CSE 421 Winter 2025 Lecture 24: NP-Complete

Nathan Brunelle

http://www.cs.uw.edu/421

Polynomial Time Reduction

Defn: We write $A \leq_P B$ iff there is an algorithm for A using a 'black box' (subroutine or method) that solves B that

- uses only a polynomial number of steps, and
- makes only a polynomial number of calls to a method for B.

Theorem: If $A \leq_P B$ then a poly time algorithm for $B \Rightarrow$ poly time algorithm for A

Proof: Not only is the number of calls polynomial but the size of the inputs on which the calls are made is polynomial!

Corollary: If you can prove there is no fast algorithm for A, then that proves there is no fast algorithm for B.

Intuition for " $A \leq_P B$ ": "B is at least as hard" as A" *up to polynomial-time slop.

Polynomial Time Reductions (Decision Problems)

Let's do a reduction

4 steps for reducing (decision problem) A to problem B

- 1. Describe the reduction itself
 - i.e., the function that converts the input for A to the one for problem B.
 - i.e., describe what the top arrow in the pink box does
- 2. Make sure the running time would be polynomial
 - In lecture, we'll sometimes skip writing out this step.
- 3. Argue that if the correct answer (to the instance for A) is YES, then the input we produced is a YES instance for B.
- 4. Argue that if the input we produced is a **YES** instance for **B** then the correct answer (to the instance for **A**) is **YES**.

Relationship among the problems so far

Using polynomial time reductions we have found:

- Independent-Set \leq_P Clique
- Clique \leq_P Independent-Set
- Vertex-Cover \leq_P Independent-Set
- Independent-Set \leq_P Vertex-Cover
- Clique \leq_P Vertex-Cover
- Vertex-Cover \leq_P Clique
- All of Independent-Set, Clique, and Vertex-Cover have polynomial-time reductions to each other.
- We do no know of any polynomial time algorithms for them, but we do know:
- If any one problem has a polynomial algorithm, ALL of them do
 - By reducing any problem to that one
- If any one problem is unsolvable in polynomial time, NONE of them are
 - By reducing that problem to the others

Extent and Impact of NP-Completeness

Extent of NP-completeness. [Papadimitriou 1995]

- 6,000 citations per year (title, abstract, keywords).
 - more than "compiler", "operating system", "database"
- Broad applicability and classification power.
- "Captures vast domains of computational, scientific, mathematical endeavors, and seems to roughly delimit what mathematicians and scientists had been aspiring to compute feasibly."

NP-completeness can guide scientific inquiry.

- 1926: Ising introduces simple model for phase transitions.
- 1944: Onsager solves, 2D case in tour de force.
- 19xx: Feynman and other top minds seek 3D solution.
- 2000: Istrail proves 3D problem NP-complete.

6

Beyond **P**?

Independent-Set, Clique, Vertex-Cover, and 3Color are examples of natural and practically important problems for which we don't know any polynomial-time algorithms.

There are many others such as...

DecisionTSP:

Given a weighted graph G and an integer k,

Is there a simple path that visits all vertices in G having total weight at most k?

and...

Satisfiability

- Boolean variables x_1, \dots, x_n
 - taking values in {0, 1}. 0=false, 1=true
- Literals
 - x_i or $\neg x_i$ for i = 1, ..., n. ($\neg x_i$ also written as $\overline{x_i}$.)
- Clause
 - a logical OR of one or more literals
 - e.g. $(x_1 \lor x_3 \lor x_7 \lor x_{12})$
- CNF formula
 - a logical AND of a bunch of clauses
- k-CNF formula
 - All clauses have exactly k variables

Satisfiability

CNF formula example:

$$(x_1 \lor \neg x_3 \lor x_4) \land (\neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)$$

Defn: If there is some assignment of 0's and 1's to the variables that makes it true then we say the formula is satisfiable

- $(x_1 \lor \neg x_3 \lor x_4) \land (\neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)$ is satisfiable: $x_1 = x_3 = 1$
- $x_1 \land (\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land \neg x_3$ is not satisfiable.

