CSE 421 Winter 2025 Lecture 25: NP-Complete 2

Nathan Brunelle

http://www.cs.uw.edu/421

Satisfiability

CNF formula example:

$$(x_1 \vee \neg x_3 \vee x_4) \wedge (\neg x_4 \vee x_3) \wedge (x_2 \vee \neg x_1 \vee x_3)$$

Defn: If there is some assignment of 0's and 1's to the variables that makes it true then we say the formula is satisfiable

- $(x_1 \lor \neg x_3 \lor x_4) \land (\neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)$ is satisfiable: $x_1 = x_3 = 1$
- $x_1 \land (\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land \neg x_3$ is not satisfiable.

3SAT: Given a CNF formula **F** with exactly **3** variables per clause, is **F** satisfiable?

More precise definition of NP

A decision problem A is in NP iff there is

• a polynomial time procedure **VerifyA**(.,.)

Such that:

- for every input x that is a YES for A there is a certificate t with |t| polynomial in |x| with VerifyA(x, t) = YES
- for every input x that is a NO for A there does not exist a certificate t with |t| polynomial in |x| with VerifyA(x(t) = YES

Steps for showing that a problem is in NP

- 1. Must be decision probem (YES/NO)
- 2. Describe what your certificates could look like for verification
- 3. Describe a verification algorithm VerifyA(x, t) where x is an instance of the problem and t is one of the certificates you just described, and show that it has these properties:
 - (1.) For every given YES input x, there is at least one choice of t where VerifyA(x, t) is YES
 - 2. For any given NO input (x) there is no choice of t where VerifyA(x, t) is YES
 - 3. VerifyA(x, t) runs in polynomial time

Verifying the certificate is efficient

3Color:

- Certificate: a coloring
- Verify algorithm: Check that each vertex has one of only 3 colors and check that the endpoints of every edge have different colors
- A valid coloring exists for any 3-colorable graph, but not for one that isn't 3-colorable **Independent-Set**, **Clique**:
 - Certificate: the set *U* of vertices
 - Verify algorithm: Check that $|U| \ge k$ and either no (IS) or all (Clique) edges on present on U
 - A valid *U* only exists for yes instances

Vertex-Cover:

- Certificate: the set W of vertices
 - Verify algorithm: Check that $|W| \leq k$, and W touches every edge.
 - A valid W only exists for yes instances

• 3-SAT:

- Certificate: a truth assignment α that makes the CNF formula F true.
- Verify algorithm: Evaluate F on the truth assignment α .
 - A valid truth assignment only exists for yes instances

NP-hardness & NP-completeness

Notion of hardness we can prove that is useful unless P = NP:

Defn: Problem B is **NP**-hard iff **every** problem $A \in NP$ satisfies $A \leq_P B$.

This means that B is at least as hard as every problem in NP.

Defn: Problem *B* is **NP**-complete iff

- $B \in NP$ and
- **B** is **NP**-hard.

This means that \boldsymbol{B} is a hardest problem in NP.

Cook-Levin Theorem

Theorem [Cook 1971, Levin 1973]: 3SAT is NP-complete

Proof: See, CSE 431.

Corollary: If $SAT \leq_P B$ then B is NP-hard.

Proof: Let **A** be an arbitrary problem in **NP**.

Since **3SAT** is **NP**-hard we have $A \leq_P 3SAT$.

Then $A \leq_P 3SAT$ and $3SAT \leq_P B$ imply that $A \leq_P B$.

Therefore every problem A in NP has $A \leq_P B$ so B is NP-hard.

Cook & Levin did the hard work.

We only need to give one reduction to show that a problem is NP-hard!

What we know: 3Sat is NP-Hard

This reduction always exists!

(by definition of NP-Hard)

 $O(n^p)$

Procedure for converting instances of A into 3CNF formulas

Yes/No

Solution for *A*

3Sat

$$(x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)$$

Solution for satisfiability

Yes/No

Goal: *B* is NP-Hard

Steps to Proving Problem *B* is NP-complete

- Show **B** is in **NP**
 - State what the hint/certificate is.
 - Argue that it is polynomial-time to check and you won't get fooled.
- Show **B** is **NP**-hard:
 - State: "Reduction is from NP-hard Problem A"
 - Show what the reduction function *f* is.
 - Argue that f is polynomial time.
 - Argue correctness in two directions:
 - x a YES for A implies f(x) is a YES for B
 - Do this by showing how to convert a certificate for x being YES for A to a certificate for f(x) being a YES for B.
 - f(x) a YES for B implies x is a YES for A
 - ... by converting certificates for f(x) to certificates for x

