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What to do if the  problem you want to solve is NP-hard
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This isn’t the only answer!

I Quit!



Things to consider

• Suppose you find that you need to solve problem 𝐴, but it’s NP-Hard

• There could be some hope!
• Are there properties of your input that will cause you to avoid the worst case?

• Do to specifically need the “best” answer, or would “pretty good” suffice?
• How good does “pretty good” NEED to be for you?



Case study: Minimum Vertex Cover
Vertex-Cover:

Given a graph 𝑮 = (𝑽, 𝑬) and an integer 𝒌

 Is there a 𝑾 ⊆ 𝑽 with 𝑾 ≤ 𝒌 such that every edge of 𝑮 has an endpoint 
in 𝑾?   (𝑾 is a vertex cover, a set of vertices that covers 𝑬.)

Minimum Vertex-Cover:
Given a graph 𝑮 = (𝑽, 𝑬) 

 Find the largest 𝑾 ⊆ 𝑽 with 𝑾  such that every edge of 𝑮 has an endpoint 
in 𝑾?   (𝑾 is a vertex cover, a set of vertices that covers 𝑬.)
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How “Hard” is Minimum Vertex Cover?

• If I could solve Vertex-Cover in polynomial time, could I then solve 
Minimum Vertex-Cover in polynomial time? 

• If I could solve Minimum Vertex-Cover in polynomial time, could I 
then solve Vertex-Cover in polynomial time?



How “Hard” is Minimum Vertex Cover?

• If I could solve Vertex-Cover in polynomial time, could I then solve 
Minimum Vertex-Cover in polynomial time? 
• Call Vertex-Cover on the input 𝐺, 1
• If that returns “No”, call it on 𝐺, 2
• If that returns “No”, call it on 𝐺, 3
• … first “Yes” must be the minimum

• If I could solve Minimum Vertex-Cover in polynomial time, could I 
then solve Vertex-Cover in polynomial time?
• Call Minimum Vertex-Cover on the input 𝐺, suppose it returns W
• Check if 𝑊 ≤ 𝑘

• Conclusion: We can’t expect to solve either in polynomial time….



This graph is bipartite!
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This graph is bipartite!
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Vertex Covers Block Flow from s to t.
𝑪 is a vertex cover of 𝑮 iff all flow from s to t must go through 𝑪.
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A vertex cover, and all flow must 
pass through a selected node.
“Clogging up” those nodes would 
stop the flow
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Vertex Covers Block Flows from s to t.
𝑪 is a vertex cover of 𝑮 iff all flow from s to t must go through 𝑪.
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Not a vertex cover, we can still have 
flow through edge (1,6)
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Vertex Covers Block Flows from s to t.
Recall that for any s-t cut in the graph, “clogging up” the crossing edges 
will stop the flow as well. This means we could stop flow by finding a cut, 
then selecting one end point for each edge in the cut.
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A vertex cover, and all flow must 
pass through a selected node.
“Clogging up” those nodes would 
stop the flow
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Max Vertex On Bipartite Graphs

So… vertices of 𝑮 involved in Min Cut (one per edge crossing the cut) form 
a minimum vertex cover of 𝑮.
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Takeaway

• Check to see if there are properties of your inputs you assume 
• Will your graph always be a tree?

• Will it always be bipartite?

• Do you know the maximum degree of each node?

• Will it be a DAG?

• Any of these may enable you to write an efficient algorithm to solve the 
problem for the specific instances you may see

• Check to see if there are properties of your inputs that you can add in
• Can you narrow the scope of your application or make other design decisions 

so that you can assume something above?



What to do if the  problem you want to solve is NP-hard

2nd thing to try if your problem is a minimization or maximization problem

• Try to find a polynomial-time worst-case approximation algorithm

• For a minimization problem 
• Find a solution with value ≤ 𝑲 times the optimum

• For a maximization problem
• Find a solution with value ≥ 𝟏/𝑲 times the optimum

Want 𝑲 to be as close to 𝟏 as possible.
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Approximation Algorithm for Min Vertex Cover

𝑊 = ∅ 

𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 = 𝐸 

While(𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 ≠ ∅){

    consider any 𝑢, 𝑣 ∈ 𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑

    add 𝑢 and 𝑣 to 𝑊

    remove any edge connected to 𝑢 or 𝑣

 from 𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑

}

return 𝑊

Final 𝑊 is guaranteed to be a vertex 
cover, because edges could only be 
removed from 𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 when they 
were covered by 𝑊.

Claim: At most a factor 2 larger than the 
optimal vertex-cover size. 