3SAT: Given a CNF formula F with exactly $\frac{3}{2}$ variables per clause, is F satisfiable?

Common property of these problems

- There is a special piece of information, a short certificate or proof, that allows you to efficiently verify (in polynomial-time) that the YES answer is correct. This certificate might be very hard to find.
 - 3Color: the assignment of a color to each node.
 - Independent-Set, Clique: the set of vertices
 - Vertex-Cover: the set of vertices
 - Decision-TSP: the path
 - 3SAT: a truth assignment that makes the CNF formula true.

The complexity class NP

NP consists of all decision problems where

 You can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) certificate

and

No fake certificate can fool your polynomial time verifier into saying
 YES for a NO instance

More precise definition of NP

A decision problem A is in NP iff there is

- a polynomial time procedure VerifyA(.,.) and
- a polynomial p

s.t.

- for every input x that is a YES for A there is a string t with $|t| \le p(|x|)$ with $|t| \le p(|x|)$ and
- for every input x that is a NO for A there does not exist a string t with $|t| \le p(|x|)$ with VerifyA(x,t) = YES
- A string t on which VerifyA(x, t) = YES is called a certificate for x or a proof that x is a YES input

Verifying the certificate is efficient

3Color: the coloring

 Check that each vertex has one of only 3 colors and check that the endpoints of every edge have different colors

Independent-Set, **Clique**: the set **U** of vertices

• Check that $|U| \ge k$ and either no (IS) or all (Clique) edges on present on UVertex-Cover: the set W of vertices

• Check that $|W| \leq k$ and W touches every edge.

Decision-TSP: the path

- Check that the path touches each vertex and has total weight $\leq k$.
- 3-SAT: a truth assignment α that makes the CNF formula F true.
 - Evaluate F on the truth assignment α .

Keys to showing that a problem is in NP

- Must be decision probem (YES/NO)
 For every given YES input, is there a certificate (i.e., a hint) that would help?
 - OK if some inputs don't need a certificate
- For any given NO input, is there a fake certificate that would trick you?
- You need a polynomial-time algorithm to be able to tell the difference.

Solving NP problems without hints

There is an obvious algorithm for all **NP** problems:

Brute force:

Try all possible certificates and check each one using the verifier to see if it works.

Even though the certificates are short, this is exponential time 2^n truth assignments for n variables

- $\binom{n}{k}$ possible k-element subsets of n vertices
- n! possible TSP tours of n vertices
- etc.

What We Know

- Every problem in NP is in exponential time
- Every problem in P is in NR
 - You don't need a certificate for problems in P so just ignore any hint you are given
- Nobody knows if all problems in \overline{NP} can be solved in polynomial time; i.e., does $\overline{P} = \overline{NP}$?
 - one of the most important open questions in all of science.
 - huge practical implications
- Most CS researchers believe that P ≠ NP
 - •/\$1M prize either way
 - but we don't have good ideas for how to prove this ...

NP-hardness & NP-completeness

Notion of hardness we can prove that is useful unless P = NP:

Defn: Problem B is NP-hard iff every problem $A \in NP$ satisfies $A \leq_P B$

This means that B is at least as hard as every problem in NP.

Defn: Problem **B** is **NP**-complete iff

- $B \in NP$ and
- B is NP-hard.

This means that B is a hardest problem in NP.

Not at all obvious that any NP-complete problems exist!

Cook-Levin Theorem

Theorem [Cook 1971, Levin 1973]: **3SAT** is **NP**-complete

Proof: See CSE 431.

Corollary: If $3SAT \leq_P B$ then B is NP-hard.

Proof: Let A be an arbitrary problem in NP. Since **3SAT** is NP-hard we have $A \leq_P 3SAT$.

Then $A \leq_P 3SAT$ and $3SAT \leq_P B$ imply that $A \leq_P B$.

Therefore every problem A in NP has $A \leq_P B$ so B is NP-hard.

Cook & Levin did the hard work.

We only need to give one reduction to show that a problem is NP-hard!

What we know: 3Sat is NP-Hard

This reduction always exists!