Next up: Let's show Independent Set is NP-Hard

Showing Independent Set is NP-Hard

Solution for the instance of 3Sat

Yes/No

Independent Set

Solution for the instance of Independent Set

Yes/No

Another NP-complete problem: $3SAT \leq_P$ Independent-Set

1. The reduction:

- Map CNF formula F to a graph G and integer k
- Let m = # of clauses of F
- Create a vertex in G for each literal occurrence in F
 - 3m total vertices
- Join two vertices u, v in G by an edge iff
 - u and v correspond to literals in the same clause of F or
 - u and v correspond to literals x and $\neg x$ (or vice versa) for some variable x (i.e. they contradict).
- $\operatorname{Set} k = m$
- 2. Clearly polynomial-time computable

Another **NP**-complete problem: $3SAT \leq_P$ Independent-Set

$$\mathbf{F} = (x_1 \vee \neg x_3 \vee x_4) \wedge (x_2 \vee \neg x_4 \vee x_3) \wedge (\neg x_2 \vee \neg x_1 \vee x_3)$$

G has both kinds of edges.

The color is just to show why the edges were included.

$$k = m$$

Correctness (⇒)

Suppose that **F** is satisfiable (**YES** for **3SAT**)

- Let α be a satisfying assignment; it satisfies at least one literal in each clause.
- Choose the set *U* in *G* to correspond to the **first** satisfied literal in each clause.
 - |U| = m
 - Since U has 1 vertex per clause, no same-clause edges inside U.
 - A truth assignment never satisfies both x and $\neg x$, so no contradicting-variable edges inside U.
 - Therefore U is an independent set of size m

Therefore (G, m) is a YES for Independent-Set.

Satisfying assignment α :

$$\alpha(x_1) = \alpha(x_2) = \alpha(x_3) = \alpha(x_4) = 1$$

Set *U* marked in purple is independent.

Correctness (←)

Suppose that G has an independent set of size m ((G, m) is a YES for Independent-Set)

- Let *U* be the independent set of size *m*;
- edges) must have one vertex per column (same-clause
- Because of contraidict-variable edges, **U** doesn't have vertex labels with conflicting literals.
- Set all literals labelling vertices in *U* to true
- This may not be a total assignment but just extend arbitrarily to a total assignment α .
 - This assignment satisfies **F** since it makes at least one literal per clause true.

Therefore **F** is satisfiable and a **YES** for **3SAT**.

Given independent set U of size m

Satisfying assignment α : Part defined by U:

$$\alpha(x_1)=0, \alpha(x_2)=1, \alpha(x_3)=0$$

Set $\alpha(x_4)=0$.

Showing Independent Set is NP-Hard

$$(x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)$$

of 3Sat

 $O(n^p)$

Make one node per literal, connect each to other nodes in the same clause, connect literals with their negations, set k to be the number of clauses

Use the same answer

Reduction

Independent Set

Algorithm for solving Independent Set

Solution for the instance of Independent Set

Yes/No

Yes/No

Solution for the instance

Many **NP**-complete problems

Since 3SAT \leq_P Independent-Set, Independent-Set is NP-hard.

We already showed that **Independent-Set** is in **NP**.

⇒ Independent-Set is NP-complete

Corollary: Clique and Vertex-Cover are also NP-complete.

Proof: We already showed that all are in NP.

We also showed that Independent-Set polytime reduces to all of them.

Combining this with $3SAT \leq_P Independent-Set$ we get that all are NP-hard.

NP-complete problems so far

So far:

3SAT → Independent-Set → Clique

↓

Vertex-Cover

4-Satisfiability

CNF formula example:

$$(x_1 \vee \neg x_3 \vee x_4) \wedge (\neg x_4 \vee x_3) \wedge (x_2 \vee \neg x_1 \vee x_3)$$

Defn: If there is some assignment of 0's and 1's to the variables that makes it true then we say the formula is satisfiable

- $(x_1 \lor \neg x_3 \lor x_4) \land (\neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)$ is satisfiable: $x_1 = x_3 = 1$
- $x_1 \land (\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land \neg x_3$ is not satisfiable.

3SAT: Given a CNF formula *F* with exactly 3 variables per clause, is *F* satisfiable?

4SAT: Given a CNF formula **F** with exactly **4** variables per clause, is **F** satisfiable?

