
CSE 421 Winter 2025
Lecture 27:

Finale
Nathan Brunelle

http://www.cs.uw.edu/421

http://www.cs.uw.edu/421

Other Approches you might hear about
Genetic algorithms:

• View each solution as a string (analogy with DNA)

• Maintain a population of good solutions

• Allow random mutations of single characters of individual solutions

• Combine two solutions by taking part of one and part of another (analogy
with crossover in sexual reproduction)

• Get rid of solutions that have the worst values and make multiple copies of
solutions that have the best values (analogy with natural selection -- survival
of the fittest).

Usually very slow. In the rare cases when they produce answers with better
objective function values than other methods they tend to produce very brittle
solutions – that are very bad with respect to small changes to the requirements.

2

Deep Neural Nets and NP-hardness?
• Artificial neural networks

• based on very elementary model of human neurons

• Set up a circuit of artificial neurons

• each artificial neuron is an analog circuit gate whose
computation depends on a set of connection strengths

• Train the circuit

• Adjust the connection strengths of the neurons by giving
many positive & negative training examples and seeing if it
behaves correctly

• The network is now ready to use

Despite their wide array of applications, they have not been shown to
be useful for NP-hard problems.

3

Quantum Computing and NP-hardness?
Use physical processes at the quantum level to implement “weird” kinds of circuit gates
based on unitary transformations

• Quantum objects can be in a “superposition” of many pure states at once

• Can have 𝒏 objects together in a superposition of 𝟐𝒏 states

• Each quantum circuit gate operates on the whole superposition of states at once

• Inherent parallelism but classical randomized algorithms have a similar
parallelism: not enough on its own

• Advantage over classical: copies interfere with each other.

• Exciting direction - theoretically able to factor efficiently.
 Major practical problems wrt errors, decoherence to be overcome.

• Small brute force improvement but unlikely to produce exponential advantage for NP.

4

Summary: If you need to solve an NP-Hard
Problem
• Look for assumptions that simplify the problem
• Made design decisions so that you can make simplifying assumptions
• Fix some parameter to a reasonable size, then write an algorithm that is

exponential only in that parameter (and therefore polynomial when fixed)
• Give up on trying to find the best solution, and instead approximate

• When a minimization/maximization problem
• May be helpful to find/create assumptions for better approximation
• Sometimes a LP can help with this!

• Give up on trying to write a polynomial time algorithm at all, and instead
use a fast exponential time algorithm
• For example, reduce your problem to SAT (if it’s NP-complete), then use an out-of-

the-box SAT solver

Minimum Vertex Cover as a “01 Program”
Minimum Vertex-Cover:

Given a graph 𝑮 = (𝑽, 𝑬)

 Find the largest 𝑾 ⊆ 𝑽 with 𝑾 such that every edge of 𝑮 has an endpoint
in 𝑾? (𝑾 is a vertex cover, a set of vertices that covers 𝑬.)

1

2

7

3

6

5

4

Minimize: σ𝑢∈𝑉 𝑥𝑢
Subject to:
 𝑥𝑢 + 𝑥𝑣 ≥ 1 for all 𝑢, 𝑣 ∈ 𝐸
 𝑥𝑢 ∈ 0,1

𝑥𝑢 indicates whether to include vertex 𝑢
𝑥𝑢 ∈ 0,1 is not expressible as an LP!

𝑥1 = 0

𝑥3 = 0

𝑥7 = 0

𝑥5 = 0

𝑥6 = 1

𝑥2 = 1

𝑥2 = 1

Minimum Vertex Cover as a LP
Minimum Vertex-Cover:

Given a graph 𝑮 = (𝑽, 𝑬)

 Find the largest 𝑾 ⊆ 𝑽 with 𝑾 such that every edge of 𝑮 has an endpoint
in 𝑾? (𝑾 is a vertex cover, a set of vertices that covers 𝑬.)

1

2

7

3

6

5

4

Minimize: σ𝑢∈𝑉 𝑥𝑢
Subject to:
 𝑥𝑢 + 𝑥𝑣 ≥ 1 for all 𝑢, 𝑣 ∈ 𝐸
 𝑥𝑢 ≤ 1
 𝑥𝑢 ≥ 0

Solution: let 𝑥𝑢 be a value between 0
and 1, then round

𝑥1 = 0

𝑥3 = 0

𝑥7 = 0

𝑥5 = 0

𝑥6 = 1/2

𝑥2 = 1/2

𝑥2 = 1/2

Why is this a Vertex Cover?

Why does this produce a VC?

