
CSE 421 Winter 2025
Lecture 3: Running Time, BFS

Nathan Brunelle

http://www.cs.uw.edu/421

http://www.cs.uw.edu/421

Stable Matching Problem
Perfect matching: everyone is matched to precisely one person from the other group

Stability: self-reinforcing, i.e. no pair has incentive to defect from their assignment.

• For a matching 𝑴, an unmatched pair 𝒑-𝒓 from different groups is unstable if 𝒑 and 𝒓
prefer each other to current partners.

• Unstable pair 𝒑-𝒓 could each improve by ignoring the assignment.

Stable matching: perfect matching with no unstable pairs.

Stable matching problem: Given the preference lists of 𝒏 people from each of two
groups, find a stable matching between the two groups if one exists.

Z A CB

Y B CA

X A CB

1st 2nd 3rd

Group P Preference Profile

favorite least favorite

C X ZY

B X ZY

A Y ZX

1st 2nd 3rd

Group R Preference Profile

favorite least favorite

Propose and Reject Algorithm Example

Z A CB

Y B CA

X A CB

1st 2nd 3rd

Group P Preference Profile

favorite least favorite

C X ZY

B X ZY

A Y ZX

1st 2nd 3rd

Group R Preference Profile

favorite least favorite

Initialize each person to be free.

while (some p in P is free) {

 Choose some free p in P

 r = 1st person on p's preference list to whom p has not yet proposed

 if (r is free)

 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)

 replace (p’,r) by (p,r) //p now engaged, p’ now free

 else

 r rejects p

}

Tentative Matches:

Z C

Y B

X A

What if we reverse the order of 𝑃?

Z A CB

Y B CA

X A CB

1st 2nd 3rd

Group P Preference Profile

favorite least favorite

C X ZY

B X ZY

A Y ZX

1st 2nd 3rd

Group R Preference Profile

favorite least favorite

Initialize each person to be free.

while (some p in P is free) {

 Choose some free p in P

 r = 1st person on p's preference list to whom p has not yet proposed

 if (r is free)

 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)

 replace (p’,r) by (p,r) //p now engaged, p’ now free

 else

 r rejects p

}

Tentative Matches:

Z C

Y B

X A

What if we reverse 𝑃 and 𝑅?

Z A CB

Y B CA

X A CB

1st 2nd 3rd

Group P Preference Profile

favorite least favorite

C X ZY

B X ZY

A Y ZX

1st 2nd 3rd

Group R Preference Profile

favorite least favorite

Initialize each person to be free.

while (some p in P is free) {

 Choose some free p in P

 r = 1st person on p's preference list to whom p has not yet proposed

 if (r is free)

 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)

 replace (p’,r) by (p,r) //p now engaged, p’ now free

 else

 r rejects p

}

Tentative Matches:

C Z

B X

A Y

Understanding the Solution
Q: For a given problem input, there may be several stable matchings.
 Do all executions of Gale-Shapley yield the same stable matching?
 If so, which one?

Def: 𝒑 in 𝑷 and 𝒓 in 𝑹 are valid partners iff there is some stable matching containing (𝒑, 𝒓)

Def: Proposer-optimal assignment: Each proposer is matched with their best valid partner
 (their most preferred among all of their valid partners)

Claim: All executions of Gale-Shapley yield a proposer-optimal assignment!

• I.e. if we pair up each proposer with its best valid partner, the resulting pairs will be the
same as Gale-Shapley

• Gale-Shapley returns 𝑝, 𝑏𝑒𝑠𝑡 𝑝 𝑝 ∈ 𝑃

• Not obvious that proposer-optimal assignment is perfect, let alone stable

• Simultaneously best for each and every proposer
6

𝒑

𝒓

𝒑′

Proposer Optimality
Claim: Any Gale-Shapley matching 𝑴 is proposer-optimal.

Proof: (By contradiction)

Suppose that there are some proposers in 𝑴 not matched to their best valid partners

 Each must have been rejected by a valid partner, since they propose in decreasing
preference order.

• Among all of these, choose the first time a proposer 𝒑 is rejected by a valid partner.

• Call that rejecting valid partner 𝒓. Let 𝒑’ be the proposer who 𝒓 prefers to 𝒑 s.t either (𝒓 was
tentatively paired with 𝒑’) or (𝒑’ replaced 𝒑) when that rejection happened.

Let 𝑴’ be a stable matching containing (𝒑, 𝒓).

Let 𝒓’ be the partner of 𝒑’ in 𝑴’. This  (𝒑’, 𝒓’) are valid partners.

• Since 𝒓 rejecting 𝒑 was the first rejection by a valid partner, when that happened, 𝒓’ had not
rejected 𝒑’ since (𝒑’, 𝒓’) are valid partners  𝒑’ hadn’t proposed to 𝒓’.