Proof: Edges “considered” don’t share 
any vertices. For any alternative vertex-
cover, it must choose at least one of 𝒖 or 
𝒗 to cover that “considered” edge. This 
means we didn’t do worse that twice as 
many edges as necessary



Travelling-Salesperson Problem (TSP)
Travelling-Salesperson Problem (TSP): 

    Given: a set of 𝒏 cities 𝒗𝟏, … , 𝒗𝒏 and distance function 𝒅 that gives distance   
    𝒅(𝒗𝒊, 𝒗𝒋) between each pair of cities

     Find the shortest tour that visits all 𝒏 cities.   

MetricTSP:

     The distance function 𝒅 satisfies the triangle inequality:

  𝒅 𝒖, 𝒘 ≤ 𝒅 𝒖, 𝒗 + 𝒅(𝒗, 𝒘)

     Proper tour: visit each city exactly once.

16



Minimum Spanning Tree Approximation: Factor of 2
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TSP: Minimum Spanning Tree Factor 2 Approximation

Any tour contains a spanning tree 
so 𝑴𝑺𝑻 𝑮 ≤ 𝑻𝑶𝑼𝑹𝑶𝑷𝑻(𝑮)

Euler tour covers each edge twice 
so 𝑻𝑶𝑼𝑹𝑴𝑺𝑻 𝑮 = 𝟐 𝑴𝑺𝑻(𝑮)

This visits each node more than once, so not a proper tour.

So 𝑻𝑶𝑼𝑹𝑴𝑺𝑻 𝑮 = 𝟐 𝑴𝑺𝑻 𝑮 ≤ 𝟐 𝑻𝑶𝑼𝑹𝑶𝑷𝑻(𝑮)

Euler Tour of doubled MST: 

18



Why did this work?
• We found an Euler tour on a graph that used the edges of the 

original graph (possibly repeated).

• The weight of the tour was the total weight of the new graph.

• Suppose now

• All edges possible

• Weights satisfy the triangle inequality (MetricTSP)
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MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Any tour contains a spanning tree 
so 𝑴𝑺𝑻 𝑮 ≤ 𝑻𝑶𝑼𝑹𝑶𝑷𝑻(𝑮)

Euler tour covers each edge twice 
so 𝑻𝑶𝑼𝑹𝑴𝑺𝑻 𝑮 = 𝟐 𝑴𝑺𝑻(𝑮)

Euler Tour of doubled MST: 

Instead:  take shortcut to next unvisited vertex on the Euler tour
By triangle inequality this can only be shorter. 

So 𝑻𝑶𝑼𝑹𝑴𝑺𝑻 𝑮 = 𝟐 𝑴𝑺𝑻 𝑮 ≤ 𝟐 𝑻𝑶𝑼𝑹𝑶𝑷𝑻(𝑮)
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MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Any tour contains a spanning tree 
so 𝑴𝑺𝑻 𝑮 ≤ 𝑻𝑶𝑼𝑹𝑶𝑷𝑻(𝑮)

So 𝑻𝑶𝑼𝑹𝑴𝑺𝑻 𝑮 = 𝟐 𝑴𝑺𝑻 𝑮 ≤ 𝟐 𝑻𝑶𝑼𝑹𝑶𝑷𝑻(𝑮)

Instead:  take shortcut to next unvisited vertex on the Euler tour
By triangle inequality this can only be shorter. 

Euler tour covers each edge twice 
so 𝑻𝑶𝑼𝑹𝑴𝑺𝑻 𝑮 = 𝟐 𝑴𝑺𝑻(𝑮)
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MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Any tour contains a spanning tree 
so 𝑴𝑺𝑻 𝑮 ≤ 𝑻𝑶𝑼𝑹𝑶𝑷𝑻(𝑮)

So 𝑻𝑶𝑼𝑹𝑴𝑺𝑻 𝑮 = 𝟐 𝑴𝑺𝑻 𝑮 ≤ 𝟐 𝑻𝑶𝑼𝑹𝑶𝑷𝑻(𝑮)

Final: 

Instead:  take shortcut to next unvisited vertex on the Euler tour
By triangle inequality this can only be shorter. 

Euler tour covers each edge twice 
so 𝑻𝑶𝑼𝑹𝑴𝑺𝑻 𝑮 = 𝟐 𝑴𝑺𝑻(𝑮)
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Max-3SAT Approximation
Max-3SAT: Given a 3CNF formula 𝑭 find a truth assignment that satisfies 

         the maximum possible # of clauses of 𝑭.

Observation: A single clause on 3 variables only rules out 𝟏/𝟖 of the possible truth 
assignments since each literal has to be false to be ruled out.

 ⇒ a random truth assignment will satisfy the clause with probability 𝟕/𝟖.

