general directed graphs:
• Process strongly connected components one-by-one in the order given by 

topological sort of the DAG you get from shrinking them.
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Directed Acyclic Graph

35



In-degree 0 vertices
Claim: Every DAG has a vertex of in-degree 0

Proof: By contradiction
Suppose every vertex has some incoming edge

Consider following procedure:
   while (true) do

  𝒗 = some predecessor of 𝒗

• After 𝒏 + 𝟏 steps where 𝒏 = |𝑽| there will be a repeated vertex
• This yields a cycle, contradicting that it is a DAG.
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Topological Sort
• Can do using DFS

• Alternative simpler idea:
• Any vertex of in-degree 0 can be given number 1 to start

• Remove it from the graph

• Then give a vertex of in-degree 0 number 2

• Etc. 
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Topological Sort
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Topological Sort

39

1



Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort
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Topological Sort

48

1

4
3

10

8

9

5
6

7

2



Topological Sort
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Topological Sort
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Topological Sort
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Implementing Topological Sort
• Go through all edges, computing array with in-degree for each vertex    

𝑂(𝒎 + 𝒏)

• Maintain a list of vertices of in-degree 𝟎

• Remove any vertex in list and number it

• When a vertex is removed, decrease in-degree of each neighbor by 𝟏 
and add them to the list if their degree drops to 𝟎 

Total cost: 𝑂(𝒎 + 𝒏)
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Strongly Connected Components of Directed 
Graphs

Defn: Vertices 𝒖 and 𝒗 are strongly connected iff they are on a directed cycle (there are 
paths from 𝒖 to 𝒗 and from 𝒗 to 𝒖).  

Defn: Can partition vertices of any directed graph into strongly connected components: 

1. all pairs of vertices in the same component are strongly connected

2. can’t merge components and keep property 1

• Strongly connected components can be stored efficiently just like connected components

• Can be found in 𝑂(𝒏 + 𝒎) time using a DFS then a BFS

• Do a depth-first sort, keeping track of the order nodes are marked “fully-explored”

• Going in order from least recent to most recent, run connected components
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Strongly Connected Components
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Strongly Connected Components
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Strongly-Connected Components Usage

Common algorithmic paradigm for general directed graphs:
• Process strongly connected components one-by-one in the order given by 

topological sort of the DAG you get from shrinking them.
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