•  𝒑’ prefers 𝒓 to 𝒓’

But we already said that 𝒓 prefers 𝒑’ to 𝒑.

 𝒑’-𝒓 is unstable in 𝑴’.

 𝑴’ is not stable. Contradiction
7

𝒓′

𝒑′ … 𝒓 … 𝒓’

𝒓’

𝒑

𝒓 … 𝒑′ … 𝒑

Want to prove that these
rejections never happen

Must exist since (𝒑, 𝒓) are valid partners

Non-obvious consequence of proposer
optimality

• That proof worked no matter which free proposer was selected in each
step!

• There is just one proposer-optimal stable matching

So all the orders of selecting free proposers in the Gale-Shapley
algorithm yield the same stable matching!

8

Stable Matching: Summary so far

Stable matching problem: Given preference profiles of two groups of 𝒏 people, find a

stable matching between them.

Gale-Shapley algorithm: Finds a stable matching in 𝑂(𝒏𝟐) time.

Proposer-optimality: In Gale-Shapley matching, each proposer gets best partner

 possible among all stable matchings

Q: Does proposer-optimality come at the expense of the other side?

No pair of people both prefer to be with each rather than with their assigned partner

9

Receiver-pessimal assignment: Each receiver is gets their worst valid partner.

Claim: Gale-Shapley produces a receiver-pessimal stable matching 𝑴.

Proof: (By contradiction again)
Suppose (𝒑, 𝒓) matched in 𝑴, but 𝒑 is not worst valid partner for 𝒓.

 there exists some other stable matching 𝑴’ in which 𝒓 is paired with a proposer, say 𝒑′,
whom 𝒓 likes less than 𝒑.

Let 𝒓’ be the partner of 𝒑 in 𝑴’.

Since 𝑴 is proposer-optimal, 𝒑 prefers 𝒓 to 𝒓’

 𝒑-𝒓 is an unstable in 𝑴’

 𝑴’ is not stable.

𝒑

𝒓

Receiver Pessimality

10

𝒑′

… 𝒓 … 𝒓’

𝒓’

𝒑

𝒓 … 𝒑 … 𝒑’

𝒑′

𝒓′

Extensions: Matching Residents to Hospitals

Original: Proposers  hospitals, Receivers  med school residents.

Variant 1: Some participants declare others as unacceptable.

Variant 2: Unequal number of proposers and receivers.

Variant 3: Limit on # of pairs person participates in can be >1.

Def: Matching 𝑴 is unstable if there is a hospital 𝒉 and resident 𝒓 such that:

• 𝒉 and 𝒓 are acceptable to each other; and

• either 𝒓 is unmatched, or 𝒓 prefers 𝒉 to her assigned hospital; and

• either 𝒉 does not have all its places filled, or 𝒉 prefers 𝒓 to at least one of its assigned residents.

11

e.g. resident 𝒓 unwilling to work in Cleveland

e.g. hospital 𝒉 wants to hire 𝟑 residents

Application: Matching Residents to Hospitals

NRMP: (National Resident Matching Program)

• Original use just after WWII

• Ides of March: 23,000+ residents legally bound by the outcome

• Pre-1995 NRMP favored hospitals (they proposed)

• Changed in 1995 to favor residents (after a lawsuit)

Rural hospital dilemma:
• Certain hospitals (mainly in rural areas) were unpopular and declared unacceptable by many

residents.

• Rural hospitals were under-subscribed in NRMP matching.

• Q: Find stable matching that benefits "rural hospitals"?

Rural hospital theorem: Rural hospitals get exactly same residents in every stable matching!

12

The original paper
The title of the 1962 Gale-Shapley paper was “College Admissions and
the Stability of Marriage”

• The propose-and-reject algorithm was clearly inspired by Western traditions
of proposals

• The fact that the result is much more advantageous to the proposing side
even in this non-binding scenario took some time to be appreciated

Though Gale had died by then, Shapley and Roth shared the 2012
Nobel Prize in Economic Sciences for their work on stable assignments.

13

Lessons Learned

• Powerful ideas learned in course.
• Isolate underlying structure of problem.

• Create useful and efficient algorithms.

• Potentially deep social ramifications.

• Technique: sometimes useful to consider the first time something
bad might happen for an algorithm in order to rule it out.

14

Deceit: Machiavelli Meets Gale-Shapley

Q: Can there be an incentive to misrepresent your preference profile?
• Assuming you know that propose-and-reject algorithm will be run and who will be proposers.

• And assuming that you know the preference profiles of all other participants.

Fact: No, for proposers. Yes, for some receivers. No mechanism can guarantee a stable matching and
be cheatproof.