(by definition of NP-Hard)

Any NP problem

 $O(n^p)$

Procedure for converting instances of A into 3CNF formulas

Solution for A

3Sat

$$(x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)$$

Solution for satisfiability

Yes/No

Goal: B is NP-Hard

Problem **B** $O(n^p)$ Any NP problem Procedure for converting instances of A into instance of B Algorithm for solving **B** Use the same answer Solution for *A* Solution for **B** Yes/No Yes/No

Reduction

Showing \boldsymbol{B} is NP-Hard

Steps to Proving Problem *B* is NP-complete

- Show **B** is in **NP**
 - State what the hint/certificate is.
 - Argue that it is polynomial-time to check and you won't get fooled.
- Show **B** is **NP**-hard:
 - State: "Reduction is from NP-hard Problem A"
 - Show what the reduction function f is.
 - Argue that f is polynomial time.
 - Argue correctness in two directions:
 - x a YES for A implies f(x) is a YES for B
 - Do this by showing how to convert a certificate for x being YES for A to a certificate for f(x) being a YES for B.
 - f(x) a YES for B implies x is a YES for A
 - ... by converting certificates for f(x) to certificates for x

Next up: Let's show Independent Set is NP-Hard

Showing Independent Set is NP-Hard

3Sat

$$(x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)$$

Solution for the instance of 3Sat

Yes/No

Independent Set

Solution for the instance of Independent Set

Another **NP**-complete problem: $3SAT \leq_{P}$ Independent-Set

1. The reduction:

- Map CNF formula F to a graph G and integer k
- Let m = # of clauses of F
- Create a vertex in G for each literal occurrence in F
 - 3*m* total vertices
- Join two vertices u, v in G by an edge iff
 - u and v correspond to literals in the same clause of F or
 - u and v correspond to literals x and $\neg x$ (or vice versa) for some variable x (i.e. they contradict).
- Set k = m
- 2. Clearly polynomial-time computable

Another **NP**-complete problem: $3SAT \leq_P$ Independent-Set

$$\mathbf{F} = (x_1 \vee \neg x_3 \vee x_4) \wedge (x_2 \vee \neg x_4 \vee x_3) \wedge (\neg x_2 \vee \neg x_1 \vee x_3)$$

G has both kinds of edges.

The color is just to show why the edges were included.

$$k = m$$

Correctness (⇒)

Suppose that **F** is satisfiable (**YES** for **3SAT**)

- Let α be a satisfying assignment; it satisfies at least one literal in each clause.
- Choose the set *U* in *G* to correspond to the **first** satisfied literal in each clause.
 - |U| = m
 - Since *U* has 1 vertex per clause, no green edges inside *U*.
 - A truth assignment never satisfies both x and $\neg x$, so no red edges inside U.
 - Therefore *U* is an independent set of size *m*

Therefore (G, m) is a YES for Independent-Set.

$$\mathbf{F} = (x_1 \vee \neg x_3 \vee x_4) \wedge (x_2 \vee \neg x_4 \vee x_3) \wedge (\neg x_2 \vee \neg x_1 \vee x_3)$$

Satisfying assignment α :

$$\alpha(x_1) = \alpha(x_2) = \alpha(x_3) = \alpha(x_4) = 1$$

Set *U* marked in purple is independent.

Correctness (←)

Suppose that G has an independent set of size m ((G, m)) is a YES for Independent-Set

- Let *U* be the independent set of size *m*;
- U must have one vertex per column (green edges)
- Because of red edges, *U* doesn't have vertex labels with conflicting literals.
- Set all literals labelling vertices in *U* to true
- This may not be a total assignment but just extend arbitrarily to a total assignment α .
 - This assignment satisfies **F** since it makes at least one literal per clause true.

Therefore **F** is satisfiable and a **YES** for **3SAT**.

$$\mathbf{F} = (x_1 \vee \neg x_3 \vee x_4) \wedge (x_2 \vee \neg x_4 \vee x_3) \wedge (\neg x_2 \vee \neg x_1 \vee x_3)$$

Given independent set U of size m

Satisfying assignment α : Part defined by U:

$$\alpha(x_1) = 0, \alpha(x_2) = 1, \alpha(x_3) = 0$$

Set $\alpha(x_4) = 0$.

