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Polynomial Time Reduction

Defn: We write A <p B iff there is an algorithm for A using a ‘black box’ (subroutine
or method) that solves B that

* uses only a polynomial number of steps, and
* makes only a polynomial number of calls to a method for B.

Theorem: If A <p B then a poly time algorithm for B = poly time algorithm for A

Proof: Not only is the number of calls polynomial but the size of the inputs on which
the calls are made is polynomiall

Corollary: If you can prove there is no fast algorithm for A, then that proves there is
no fast algorithm for B.

Intuition for “A <p B”: “B is at least as hard™ as A” “up to polynomial-time slop.
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Let’s do a reduction

4 steps for reducing (decision problem) A to problem B

1. Describe the reduction itself
* i.e., the function that converts the input for A to the one for problem B.
* j.e., describe what the top arrow in the pink box does

2. Make sure the running time would be polynomial
* In lecture, we’ll sometimes skip writing out this ste;. (

3. Argue that if the correct answer (to the instance for A) is YES,
then the input we produced is a YES instance for B.

4. Argue that if the input we produced is a YES instance for B Contrapositive
then the correct answer (to the instance for A) is YES.



Relationship among the problems so far

Using polynomial time reductions we have found:
* Independent-Set <p Clique
* Clique <p Independent-Set
* Vertex-Cover <p Independent-Set
* Independent-Set <p Vertex-Cover
* Clique <pVertex-Cover
* Vertex-Cover <p Clique

All of Independent-Set, Clique, and Vertex-Cover have polynomial-time reductions to each other.

We do no know of any polynomial time algorithms for them, but we do know:

If any Cﬁe_p_roblem has a polynomial algorithm, ALL of them do

* By reducing any problem to that one -

If any one problem is unsolvable in polynomial time, NONE of them are
* By reducing that problem to the others



Extent and Impact of NP-Completeness

Extent of NP-completeness. [Papadimitriou 1995]
. |6,000 citations per\year'(ﬂtle, abstract, keywords).

* more than "compiler"”, "operating system", "database"

* Broad applicability and classification power.

e "Captures vast domains of computational, scientific, mathematical endeavors, and
seems to roughly delimit what mathematicians and scientists had been aspiring to

compute feasibly."

NP-completeness can guide scientific inquiry.
e 1926: Ising introduces simple model for phase transitions.
* 1944: Qnsager solves 2D case in tour de force.
* 19xx:,Feynman and other top‘minds seek 3D sqution.J
e 2000: Istrail proves 3D problem ,\I,P-complete./




Beyond P?

Independent-Set, Clique, Vertex-Cover, and(3Coloy are
examples of natural and practically important problems for
which we don’t know any polynomial-time algorithms.

—_—

There are many others such as...

DecisionTSP:
Given a weighted graph G and an integer k,

Is there a simple path that visits all vertices in G having
total weight at most k?

and...
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satisfabiliy,

* Boolean variables x4, ..., x,,
* taking values in {0, 1}. O=false, 1=true

* Literals

e x;or —x;fori =1,...,n. (—x; also written as x;.)
* Clause

* a logical OR of one or more literals

* e.g. (x1 V Vx7 x12)

°fCNF, formula

* a logical AND of a bunch of clauses

e k-CNF formula
 All clauses have exactly k variables



wab|l|ty J -
CNF formula example:
_—— X1 V@V x4) N (—IX4_ @/\ (Xz V-axq1V x3)

Defn: If there is some assignment of 0’s and 1’s to the variables that makes
it true then we say the formula is satisfiable
* (x1V—ax3Vxy) A(—xsVxs)A(xy,V—axqVXx3)issatisfiable: x; = x3 =1
* x4 A (=x1 V X3) A(=xy V x3) A —X3 is not satisfiable.

3SAT: Given a CNF formula F with exactly 3 variables per clause,
is F satisfiable?




Common property of these problems

* There is a special piece of information, a short certificate or proof,

that allows you to efficiently verlfy (in péﬁlﬁoﬁﬁtﬁmj’chat the

YES answer is correct. This certificate might be very hard to find.
e

* 3Color: the assignment of a color to each node. ,
_ —_—
* Independent-Set, Clique: the set of vertices
* Vertex-Cover: the set of vertices
* Decision-TSP: the path
* 3SAT: a truth assignment that makes the CNF formula true.
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The complexity class NP

NP consists of all decision problems where

* You can verify the YES answers efficiently (in polynomial time) given a
—\\ L[] 0 [ J o
short (polynomial-size) certificate

and

* No fake certificate can fool your polynomial time verifier into saying
YES for a NO instance
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More precise definition of NP
A decision problem A is in NP iff there is

*a UWn’omialtim??Tocedure erifyA(.,.) and
* apo '

o ) /4
S.t.