Let's show 4Sat is NP-Hard

Reduction

Showing Independent Set is NP-Hard

Solution for the instance of 3Sat

Yes/No

4Sat

Solution for the instance of Independent Set

3Sat $\leq_P 4$ Sat: A False Start (pun intended)

Goal: Covert a 3CNF formula F into a 4CNF formula F' such that F' has a satisfying assignment if and only if F has a one

Idea: Given a 3CNF formula, add one more variable per clause without changing its satisfiability

$$F = (x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)$$

This almost works: Add "false" to each clause

The resulting formula is logically equivalent to the original

Problem: This violates the definition of a CNF formula. The definition doesn't allow for Boolean constants, only variables

3Sat $\leq_P 4$ Sat: The Reduction

Goal: Covert a 3CNF formula F into a 4CNF formula F' such that F' has a satisfying assignment if and only if F has a one

Idea: Given a 3CNF formula, add one more variable per clause without changing its satisfiability

$$F = (x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)$$

Solution: Add the same variable to each clause, then add one or more clauses to guarantee that variable must be false

$$F' = (x_1 \lor \neg x_3 \lor x_4 \lor y) \land (x_2 \lor \neg x_4 \lor x_3 \lor y) \land (x_2 \lor \neg x_1 \lor x_3 \lor y) \land (\neg y \lor \neg y \lor \neg y)$$

Showing Independent Set is NP-Hard

3Sat

$$(x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)$$

Solution for the instance of 3Sat

Yes/No

4Sat

Solution for the instance of Independent Set

Yes/No

Correctness

• F satisfiable $\Rightarrow F'_{l}$ satisfiable

Let a be an assignment of true/false to each variable that satisfies F. In this case, since all except one clause of F' share variables with clauses from F, a satisfies all clauses of F' except that one new clause. This new clause can be satisfied by y = false,

F' satisfiable $\Rightarrow F$ satisfiable

Let a' be an assignment of true/false to each variable that satisfies F'. Because a' must satisfy all clauses, and the only way to satisfy the new clause is y = false. Since y = false in a', all other clauses are logically equivalent to the original clauses from F.

Recall: Graph Colorability

Defn: A undirected graph G = (V, E) is k-colorable iff we can assign one of k colors to each vertex of V s.t. for every edge (u, v) has different colored endpoints, $\chi(u) \neq \chi(v)$. "edges are not monochromatic"

Theorem: 3Color is NP-complete

Proof:

- 1. 3Color is in NP:
 - We already showed this; the certificate was the coloring.
- 2. 3Color is NP-hard:

Claim: $3SAT \leq_P 3Color$

We need to find a function f that maps a 3CNF formula F to a graph G s.t. F is satisfiable $\Leftrightarrow G$ is 3-colorable.

Next up: Let's show 3Color is NP-Hard

Showing 3Color is NP-Hard

3Sat

$$(x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)$$

Solution for the instance of 3Sat

Yes/No

Start with a base triangle with vertices T, F, and O.

We can assume that T, F, and O are the

three colors used.

Intuition: T and F will stand for true and false; O will stand for other.

To represent the properties of the 3CNF formula \mathbf{F} we will need both a Boolean variable part and a clause part.

Base Triangle

Boolean variable part:

- For each Boolean variable add a triangle with two nodes labelled by literals as shown.
- Since both nodes are joined to node O and to each other, they must have opposite colors T and F in any 3-coloring.
- So, any 3-coloring corresponds to a unique truth assignment.

Idea:

Create a "middle" node per literal for each clause, we will consider a T-colored middle node to satisfy a clause.

In the graph:

For each clause of **F** add 3 "middle" nodes. Then:

- Join each middle node to it opposite literal node
- Join each middle node to F

Now each middle node must be either **T** or **O**, and any connect to something **T**-colored must be **O**-colored

Idea:

Force at least one middle node per clause to be **T**-colored.

In the graph:

For each clause of **F** add an outer triangle.

 Join each middle node a vertex in the triangle

No middle node can be F-colored (all connect to F)

Not all middle nodes are Ocolored (because something in the outer triangle must be)

So at least one is T-colored

Key property:

In any 3-coloring:

outer nodes either **T** or **O**

inner triangle must use O

Showing 3Color is NP-Hard

3Sat

$$(x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)$$

Solution for the instance of 3Sat

Yes/No

 $O(n^p)$ Create "base triangle" and one node per variable and negation. Connect each variable node to the "false color" node. Per clause, create a triangle and one middle node per literal. Connect each middle to the triangle, false, and the opposite variable Use the same answer Reduction

Solution for the instance of 3Color

Yes/No

F satisfiable \Rightarrow 3 Colorable

Suppose *F* is satisfiable. We can then 3-Color the graph by:

- Make each True literal node T-colored
- Make each False literal node F-colored
- Make one True middle node per clause T-colored
- Make the remaining middle nodes O-colored
- Color each outer triangle (node connect to the Tcolored middle node will be O-colored, the others can be either T-colored or F-colored)

3 Colorable $\Rightarrow F$ satisfiable

Suppose the graph is 3-colorable. We can satisfy **F** by:

- Making each T-colored literal node True and each Fcolored literal node False
 - No nodes are O-colored, so this will work out
- We know this satisfies F because:
 - Each clause will have one T-colored middle node (connected to the O-colored outer triangle node) which matches the color of its equivalent literal