15

A

Group P Preference List

Z

Y

X

1st

A

B

2nd

C

C

3rd

B

A

B

C X

X

Y

Y

Z

Z

Group R True Preference List

C

B

A

1st 2nd 3rd

X

Y

Z X

Z

Y

Y

Z

X

A pretends to prefer Z to X

C

B

A

1st 2nd 3rd

X

Y

Z

16

Complexity analysis

• Problem size 𝒏
• Worst-case complexity:

 maximum # steps algorithm takes on any input of size 𝒏

• Best-case complexity:
minimum # steps algorithm takes on any input of size 𝒏

• Average-case complexity:
Expected # steps algorithm takes on inputs of size 𝒏

17

Complexity

• The complexity of an algorithm associates a number 𝑻(𝒏), the worst/average-
case/best time the algorithm takes, with each problem size n.

• Mathematically,

• 𝑻 is a function that maps positive integers giving problem size to positive real
numbers giving number of steps.

• Sometimes we have more than one size parameter
• e.g. 𝒏=# of vertices, 𝒎=# of edges in a graph.

18

Efficient = Polynomial Time
• Polynomial time

• Running time 𝑻(𝒏)  𝒄𝒏𝒌 + 𝒅 for some 𝒄, 𝒅, 𝒌 ≥ 𝟎

• Why polynomial time?
• If problem size grows by at most a constant factor then so does the running

time

• e.g. 𝑻 𝟐𝒏 ≤ 𝒄 𝟐𝒏 𝒌 + 𝒅 = 𝟐𝒌𝒄𝒏𝒌 + 𝒅 ≤ 𝟐𝒌 𝒄𝒏𝒌 + 𝒅 = 𝟐𝒌 𝑻(𝒏)

• polynomial-time is exactly the set of running times that have this
property

• Typical running times are small degree polynomials, mostly less than 𝒏𝟑, at
worst 𝒏𝟔, not 𝒏𝟏𝟎𝟎

19

Complexity

Problem size 𝒏

𝑻(𝒏)

O-notation etc
• Given two positive functions 𝒇 and 𝒈

• 𝒇(𝒏) is 𝑶(𝒈(𝒏)) iff there is a constant 𝒄  𝟎
 so that 𝒇(𝒏) is eventually always  𝒄 ⋅ 𝒈(𝒏)

• 𝒇(𝒏) is 𝒐(𝒈(𝒏)) iff for every constant 𝒄  𝟎
 𝒇(𝒏) is eventually always  𝒄 ⋅ 𝒈(𝒏)

• 𝒇(𝒏) is 𝛀(𝒈(𝒏)) iff there is a constant 𝜺 > 𝟎 so that 𝒇 𝒏 ≥ 𝜺 ⋅ 𝒈(𝒏) for
 infinitely many values of 𝒏

• 𝒇(𝒏) is 𝝎(𝒈(𝒏)) iff for every constant 𝒄  𝟎
 𝒇(𝒏) is eventually always ≥ 𝒄 ⋅ 𝒈(𝒏)

• 𝒇(𝒏) is 𝚯(𝒈(𝒏)) iff 𝒇(𝒏) is 𝑶(𝒈(𝒏)) and 𝒇(𝒏) is 𝛀(𝒈(𝒏))

20

Note: The definition of “𝒇(𝒏) is 𝛀(𝒈(𝒏))” is almost the same as “𝒇(𝒏) is not 𝒐(𝒈(𝒏))”

The definition of “𝒇(𝒏) is 𝛀(𝒈(𝒏))” is almost the same as “𝒇(𝒏) is not 𝒐(𝒈(𝒏))”

Asymptotic Notation intuition

21

Ratio 𝒇(𝒏)/𝒈(𝒏)

𝒏

𝒇 𝒏 is...

𝑶 𝒈 𝒏 : ratio eventually

 below some line forever

𝒐(𝒈 𝒏): ratio eventually
 below every line forever

𝛀(𝒈 𝒏): ratio eventually
 above some line forever

𝚯(𝒈 𝒏): both 𝑶 and 𝛀

𝝎, 𝛀

𝐎, 𝛀, 𝚯

𝐨, 𝐎
𝝎(𝒈 𝒏): ratio eventually
 above every line forever

Introduction to Algorithms

• Graph Search/Traversal

22

Undirected Graph G = (V,E)

23

1

2
10

9

8

3

4

5

6

7

11
12

13

Directed Graph G = (V,E)

24

1

2
10

9

8

3

4

5

6

7

11
12

13

Graph Traversal

Learn the basic structure of a graph

Walk from a fixed starting vertex 𝒔 to find all vertices reachable from 𝒔

25

Generic Graph Traversal Algorithm
Given: Graph graph 𝑮 = (𝑽, 𝑬) vertex 𝒔𝑽

Find: set 𝑹 of vertices reachable from 𝒔𝑽

Reachable(𝒔):
 Add 𝒔 to 𝑹

 while there is a 𝒖, 𝒗 ∈ 𝑬 where 𝒖 ∈ 𝑹 and 𝒗 ∉ 𝑹

 Add 𝒗 to 𝑹

 return 𝑹

26

27

Generic Traversal Always Works
Claim: At termination, 𝑹 is the set of nodes reachable from 𝒔