Showing Independent Set is NP-Hard

3Sat

$$(x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)$$

Solution for the instance of 3Sat

Yes/No

k = 3

Many **NP**-complete problems

Since 3SAT \leq_P Independent-Set, Independent-Set is NP-hard.

We already showed that **Independent-Set** is in **NP**.

⇒ Independent-Set is NP-complete

Corollary: Clique and Vertex-Cover are also NP-complete.

Proof: We already showed that all are in NP.

We also showed that Independent-Set polytime reduces to all of them.

Combining this with $3SAT \leq_P Independent-Set$ we get that all are NP-hard.

NP-complete problems so far

So far:

3SAT → Independent-Set → Clique

↓

Vertex-Cover

Recall: Graph Colorability

Defn: A undirected graph G = (V, E) is k-colorable iff we can assign one of k colors to each vertex of V s.t. for every edge (u, v) has different colored endpoints, $\chi(u) \neq \chi(v)$. "edges are not monochromatic"

Theorem: 3Color is NP-complete

Proof:

- 1. 3Color is in NP:
 - We already showed this; the certificate was the coloring.
- 2. 3Color is NP-hard:

Claim: $3SAT \leq_P 3Color$

We need to find a function f that maps a 3CNF formula F to a graph G s.t. F is satisfiable $\Leftrightarrow G$ is 3-colorable.

Next up: Let's show 3Color is NP-Hard

Showing 3Color is NP-Hard

3Sat

$$(x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)$$

Solution for the instance of 3Sat

Yes/No

Start with a base triangle with vertices T, F, and O.

We can assume that T, F, and O are the

three colors used.

Intuition: T and F will stand for true and false; O will stand for other.

To represent the properties of the 3CNF formula \mathbf{F} we will need both a Boolean variable part and a clause part.

Base Triangle

Boolean variable part:

- For each Boolean variable add a triangle with two nodes labelled by literals as shown.
- Since both nodes are joined to node O and to each other, they must have opposite colors T and F in any 3-coloring.
- So, any 3-coloring corresponds to a unique truth assignment.

Idea:

Create a "middle" node per literal for each clause, we will consider a **T**-colored middle node to satisfy a clause.

In the graph:

For each clause of **F** add 3 "middle" nodes. Then:

- Join each middle node to it opposite literal node
- Join each middle node to F

Now each middle node must be either **T** or **O**, and any connect to something **T**-colored must be **O**-colored

Idea:

Force at least one middle node per clause to be **T**-colored.

In the graph:

For each clause of **F** add an outer triangle.

 Join each middle node a vertex in the triangle

No middle node can be F-colored (all connect to F)

Not all middle nodes are Ocolored (because something in the outer triangle must be)

So at least one is T-colored

Key property:

In any 3-coloring:

outer nodes either **T** or **O**

inner triangle must use O

Showing 3Color is NP-Hard

3Sat

$$(x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)$$

Solution for the instance of 3Sat

Yes/No

 $O(n^p)$ Create "base triangle" and one node per variable and negation. Connect each variable node to the "false color" node. Per clause, create a triangle and one middle node per literal. Connect each middle to the triangle, false, and the opposite variable Use the same answer Reduction

Solution for the instance of 3Color

Yes/No

F satisfiable \Rightarrow 3 Colorable

Suppose *F* is satisfiable. We can then 3-Color the graph by:

- Make each True literal node T-colored
- Make each False literal node F-colored
- Make one True middle node per clause T-colored
- Make the remaining middle nodes O-colored
- Color each outer triangle (node connect to the Tcolored middle node will be O-colored, the others can be either T-colored or F-colored)

3 Colorable $\Rightarrow F$ satisfiable

Suppose the graph is 3-colorable. We can satisfy **F** by:

- Making each T-colored literal node True and each Fcolored literal node False
 - No nodes are O-colored, so this will work out
- We know this satisfies F because:
 - Each clause will have
 one T-colored middle
 node (connected to the
 O-colored outer triangle
 node) which matches
 the color of its
 equivalent literal