So in expectation, if 𝑭 has 𝒎 clauses, a random assignment satisfies 𝟕𝒎/𝟖 of them.

A greedy algorithm can achieve this:  Choose most frequent literal appearing in 
clauses that are not yet satisfied and set it to true.

If 𝐏 ≠ 𝐍𝐏 no better approximation is possible 
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Other ways to approach Vertex Cover

• So Far:
• Make assumptions about the graph

• Decide you don’t need to be perfect

• Another Option:
• For original Vertex Cover (the one with 𝑘), will we know 𝑘 in advance?



What to do if the problem you want to solve is NP-hard

Maybe you only need to solve it if the solution size is small...
• What if you only need to find cliques or vertex covers of constant size?

• For both Clique and Vertex Cover, the obvious brute force algorithm would 
have time 𝚯(𝒏𝒌):  try all subsets of size 𝒌.

• For Clique the best algorithms known are all 𝒏𝛀(𝒌)

• However, Vertex Cover has a much better algorithm…

The theory of fixed parameter tractability looks at 𝐍𝐏 problems using a 
second parameter 𝒌 in addition to input size 𝒏 and seeks algorithms 
with running times 𝒇 𝒌 ⋅ 𝒏𝑶 𝟏  where 𝒇 might be exponential.
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Fixed Parameter Algorithms
The theory of fixed parameter tractability looks at 𝐍𝐏 problems using a second 
parameter 𝒌 in addition to input size 𝒏 and seeks algorithms with running times 
𝒇 𝒌 ⋅ 𝒏𝑶 𝟏  where 𝒇 might be exponential.

Clique:  Extra parameter 𝒌 for clique size target:

Brute force algorithm: try all subsets of size 𝒌 and check:  𝚯(𝒌𝟐𝒏𝒌) time.

Vertex-Cover: Extra parameter 𝒌 for clique size target:

Brute force algorithm: try all subsets of size 𝒌 and check:  𝚯(𝒎𝒏𝒌) time.

• Neither is a good fixed parameter algorithm
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Vertex-Cover Fixed Parameter Algorithm

Vertex-Cover(𝑪, 𝒃) {
   if there is an edge (𝒖, 𝒗) not covered by 𝑪{
    if 𝒃 > 𝟎 {
                          Vertex-Cover(𝑪 ∪ {𝒖}, 𝒃 − 𝟏)
                          Vertex-Cover(𝑪 ∪ {𝒗}, 𝒃 − 𝟏)
                   }
         }
         else 
                   Output YES (and set 𝑪) and halt
         }
 }

Call Vertex-Cover(∅, 𝒌)
if no answer, output NO

Analysis:
• Time to identify possible edge (𝒖, 𝒗) not 

covered (and modify 𝑪) is 𝑂(𝒎 + 𝒏)

• # of recursive calls ≤ 𝟐𝒌 

• Total runtime 𝑂(𝟐𝒌(𝒎 + 𝒏))

• Somewhat of a “trick” of asymptotic 
analysis, but could be practical for small 𝑘, 
and you’ve “baked in” your feasible input 
size for other developers.

• Make it so the algorithm only works when 𝑘 is 
small enough for your application
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Other ways to approach Vertex Cover

• So Far:
• Make assumptions about the graph

• Decide you don’t need to be perfect

• Fix some parameter to be constant so the running time is polynomial

• Another Option:
• Decide you’re ok with exponential time, but make your exponential time 

algorithm really fast
• Many out-of-the-box algorithms for solving SAT, that are usually very fast (but 

occasionally slow or incorrect)



What to do if the problem you want to solve is NP-hard

Try to make an exponential-time solution as efficient as possible.  

e.g. Try to search the space of possible hints/certificates in a more efficient way and 
hope that it is quick enough.

Backtracking search (choose, explore, unchoose)
e.g., for SAT, search through the 𝟐𝒏 possible truth assignments...

...but set the truth values one-by-one so we can able to figure out whole parts 
of the space to avoid,

e.g.  Given 𝑭 = (¬𝒙𝟏 ∨ 𝒙𝟐) ∧ ¬𝒙𝟐 ∨ 𝒙𝟑 ∧ 𝒙𝟒 ∨ ¬𝒙𝟑 ∧ (𝒙𝟏 ∨ 𝒙𝟒)

after setting 𝒙𝟏 = 𝟏 and 𝒙𝟐 = 𝟎 we don’t even need to set 𝒙𝟑 or 𝒙𝟒 to know that it won’t satisfy 𝑭.

Today:  More clever backtracking search for SAT solutions
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SAT Solving
SAT is an extremely flexible problem:

• The fact that SAT is an 𝐍𝐏-complete problem says that we can re-express 
a huge range of problems as SAT problems

This means that good algorithms for SAT solving would be useful 
for a huge range of tasks.

