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Simplification: Stable Matching Problem

Goal: Given two groups of 𝒏 people each, find a "suitable" matching.

• Participants rate members from opposite group.

• Each person lists members from the other group in order of preference from 
best to worst.
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Stable Matching Problem
Perfect matching:  everyone is matched to precisely one person from the other group 

Stability: self-reinforcing, i.e. no pair has incentive to defect from their assignment.

• For a matching 𝑴, an unmatched pair 𝒑-𝒓 from different groups is unstable if 𝒑 and 𝒓 
prefer each other to current partners.

• Unstable pair 𝒑-𝒓 could each improve by ignoring the assignment.

Stable matching: perfect matching with no unstable pairs.

Stable matching problem:  Given the preference lists of 𝒏 people from each of two 
groups, find a stable matching between the two groups if one exists.
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Variant:  “Stable Roommate” Problem (one set rather than 2)

Q.  Do stable matchings always exist?

A. Not exactly obvious…

Stable roommate problem:

• 𝟐𝒏 people; each person ranks others from 𝟏 to 𝟐𝒏 − 𝟏.

• Assign roommate pairs so that no unstable pairs.

Observation:  Stable matchings do not always exist for stable roommate problem.
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Propose-And-Reject Algorithm
Propose-and-reject algorithm:  [Gale-Shapley 1962]          

Intuitive method that guarantees to find a stable matching.

• Members of one group 𝑷 make proposals, the other group 𝑹 receives proposals

Initialize each person to be free.

while (some p in P is free) {

    Choose some free p in P

    r = 1st person on p's preference list to whom p has not yet proposed

    if (r is free)

        tentatively match (p,r)   //p and r both engaged, no longer free

    else if (r prefers p to current tentative match p’)

        replace (p’,r) by (p,r)   //p now engaged, p’ now free

    else

        r rejects p

}
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Propose and Reject Algorithm Example
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Initialize each person to be free.

while (some p in P is free) {

    Choose some free p in P

    r = 1st person on p's preference list to whom p has not yet proposed

    if (r is free)

        tentatively match (p,r)   //p and r both engaged, no longer free

    else if (r prefers p to current tentative match p’)

        replace (p’,r) by (p,r)   //p now engaged, p’ now free

    else

        r rejects p

}
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What if we reverse the order of 𝑃?
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Initialize each person to be free.

while (some p in P is free) {

    Choose some free p in P

    r = 1st person on p's preference list to whom p has not yet proposed

    if (r is free)

        tentatively match (p,r)   //p and r both engaged, no longer free

    else if (r prefers p to current tentative match p’)

        replace (p’,r) by (p,r)   //p now engaged, p’ now free

    else

        r rejects p

}

Tentative Matches:
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What if we reverse 𝑃 and 𝑅?
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Initialize each person to be free.

while (some p in P is free) {

    Choose some free p in P

    r = 1st person on p's preference list to whom p has not yet proposed

    if (r is free)

        tentatively match (p,r)   //p and r both engaged, no longer free

    else if (r prefers p to current tentative match p’)

        replace (p’,r) by (p,r)   //p now engaged, p’ now free

    else

        r rejects p

}

Tentative Matches:
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Observations

• There may be multiple valid stable matchings

• Changing the order that 𝑃 does its proposals will not change which 
stable matching Gale-Shapley returns

• Swapping the roles of 𝑃 and 𝑅 will change which is returned, so long 
as there are multiple valid stable matchings

• Coming up: it always returns the stable matching that is best for 𝑃 and worst 
for 𝑅



Why Does This Work?

• What do we need to know before we’re convinced that this algorithm 
is “correct”?



Why Does This Work?

• What do we need to know before we’re convinced that this algorithm 
is “correct”?

• That is terminates (no infinite loop)

• That it produces a stable matching
• It’s perfect (everyone gets paired with exactly one partner)

• It’s stable (no unmatched pair mutually prefer each other)



Proof of Correctness:  Termination (not obvious from the code)
Observation 1:  Members of 𝑷 propose in decreasing order of preference.

Claim: The Gale-Shapley Algorithm terminates after at most 𝒏𝟐 iterations.

Proof:  Proposals are never repeated (by Observation 1) and there are only 𝒏𝟐 possible proposals.

It could be nearly that bad…

General form of this example will                                                                                            
take 𝒏(𝒏 − 𝟏) + 𝟏 proposals.
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Proof of Correctness:  Perfection

Observation 2:  Once a member of 𝑹 is matched, they never become free; 
                they only "trade up.“

Claim:  Everyone gets matched.

Proof:  

• If no proposer is free then everyone is matched. 