* for every inpu@hat is a YES for A there is a string t with |[t| < p(|x|)

with VerifyA(x, ) = YES = =_— Y =
—

and _

 for every inpu@that IS or A there does not exist a string £ with
It] < p(|x]) with VerifyA xz;: YES ——

* Astring t on which VerifyA(x, t) = YES is called a certificate for x or a proof
that x is a YES input
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Verifying the certificate is efficient

3Color: the coloring

* Check that each vertex has one of only 3 colors and check that the
endpoints of every edge have differ ors

Independent-Set, Clique: the set U of vertices
e Check thatLI/ILTE’k'and either no (1S) or all (El_iqie) edges on present on U

Vertex-Cover: the set W of vertices ~ ~—

* Check that |W| < k and W touches every edge.
Decision-TSP: the path

* Check that the path touches each vertex and has total weight < k.
e 3-SAT: a truth assignmen@hat makes the CNF formula F true.

e Evaluate F on the truth assignment a. -
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Keys to showing that a problem is in NP

1. Must be decision probem (YES/NO)

2. For every anut, is there a sertificate (i.e., a hir% that would help?
 OKif some inputs don’t need a certificate —

3. Foranygiven NO input, is there mhat would @
NU I

4. You need g polynomial-time algorithm to be able to tell the difference.




Solving NP problems witho@

There is an obvious algorithm for all NP problems:

Brute force:
Try all possible certificates and check each one using the verifier to see if it works.

Even though the certificates are short, this is gxponential time

‘...,b ruth assignments for n variables

possiblez-liﬁl’emt subsets o@

"possible TSP tours of n vertices
* etc.
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What We Know

e Every problem in NR is in exponential time
YP n NH Xp tme

* Every problem in P)is in NR

* You don’t need a certificate for problems in P so just ignore any hint you are
given

* Nobody knowi ‘i all problems in NP can be solved in polynomial time;
i.e., does

e one of the most important open questions in all of science.
* huge practical implications
* Most CS researchers believe that P = NP

°(S1M prize either way
* but we don’t have good ideas for how to prove this ...



P-hardness & NP-completeness
L ) E———== )

Notion of hardness we can prove that is useful unless P = NP:
’g_

Defn: Problem B is NP-hard iff every probletlsfle@jpﬁ
NP-hard

This means that B is at least as hard as every problem in NP.

Defn: Problem B is NP-complete iff NP-complete
€ ENPand
» B \F 0

This means that B is a hardest problem in NP.

Not at all obvious that any NP-complete problems exist!
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Cook-Levin Theorem

Theorem [Cook 1971, Levin 1973]: 3SAT is NP-complete
Proof: See CSE 431.

Corollary: If 3SAT <p B then B is NP-hard.

Proof: Let A be an arbitrary problem in NP.
Since 3SAT is NP-hard we have A <p 3SAT.

Then A <p 3SAT and 3SAT <p B imply that A <p B.

Therefore every problem Ain NP has A <, B
so B is NP-hard.

Cook & Levin did the
hard work.

We only need to give
one reduction to show
that a problem is
NP-hard!
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What we know: 3Sat is NP-Hard

Any NP problem

Solution for 4

Yes/No

This reduction always exists!
(by definition of NP-Hard)

0(nP)

Procedure for converting
instances of 4 into 3CNF
formulas

Use the same answer

Reduction

3Sat

(x1 Vax3V .X'4_) N
(xz VX,V X3) N
(xz V-axq1V X3)

Algorithm for solving 3SAT

Solution for satisfiability

Yes/No
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Goal: B is NP-Hard

Any NP problem 0 (Tlp) Problem B

Procedure for converting >

instances of 4 into instance of B

Algorithm for solving B

Solution for 4 Use the same answer _
Solution for B

Yes/No Yes/No

Reduction
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Showing B is NP-Hard

Any NP problem

Solution for 4

We know this exists

0(nP)

Yes/No

Procedure for converting
instances of A into 3CNF
formulas

Use the same
answer

Reduction

3Sat
(x1 VX3V x4) AN
(xz V Xy V x3) AN
(xz V-axq1V xg)

Algorithm for
solving 3SAT

Solution for
satisfiability

Yes/No

We just need to provide this

0(nP)

Procedure for converting
a 3CNF formula into an
instance of B

Use the same
answer

Reduction

|

Problem B

B

Algorithm for
solving B

Solution for B

Yes/No
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Steps to Proving Problem B is NP-complete

e Show B isin NP
» State what the hint/certificate is.
* Argue that it is polynomial-time to check and you won’t get fooled.