Proof
: For every node 𝒗𝑹 there is a path from 𝒔 to 𝒗

• Induction based on edges found.
• Base case: 𝒔 is reachable from 𝒔
• Inductive step: If there is a path to every member of 𝑹 after 𝑖 iterations,

then there is a path to every member of 𝑹 after 𝑖 + 1 iterations

: Suppose there is a node 𝒘𝑹 reachable from 𝒔 via a path 𝑷
• Take first node 𝒗 on 𝑷 such that 𝒗𝑹
• Predecessor 𝒖 of 𝒗 in 𝑷 satisfies

• 𝒖 ∈ 𝑹

• 𝒖, 𝒗 ∈ 𝑬

• But this contradicts the fact that the algorithm exited the while loop.

𝒔

𝒘

𝑹𝑷

𝒖
𝒗

Graph Traversal
Learn the basic structure of a graph

Walk from a fixed starting vertex 𝒔 to find all vertices reachable from 𝒔

Three states of vertices
• unvisited

• visited/discovered (in 𝑹)

• fully-explored (in 𝑹 and all neighbors have been visited)

28

29

Breadth-First Search
Completely explore the vertices in order of their distance from 𝒔

Naturally implemented using a queue

BFS(𝒔)

Global initialization: mark all vertices “unvisited”

BFS(𝒔)
Mark 𝒔 “visited”
Add 𝒔 to 𝑸
𝒊 = 0
Mark 𝒔 as “layer 𝒊”
while 𝑸 not empty

𝒖 = next item removed from 𝑸
𝒊 = “layer of 𝒖”
for each edge (𝒖, 𝒗)

 if (𝒗 is “unvisited”)
 mark 𝒗 “visited”
 mark 𝒔 as “layer 𝒊 + 𝟏”

mark 𝒖 “fully-explored”
30

31

Properties of BFS

BFS(𝒔) visits 𝒙 iff there is a path in 𝑮 from 𝒔 to 𝒙.

Edges followed to undiscovered vertices define a
 breadth first spanning tree of 𝑮

Layer 𝒊 in this tree:

 𝑳𝒊 = set of vertices 𝒖 with shortest path in 𝑮 from root 𝒔 of length 𝒊.

32

Properties of BFS
Claim: For undirected graphs:

All edges join vertices on the same or adjacent layers of BFS tree

Proof: Suppose not...

Then there would be vertices (𝒙, 𝒚) s.t. 𝒙𝑳𝒊 and 𝒚𝑳𝒋 and 𝒋  𝒊 + 𝟏.

Then, when vertices adjacent to 𝒙 are considered in BFS,

𝒚 would be added with layer 𝒊 + 𝟏 and not layer 𝒋.

Contradiction.

33

BFS Application: Shortest Paths
0

1

2

3

4
can label by distances from start

Tree gives shortest
paths from start vertex

𝑳𝟎

𝑳𝟏

𝑳𝟐

𝑳𝟑

𝑳𝟒

	Slide 1: CSE 421 Winter 2025 Lecture 3: Running Time, BFS
	Slide 2: Stable Matching Problem
	Slide 3: Propose and Reject Algorithm Example
	Slide 4: What if we reverse the order of cap P?
	Slide 5: What if we reverse cap P and cap R?
	Slide 6: Understanding the Solution
	Slide 7: Proposer Optimality
	Slide 8: Non-obvious consequence of proposer optimality
	Slide 9: Stable Matching: Summary so far
	Slide 10: Receiver Pessimality
	Slide 11: Extensions: Matching Residents to Hospitals
	Slide 12: Application: Matching Residents to Hospitals
	Slide 13: The original paper
	Slide 14: Lessons Learned
	Slide 15: Deceit: Machiavelli Meets Gale-Shapley
	Slide 16: Complexity analysis
	Slide 17: Complexity
	Slide 18: Efficient = Polynomial Time
	Slide 19: Complexity
	Slide 20: O-notation etc
	Slide 21: Asymptotic Notation intuition
	Slide 22: Introduction to Algorithms
	Slide 23: Undirected Graph G = (V,E)
	Slide 24: Directed Graph G = (V,E)
	Slide 25: Graph Traversal
	Slide 26: Generic Graph Traversal Algorithm
	Slide 27: Generic Traversal Always Works
	Slide 28: Graph Traversal
	Slide 29: Breadth-First Search
	Slide 30: BFS(bold italic s)
	Slide 31: Properties of BFS
	Slide 32: Properties of BFS
	Slide 33: BFS Application: Shortest Paths