• After some 𝒑 proposes to the last person on their list, all the 𝒓 in 𝑹 
have been proposed to by someone (by 𝒑 at least).

• By Observation 2, every 𝒓 in 𝑹 is matched at that point.

• Since 𝑷 = 𝑹  every 𝒑 in 𝑷 is also matched.
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Proof of Correctness:  Stability
Claim:  No unstable pairs in the final Gale-Shapley matching 𝑴

Proof:  Consider a pair 𝒑-𝒓 not matched by 𝑴

Case 1:  𝒑 never proposed to 𝒓.

       𝒑 prefers 𝑴-partner to 𝒓. 
       𝒑-𝒓 is not unstable for 𝑴.

Case 2: 𝒑 proposed to 𝒓.

       𝒓 rejected 𝒑 (right away or later when trading up)

    𝒓 prefers 𝑴-partner to 𝒑.

       𝒑-𝒓 is not unstable for 𝑴.
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Summary

Stable matching problem:  Given 𝒏 people in each of two groups, and 

their preferences, find a stable matching if one exists.

Gale-Shapley algorithm:  Guarantees to find a stable matching for any 
problem instance.

⇒ Stable matching always exists!

15

Stable: No pair of people both prefer to be with each other rather than with their assigned partner



Gale-Shapley Algorithm
Gale-Shapley algorithm:  Guarantees to find a stable matching for any 
problem instance.

⇒  a stable matching always exists!

Q: How do we implement the Gale-Shapley algorithm efficiently?

Q:   If there are multiple stable matchings, which one(s) does it find?
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Implementation for Stable Matching

• Input size
• 𝑵 = 𝟐𝒏𝟐 words

• 𝟐𝒏 people each with a preference list of length 𝒏

• 𝟐𝒏𝟐 
log 𝒏 bits

• specifying an ordering for each preference list takes 𝒏 log 𝒏 bits

• Brute force algorithm
• Try all 𝒏! possible matchings

• Gale-Shapley Algorithm
• 𝒏𝟐 iterations.  Can have constant time per iteration as follows …
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Getting 𝑛2 running time
We know that the while loop can have up to 𝑛2 iterations, so what do we need to 
get a running time of 𝑛2?

 Each iteration is constant time.

Initialize each person to be free.

while (some p in P is free) {

    Choose some free p in P

    r = 1st person on p's preference list to whom p has not yet proposed

    if (r is free)

        tentatively match (p,r)   //p and r both engaged, no longer free

    else if (r prefers p to current tentative match p’)

        replace (p’,r) by (p,r)   //p now engaged, p’ now free

    else

        r rejects p

}
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Efficient Implementation

How do we get the 𝑂(𝒏𝟐) time implementation?

Input: Representing members of the two groups 𝑷 and 𝑹 and their preferences:
• Assume elements of 𝑷 (proposers) are numbered 𝟏, … , 𝒏.
• Assume elements of 𝑹 (receivers) are numbered 𝟏′, … , 𝒏′.
• For each proposer, a list/array of the 𝒏 receivers, ordered by preference.
• For each receiver, a list/array of the 𝒏 proposers, ordered by preference.

The matching:
• Maintain two arrays match[𝒑], and match’[𝒓].

• set entry to 0 if free
• if 𝒑 matched to 𝒓 then match[𝒑]=𝒓 and match’[𝒓]=𝒑

Making proposals:
• Maintain a list of free proposers, e.g., in a queue.
• Maintain an array count[𝒑] that counts the number of proposals already made by 

proposer 𝒑. 19



Efficient Implementation

Rejecting/accepting proposals:

• Does receiver 𝒓 prefer proposer 𝒑 to proposer 𝒑′?

• Using original preference list would be slow

• For each receiver, create inverse of preference list of proposers.

• Constant time access for each query after 𝑂(𝒏) preprocessing per receiver. 𝑂(𝒏𝟐) total 
preprocessing cost.

for i = 1 to n

   inverse[pref[i]] = i
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Understanding the Solution
Q:  For a given problem input, there may be several stable matchings.  
 Do all executions of Gale-Shapley yield the same stable matching?  
 If so, which one?

• An instance with two stable matchings (see section for more).

• (A,X), (B,Y), (C,Z).
• (A,Y), (B,X), (C,Z).

C X

Z

Y

X

A

B

A

1st

B

A

B

2nd

C

3rd

C

B

A

X

Y

1st

Y

Y

X

2nd

Z

Z

Z

3rd

C

21



Understanding the Solution
Q:  For a given problem input, there may be several stable matchings. 
 Do all executions of Gale-Shapley yield the same stable matching? 
 If so, which one?