* Show B is NP-hard:
e State: “Reduction is from NP-hard Problem A”
* Show what the reduction function f is.
* Argue that f is polynomial time.

* Argue correctness in two directions:
* x aYESfor Aimplies f(x) is a YES for B

* Do this by showing how to convert a certificate for x being YES for A to a certificate
for f(x) being a YES for B.

* f(x)aYESfor B implies x is a YES for A

* ... by converting certificates for f(x) to certificates for x

22



Next up: Let’s show Independent Set is NP-Hard

Decision Problem A

Solution for 4

0(nP)

Yes/No

Procedure for converting
instances of 4 into instances of B

Use the same answer

Reduction

Decision Problem B

B

Algorithm for solving B

Solution for B

Yes/No
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Showing Independent Set is NP-Hard

3Sat
(x1Vx3Vaxy)A

(X2 Vx4 VX3)A
(Xz \Y X1 \Y X3)

Solution for the instance
of 3Sat

Yes/No

0(nP)

Covert a 3CNF formula F into a
graph GG and a number k such
that G has an independent set of
size k if and only if F has a
satisfying assighnment

Use the same answer

Reduction

Independent Set

LS

Algorithm for solving
Independent Set

Solution for the instance of
Independent Set

Yes/No




Another NP-complete problem: 3SAT <p Independent-Set

1. The reduction:
 Map CNF formula F to a graph G and integer k
Let m = # of clauses of F

Create a vertex in G for each literal occurrence in F
 3m total vertices

Join two vertices u, v in G by an edge iff
* u and v correspond to literals in the same clause of F or

* u and v correspond to literals x and —x (or vice versa) for some
variable x (i.e. they contradict).

Setk =m

2. Clearly polynomial-time computable



Another NP-complete problem: 3SAT <p Independent-Set

F = (x1 VX3V x4) N (xz VX4 V x3) N\ (—Ixz V-axq1V x3)

X1 X2 X2 m=3

—1X4

X3 —1X1

X4 X3 / X3

G has both kinds of edges.
The color is just to show why the edges were included.

k=m
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Correctness (=)

Suppose that F is satisfiable (YES for 3SAT)

* Let ¢ be a satisfying assignment; it satisfies at
least one literal in each clause.

* Choose the set U in G to correspond to the first
satisfied literal in each clause.

e U =m
* Since U has 1 vertex per clause, no green

edges inside U.

* A truth assignment never satisfies both x and
—X, s0 no red edges inside U.

* Therefore U is an independent set of size m

Therefore (G, m) is a YES for Independent-Set.

F=(x1V-ax3Vxy)A(xaV-axgVxs)A(axyV-axgVaxg)

Satisfying assighment «a:
a(xq) = alxz) = alxz) = a(xy) =1

Set U marked in purple is independent.

27



Correctness (&)

Suppose that G has an independent set of size m
((G,m) is a YES for Independent-Set)

Let U be the independent set of size m;

U must have one vertex per column (green edges)

Because of red edges, U doesn’t have vertex
labels with conflicting literals.

Set all literals labelling vertices in U to true

This may not be a total assignment but just extend
arbitrarily to a total assignment «.

* This assignment satisfies F since it makes at
least one literal per clause true.

Therefore F is satisfiable and a YES for 3SAT.

F=(x1VaxzgVxy) A(XzV-axgVxz)A(—xyV-axgVxs)

X1

—1X3

X4

X2

_|X4,

X3

—1X2

|

1
\‘x:;

Given independent set U of size m

m=3

Satisfying assighnment a: Part defined by U
a(xy) = 0,a(xz) =1,a(x3) =0
Set a(x,) = 0.

28



Showing Independent Set is NP-Hard

3Sat
(x1Vx3Vaxy)A

(X2 Vx4 Vaz)A
(xz \Y X1 \Y X3)

Solution for the instance
of 3Sat

Yes/No

0(nP)

Make one node per literal,
connect each to other nodes in
the same clause, connect literals
with their negations, set k to be
the number of clauses

Use the same answer

Reduction

Independent Set

X1

=X

Xy

X2 - k

—X
—
X3 X3

Algorithm for solving
Independent Set

Solution for the instance of
Independent Set

Yes/No
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Many NP-complete problems

Since 3SAT <p Independent-Set, Independent-Set is NP-hard.
We already showed that Independent-Set is in NP.
= Independent-Set is NP-complete

Corollary: Clique and Vertex-Cover are also NP-complete.