Since roughly 2001, there has been a massive improvement in our 
ability to solve SAT on a wide range of practical instances

• These algorithms aren’t perfect.  They fail on many worst-case instances.
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CNF Satisfiability
SAT: satisfiability problem for CNF formulas with any clause size

Write CNFs with the ∧ between clauses implicit:
𝑭 = 𝒙𝟏 ∨ 𝒙𝟐 ∨ 𝒙𝟒 (𝒙𝟏 ∨ 𝒙𝟑)(𝒙𝟑 ∨ 𝒙𝟐)(𝒙𝟒 ∨ 𝒙𝟑)

Write assignment as literals assigned true: 𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒙𝟒

Defn: Given partial assignment 𝒙𝟑 where
𝑭 = 𝒙𝟏 ∨ 𝒙𝟐 ∨ 𝒙𝟒 (𝒙𝟏 ∨ 𝒙𝟑)(𝒙𝟑 ∨ 𝒙𝟐)(𝒙𝟒 ∨ 𝒙𝟑)

            define simplify(𝑭, 𝒙𝟑) by

      simplify(𝑭, 𝒙𝟑)= 𝒙𝟏 ∨ 𝒙𝟐 ∨ 𝒙𝟒  (𝒙𝟏 ∨ 𝒙𝟑)(𝒙𝟑 ∨ 𝒙𝟐)(𝒙𝟒 ∨ 𝒙𝟑)

That is: remove satisfied clauses and remove unsatisfied literals from clauses.

𝑭 is satisfiable iff all clauses disappear under some assignment. It is not satisfiable 
under a partial assignment if we ever have 2 clauses containing only contradictory 
variables (e.g. 𝒙𝟒 and 𝒙𝟒)
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Satisfiability Algorithms
Local search: Solve SAT as a special case of MaxSAT   
        (incomplete, may fail to find satisfying assignment)

GSAT – random local search [Selman,Levesque,Mitchell 92] 

Walksat – Metropolis [Kautz,Selman 96]

Backtracking search (complete)
• DPLL    [Davis,Putnam 60], [Davis,Logeman,Loveland 62]

• CDCL:  Adds clause learning and restarts      
  GRASP, SATO, zchaff, MiniSAT, Glucose, etc.
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Summary: If you need to solve an NP-Hard 
Problem
• Look for assumptions that simplify the problem

• Made design decisions so that you can make simplifying assumptions

• Fix some parameter to a reasonable size, then write an algorithm that is 
exponential only in that parameter (and therefore polynomial when fixed)

• Give up on trying to find the best solution, and instead approximate
• When a minimization/maximization problem
• May be helpful to find/create assumptions for better approximation

• Give up on trying to write a polynomial time algorithm at all, and instead 
use a fast exponential time algorithm
• For example, reduce your problem to SAT (if it’s NP-complete), then use an out-of-

the-box SAT solver



Other Approches you might hear about
Genetic algorithms:

• View each solution as a string (analogy with DNA)

• Maintain a population of good solutions

• Allow random mutations of single characters of individual solutions

• Combine two solutions by taking part of one and part of another (analogy 
with crossover in sexual reproduction)

• Get rid of solutions that have the worst values and make multiple copies of 
solutions that have the best values (analogy with natural selection -- survival 
of the fittest).

Usually very slow.   In the rare cases when they produce answers with better 
objective function values than other methods they tend to produce very brittle 
solutions – that are very bad with respect to small changes to the requirements.
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Deep Neural Nets and NP-hardness?
• Artificial neural networks

• based on very elementary model of human neurons

• Set up a circuit of artificial neurons 

• each artificial neuron is an analog circuit gate whose 
computation depends on a set of connection strengths

• Train the circuit 

• Adjust the connection strengths of the neurons by giving 
many positive & negative training examples and seeing if it 
behaves correctly

• The network is now ready to use

Despite their wide array of applications, they have not been shown to 
be useful for NP-hard problems.
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Quantum Computing and NP-hardness?
Use physical processes at the quantum level to implement “weird” kinds of circuit gates 
based on unitary transformations

• Quantum objects can be in a “superposition” of many pure states at once

• Can have 𝒏 objects together in a superposition of 𝟐𝒏 states

• Each quantum circuit gate operates on the whole superposition of states at once

• Inherent parallelism but classical randomized algorithms have a similar 
parallelism: not enough on its own

• Advantage over classical: copies interfere with each other.  

• Exciting direction - theoretically able to factor efficiently.   
 Major practical problems wrt errors, decoherence to be overcome.

• Small brute force improvement but unlikely to produce exponential advantage for NP.
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