Def: 𝒑 in 𝑷 and 𝒓 in 𝑹 are valid partners iff there is some stable matching containing (𝒑, 𝒓)

Def: Proposer-optimal assignment:  Each proposer is matched with their best valid partner 
   (their most preferred among all of their valid partners)

Claim:  All executions of Gale-Shapley yield a proposer-optimal assignment! 

• I.e. if we pair up each proposer with its best valid partner, the resulting pairs will be the 
same as Gale-Shapley

• Gale-Shapley returns 𝑝, 𝑏𝑒𝑠𝑡 𝑝 𝑝 ∈ 𝑃

• Not obvious that proposer-optimal assignment is perfect, let alone stable

• Simultaneously best for each and every proposer
22
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𝒓

𝒑′

Proposer Optimality
Claim:  Any Gale-Shapley matching 𝑴 is proposer-optimal.

Proof: (By contradiction)

Suppose that there are some proposers in 𝑴 not matched to their best valid partners

 Each must have been rejected by a valid partner, since they propose in decreasing 
preference order.

• Among all of these, choose the first time a proposer 𝒑 is rejected by a valid partner.  

• Call that rejecting valid partner 𝒓.  Let 𝒑’ be the proposer who 𝒓 prefers to 𝒑 s.t either (𝒓 was 
tentatively paired with 𝒑’) or (𝒑’ replaced 𝒑) when that rejection happened.

Let 𝑴’ be a stable matching containing (𝒑, 𝒓).                                                                      

Let 𝒓’ be the partner of  𝒑’ in 𝑴’.       This  (𝒑’, 𝒓’) are valid partners.

• Since 𝒓 rejecting 𝒑 was the first rejection by a valid partner, when that happened, 𝒓’ had not 
rejected 𝒑’ since (𝒑’, 𝒓’) are valid partners  𝒑’ hadn’t proposed to 𝒓’.

•  𝒑’ prefers 𝒓 to 𝒓’

But we already said that 𝒓 prefers 𝒑’ to 𝒑.

 𝒑’-𝒓 is unstable in 𝑴’.  

 𝑴’ is not stable.  Contradiction
23
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Non-obvious consequence of proposer 
optimality

• That proof worked no matter which free proposer was selected in each 
step!

• There is just one proposer-optimal stable matching

So all the orders of selecting free proposers in the Gale-Shapley 
algorithm yield the same stable matching!
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Stable Matching:  Summary so far

Stable matching problem:  Given preference profiles of two groups of 𝒏 people, find a 

stable matching between them.

Gale-Shapley algorithm:  Finds a stable matching in 𝑂(𝒏𝟐) time.

Proposer-optimality:  In Gale-Shapley matching, each proposer gets best partner 

  possible among all stable matchings

Q: Does proposer-optimality come at the expense of the other side?

No pair of people both prefer to be with each rather than with their assigned partner
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Receiver-pessimal assignment:  Each receiver is gets their worst valid partner.

Claim: Gale-Shapley produces a receiver-pessimal stable matching 𝑴.

Proof: (By contradiction again)
Suppose (𝒑, 𝒓) matched in 𝑴, but 𝒑 is not worst valid partner for 𝒓.

 there exists some other stable matching 𝑴’ in which 𝒓 is paired with a proposer, say 𝒑′, 
whom 𝒓 likes less than 𝒑.

Let 𝒓’ be the partner of 𝒑 in 𝑴’.

Since 𝑴 is proposer-optimal, 𝒑 prefers 𝒓 to 𝒓’

 𝒑-𝒓 is an unstable in 𝑴’ 

 𝑴’ is not stable.

𝒑

𝒓

Receiver Pessimality
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Extensions: Matching Residents to Hospitals

Original:  Proposers  hospitals, Receivers  med school residents.

Variant 1:  Some participants declare others as unacceptable.

Variant 2:  Unequal number of proposers and receivers.

Variant 3:  Limit on # of pairs person participates in can be >1.

Def: Matching 𝑴 is unstable if there is a hospital 𝒉 and resident 𝒓 such that:

• 𝒉 and 𝒓 are acceptable to each other; and

• either 𝒓 is unmatched, or 𝒓 prefers 𝒉 to her assigned hospital; and

• either 𝒉 does not have all its places filled, or 𝒉 prefers 𝒓 to at least one of its assigned residents.