Proof: We already showed that all are in NP.

We also showed that Independent-Set polytime reduces to all of them.
Combining this with 3SAT <, Independent-Set we get that all are NP-hard.

30



NP-complete problems so far

So far:
3SAT = Independent-Set — Clique
l

Vertex-Cover
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Recall: Graph Colorability

Defn: A undirected graph G = (V, E) is k-colorable iff
we can assign one of k colors to each vertex of V s.t.

for every edge (u, v) has different colored endpoints, y(u) # y(v).
“edges are not monochromatic”

Theorem: 3Color is NP-complete
Proof:

1. 3Colorisin NP:

* We already showed this; the certificate was the coloring.
2. 3Coloris NP-hard:

Claim: 3SAT<p3Color

We need to find a function f that maps a 3CNF formula F to a graph G s.t.
F is satisfiable © G is 3-colorable.
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Next up: Let’s show 3Color is NP-Hard

Decision Problem A4 0 (Tlp) Decision Problem B

B

Procedure for converting
instances of 4 into instances of B

Algorithm for solving B

Solution for 4 Use the same answer _
Solution for B

Yes/No Yes/No

Reduction
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Showing 3Color is NP-Hard

3Sat
(x1Vx3Vaxy)A

(X2 Vx4 VX3)A
(xz \Y X1 \Y X3)

Solution for the instance
of 3Sat

Yes/No

0(nP)

Covert a 3CNF formula F into a
graph G such that ¢ is 3
colorable if and only if F has a
satisfying assighnment

Use the same answer

Reduction

3Color

Algorithm for solving
Independent Set

Solution for the instance of
Independent Set

Yes/No




3SAT <p 3Color

Start with a base triangle with vertices T, F, and O.
We can assume that T, F, and O are the

three colors used.
* Intuition: T and F will stand for true and false; O will stand for other.

To represent the properties of the 3CNF formula F we will need both a
Boolean variable part and a clause part.

0

F T

Base Triangle
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3SAT <p 3Color

Boolean variable part:

 For each Boolean variable add a
triangle with two nodes labelled
by literals as shown.

e Since both nodes are joined to
node O and to each other, they
must have opposite colors T and
F in any 3-coloring.

* So, any 3-coloring corresponds to
a unique truth assignment.

F T

Base Triangle
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3SAT <p 3Color

Idea:

Create a “middle” node per
literal for each clause, we will
consider a T-colored middle
node to satisfy a clause.

In the graph:

For each clause of F add 3
“middle” nodes. Then:

* Join each middle node to it
opposite literal node

e Join each middle node to F

Now each middle node must
be either T or O, and any
connect to something T-
colored must be O-colored

37



3SAT <p 3Color

Idea:

Force at least one middle node
per clause to be T-colored.

In the graph:

For each clause of F add an
outer triangle.

e Join each middle node a
vertex in the triangle

No middle node can be F-
colored (all connect to F)

Not all middle nodes are O-
colored (because something in
the outer triangle must be)

So at least one is T-colored

X
X2 p

—1X1 . A\\.

T
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3SAT <p 3Color

Key property:

In any 3-coloring:

outer nodes either T or O

inner triangle must use O
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Showing 3Color is NP-Hard

3Sat
(x1Vx3Vaxy)A

(X2 Vx4 Vaz)A
(xz \Y X1 \Y X3)

Solution for the instance
of 3Sat

Yes/No

0(nP)

Create “base triangle” and-one
node per variable and negation.
Connect each variable node to
the “false color” node. Per
clause, create a triangle and one
middle node per literal. Connect
each middle to the triangle,
false, and the opposite variable

Use the same answer

Reduction

3Color

............. N

LIy
.......

Algorithm for solving
3Color

Solution for the instance of

3Color

Yes/No
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F satisfiable = 3 Colorable

Suppose F is satisfiable. We
can then 3-Color the graph

by:

Make each True literal
node T-colored

Make each False literal
node F-colored

Make one True middle
node per clause T-colored
Make the remaining
middle nodes O-colored
Color each outer triangle
(node connect to the T-
colored middle node will
be O-colored, the others
can be either T-colored or
F-colored)
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3 Colorable = F satisfiable

Suppose the graph is 3-

colorable. We can satisfy F by:

 Making each T-colored literal
node True and each F-
colored literal node False

* No nodes are O-colored,
so this will work out

 We know this satisfies F
because:

* Each clause will have
one T-colored middle
node (connected to the
O-colored outer triangle
node) which matches
the color of its
equivalent literal
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