𝑥𝑢 + 𝑥𝑣 ≥ 1 guarantees at least one of

𝑥𝑢, 𝑥𝑣 is ≥
1

2
, so at least one end point

is selected

1

2

7

3

6

5

4

𝑥1 = 0

𝑥3 = 0

𝑥7 = 0

𝑥5 = 0

𝑥6 = 1/2

𝑥2 = 1/2

𝑥2 = 1/2

Minimize: σ𝑢∈𝑉 𝑥𝑢
Subject to:
 𝑥𝑢 + 𝑥𝑣 ≥ 1 for all 𝑢, 𝑣 ∈ 𝐸
 𝑥𝑢 ≤ 1
 𝑥𝑢 ≥ 0

Solve, then round each 𝑥𝑢
 if 𝑥𝑢 ≥

1

2
 then set 𝑥𝑢 = 1

How good is it?

• Let 𝐿𝑃 refer to the value of the 𝐿𝑃
solution (i.e. σ𝑢∈𝑉 𝑥𝑢)

• Let 𝐴𝐿𝐺 refer to the size of the VC we
select (i.e. number of 𝑥𝑢 rounded up)

• Let 𝑂𝑃𝑇 refer to the size of the
minimum vertex cover

• 𝑨𝑳𝑮 ≤ 𝟐 ⋅ 𝑳𝑷 because we don’t do
worse than doubling when rounding

• 𝑳𝑷 ≤ 𝑶𝑷𝑻 because the true
minimum vertex cover is a feasible
solution to the linear program

• 𝑨𝑳𝑮 ≤ 𝟐 ⋅ 𝑶𝑷𝑻 by combining

1

2

7

3

6

5

4

𝑥1 = 0

𝑥3 = 0

𝑥7 = 0

𝑥5 = 0

𝑥6 = 1/2

𝑥2 = 1/2

𝑥2 = 1/2

Minimize: σ𝑢∈𝑉 𝑥𝑢
Subject to:
 𝑥𝑢 + 𝑥𝑣 ≥ 1 for all 𝑢, 𝑣 ∈ 𝐸
 𝑥𝑢 ≤ 1
 𝑥𝑢 ≥ 0

Solve, then round each 𝑥𝑢
 if 𝑥𝑢 ≥

1

2
 then set 𝑥𝑢 = 1

Algorithms for Linear Programs

10

Simplex Algorithm

• Simple

• Often fast in practice

• Not polynomial time (on pathological counterexamples)

Ellipsoid Algorithm

• More complicated

• First polynomial time algorithm, but not always fast

Interior Point Methods

• Even more complicated based on differential equation ideas

• Polynomial time, fast in practice; simplex better for small input size

The Simplex Algorithm

Simplex Algorithm:
• Start with a vertex of the polytope
• In each step move to a neighboring

vertex that is lower (larger 𝒄⊤𝒙).

Creates a path running along the edges and
vertices on the outside of the polytope
• Since the polytope is convex, this will

never get stuck before reaching the
lowest point.

11

The Simplex Algorithm: The downside

Simplex Algorithm:
• Start with a vertex of the polytope
• In each step move to a neighboring

vertex that is lower (larger 𝒄⊤𝒙).

Creates a path running along the edges and
vertices on the outside of the polytope
• Since the polytope is convex, this will

never get stuck before reaching the
lowest point.

Problem: Many paths to choose from; # of vertices on path can be exponential!
12

Initial Vertex

Interior Point Algorithms

Interior Point Idea:
• Start with a point in the polytope, either a

vertex or in the interior
• Follow approximations to a curving

“central path” that
• tunnels through the polytope
• avoids the boundary using loss functions

 and eventually gets to the optimum

Can be implemented efficiently using data structure tricks. Also leads to
best randomized algorithms for network flow. Super complicated, I’d
rather skip it.13

Ellipsoid Method

Idea:
• If I had a way of finding any point in the

feasible region then I can find the optimal
vertex
• Using a “binary search” strategy

• I can find a point in the feasible region by
identifying using progressively smaller
“balls” which contain the region

14

𝑦 = 𝑇

𝑦 = −𝑇

Using binary search

15

𝑦 = 𝑇

Check if polytope is empty using FindPoint

16

𝑦 = −𝑇

Add new constraint
𝑦 = 𝑇

𝑦 ≤ 0

17

𝑦 = −𝑇

𝑦 = 𝑇

𝑦 ≤ 0

Call FindPoint

18

𝑦 = −𝑇

𝑦 ≤ 0

𝑦 ≤ −𝑇/2

Add new constraint

19

𝑦 = −𝑇

𝑦 = −𝑇

𝑦 ≤ 0

𝑦 ≤ −𝑇/2

FindPoint: Polytope is empty!

20

𝑦 ≤ 0

𝑦 ≤ −𝑇/2

𝑦 ≤ −𝑇/4

Add new constraint

21

𝑦 ≤ 0

𝑦 ≤ −𝑇/2

𝑦 ≤ −𝑇/4

Add new constraint

22

𝑦 ≤ 0

𝑦 ≤ −𝑇/2

𝑦 ≤ −𝑇/4

Find point

23

𝒚 ≤ −𝑻/𝟐

𝒚 ≤ −𝑻/𝟒

𝒚 ≤ −𝟑𝑻/𝟖

Add new constraint

24

𝒚 ≤ −𝑻/𝟐

𝒚 ≤ −𝑻/𝟒

Find point: Polytope is empty!