27

e.g. resident 𝒓 unwilling to work in Cleveland

e.g. hospital 𝒉 wants to hire 𝟑 residents



Application:  Matching Residents to Hospitals

NRMP: (National Resident Matching Program)

• Original use just after WWII

• Ides of March: 23,000+ residents legally bound by the outcome

• Pre-1995 NRMP favored hospitals (they proposed)

• Changed in 1995 to favor residents (after a lawsuit)

Rural hospital dilemma:
• Certain hospitals (mainly in rural areas) were unpopular and declared unacceptable by many 

residents.

• Rural hospitals were under-subscribed in NRMP matching.

• Q: Find stable matching that benefits "rural hospitals"?

Rural hospital theorem:  Rural hospitals get exactly same residents in every stable matching!
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The original paper
The title of the 1962 Gale-Shapley paper was “College Admissions and 
the Stability of Marriage”

• The propose-and-reject algorithm was clearly inspired by Western traditions 
of proposals

• The fact that the result is much more advantageous to the proposing side 
even in this non-binding scenario took some time to be appreciated

Though Gale had died by then, Shapley and Roth shared the 2012 
Nobel Prize in Economic Sciences for their work on stable assignments.
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Lessons Learned

• Powerful ideas learned in course.
• Isolate underlying structure of problem.

• Create useful and efficient algorithms.

• Potentially deep social ramifications. 

• Technique: sometimes useful to consider the first time something 
bad might happen for an algorithm in order to rule it out.
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Deceit:  Machiavelli Meets Gale-Shapley

Q:  Can there be an incentive to misrepresent your preference profile?
• Assuming you know that propose-and-reject algorithm will be run and who will be proposers.

• And assuming that you know the preference profiles of all other participants.

Fact:  No, for proposers. Yes, for some receivers. No mechanism can guarantee a stable matching and 
be cheatproof. 
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Introduction to Algorithms

• Overview
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Measuring efficiency: The RAM model

• RAM = Random Access Machine

• Time  # of instructions executed in an ideal assembly language
• each simple operation (+,*,-,=,if,call) takes one time step

• each memory access takes one time step
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Complexity analysis

• Problem size 𝒏
• Worst-case complexity: 

  maximum # steps algorithm takes on any input of size 𝒏

• Best-case complexity: 
minimum # steps algorithm takes on any input of size 𝒏

• Average-case complexity: 
Expected # steps algorithm takes on inputs of size 𝒏
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Complexity

• The complexity of an algorithm associates a number 𝑻(𝒏), the worst/average-
case/best time the algorithm takes, with each problem size n.

• Mathematically,

• 𝑻 is a function that maps positive integers giving problem size to positive real 
numbers giving number of steps.

• Sometimes we have more than one size parameter
• e.g. 𝒏=# of vertices, 𝒎=# of edges in a graph. 
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Efficient = Polynomial Time
• Polynomial time

• Running time 𝑻(𝒏)  𝒄𝒏𝒌 + 𝒅 for some 𝒄, 𝒅, 𝒌 ≥  𝟎

• Why polynomial time?
• If problem size grows by at most a constant factor then so does the running 

time

• e.g. 𝑻 𝟐𝒏 ≤ 𝒄 𝟐𝒏 𝒌 + 𝒅 = 𝟐𝒌𝒄𝒏𝒌 + 𝒅 ≤ 𝟐𝒌 𝒄𝒏𝒌 + 𝒅 = 𝟐𝒌 𝑻(𝒏)

• polynomial-time is exactly the set of running times that have this 
property

• Typical running times are small degree polynomials, mostly less than 𝒏𝟑, at 
worst 𝒏𝟔, not 𝒏𝟏𝟎𝟎
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O-notation etc
• Given two positive functions 𝒇 and 𝒈

• 𝒇(𝒏) is 𝑶(𝒈(𝒏)) iff there is a constant 𝒄  𝟎                                                          
         so that 𝒇(𝒏) is eventually always  𝒄 ⋅ 𝒈(𝒏)

• 𝒇(𝒏) is 𝒐(𝒈(𝒏)) iff the ratio 𝒇(𝒏)/𝒈(𝒏) goes to 𝟎 as 𝒏 gets large

• 𝒇(𝒏) is 𝛀(𝒈(𝒏)) iff there is a constant 𝜺 > 𝟎 so that 𝒇 𝒏 ≥ 𝜺 ⋅ 𝒈(𝒏) for 
       infinitely many values of 𝒏

• 𝒇(𝒏) is 𝚯(𝒈(𝒏)) iff 𝒇(𝒏) is 𝑶(𝒈(𝒏)) and 𝒇(𝒏) is 𝛀(𝒈(𝒏)) 
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Note: The definition of 𝒇(𝒏) is 𝛀(𝒈(𝒏)) is the same as “𝒇(𝒏) is not 𝒐(𝒈(𝒏)) ” 
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