25

𝒚 ≤ −𝟑𝑻/𝟖

𝒚 ≤ −𝑻/𝟒
𝒚 ≤ −𝟓𝑻/𝟏𝟔

Add new constraint... Find point ...

26

𝒚 ≤ −𝟑𝑻/𝟖

Conclusion: It is enough to give an
algorithm to find a point in a polytope.

27

Ellipsoid algorithm for finding points in polytopes

Idea: Iteratively find ellipsoids where the density of the polytope

 within each ellipsoid is larger and larger, until a point is found

28

29

Theorem: If the polytope is
finite then its points have
magnitude at most

𝑹 = 𝟐𝒑𝒐𝒍𝒚 input length .

Begin with sphere of
radius

𝑹 = 𝟐𝒑𝒐𝒍𝒚 input length .
containing solution

30

Check 𝟎

31

Find violated inequality

32

Shift inequality to origin

33

Find ellipsoid containing
half-sphere

34

Find ellipsoid containing
half-sphere

35

Shift to center

36

Stretch to get sphere

37

Check 𝟎

38

Find violated inequality

39

Shift inequality to origin

40

Find ellipsoid containing
half-sphere

41

Find ellipsoid containing
half-sphere

42

Shift to center

43

Stretch to get sphere

44

Where we have been…
Problems and major solution paradigms

• Stable Matching

• Graph Traversal

• Greedy Algorithms

• Divide and Conquer

• Dynamic Programming

• Network Flow

• Linear Programming
• Focus on encoding as LPs as opposed to how to solve them.

• NP-completeness

• Approximation algorithms & other ways of side-stepping NP-hardness

45

How to use these ideas
• 1st : See if your problem is a special case/close to/reminds you of one of

the problems we have considered in the class

• 2nd : Try these:
• Graph traversal

• Greedy algorithms

• Be skeptical! Your first greedy idea is probably wrong; maybe all greedy
approaches are wrong. Proving correctness is critical.

• 3rd: Try to solve it recursively w/ smaller subproblems of the same type

• If subproblems are a constant ratio smaller: Divide and Conquer

• If same subproblems show up repeatedly: Dynamic Programming

• See how the pattern of recursion/subproblems matches example patterns
you already know. Maybe try a new one.

46

How to use these ideas
• 4th: See if you can express your problem as a Flow/Cut/Matching.

• 5th : Try Linear Programming

• 6th : Maybe your problem is NP-hard. Check out lists of NP-hard
problems to see if yours is there, or try to show it directly.

• 7th : If your problem is NP-hard, try to side-step that hardness.

There are other methods we have barely touched on and

getting some polynomial-time algorithm isn’t the end of the story…

… we have barely touched on the subject.

47

What comes next?

• CSE 431 (complexity theory)
• What can’t you do? (in polynomial time, at all, or in limited memory)

• CSE 422 Toolkit for modern algorithms
• Algorithmic principles behind modern stats and ML

• CSE 426 [490C] Cryptography
• a mix of math, algorithms, and complexity

• CSE 521 and 525
• Graduate level courses in algorithms and randomized algorithms

• Look ahead! These courses usually only run once-per-year.

	Slide 1: CSE 421 Winter 2025 Lecture 27: Finale
	Slide 2: Other Approches you might hear about
	Slide 3: Deep Neural Nets and NP-hardness?
	Slide 4: Quantum Computing and NP-hardness?
	Slide 5: Summary: If you need to solve an NP-Hard Problem
	Slide 6: Minimum Vertex Cover as a “01 Program”
	Slide 7: Minimum Vertex Cover as a LP
	Slide 8: Why is this a Vertex Cover?
	Slide 9: How good is it?
	Slide 10: Algorithms for Linear Programs
	Slide 11: The Simplex Algorithm
	Slide 12: The Simplex Algorithm: The downside
	Slide 13: Interior Point Algorithms
	Slide 14: Ellipsoid Method
	Slide 15: Using binary search
	Slide 16: Check if polytope is empty using FindPoint
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30:
	Slide 31: Check bold 0
	Slide 32: Find violated inequality
	Slide 33: Shift inequality to origin
	Slide 34
	Slide 35
	Slide 36: Shift to center
	Slide 37: Stretch to get sphere
	Slide 38: Check bold 0
	Slide 39: Find violated inequality
	Slide 40: Shift inequality to origin
	Slide 41
	Slide 42
	Slide 43: Shift to center
	Slide 44: Stretch to get sphere
	Slide 45: Where we have been…
	Slide 46: How to use these ideas
	Slide 47: How to use these ideas
	Slide 48: What comes next?

