
CSE 421 Winter 2025
Lecture 24:

NP-Complete
Nathan Brunelle

http://www.cs.uw.edu/421

http://www.cs.uw.edu/421


Polynomial Time Reduction 
Defn: We write 𝑨 ≤𝑷 𝑩 iff there is an algorithm for 𝑨 using a ‘black box’ (subroutine 

or method) that solves 𝑩 that

• uses only a polynomial number of steps, and 

• makes only a polynomial number of calls to a method for 𝑩.

Theorem: If 𝑨 ≤𝑷 𝑩 then a poly time algorithm for 𝑩 ⇒ poly time algorithm for 𝑨

Proof: Not only is the number of calls polynomial but the size of the inputs on which 
the calls are made is polynomial!

Corollary: If you can prove there is no fast algorithm for 𝑨, then that proves there is 
no fast algorithm for 𝑩.

Intuition for “𝑨 ≤𝑷 𝑩”:  “𝑩 is at least as hard* as 𝑨”   *up to polynomial-time slop.

2



Polynomial Time Reductions (Decision Problems)

3

Decision Problem 𝐴 Decision Problem 𝐵

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Yes/No

𝑂(𝑛𝑝)

Procedure for converting 
instances of 𝐴 into instances of 𝐵 

Algorithm for solving 𝐵

Use the same answer

Yes/No



Let’s do a reduction

4 steps for reducing (decision problem) 𝑨 to problem 𝑩

1. Describe the reduction itself

• i.e., the function that converts the input for 𝑨 to the one for problem 𝑩.

• i.e., describe what the top arrow in the pink box does

2. Make sure the running time would be polynomial 

• In lecture, we’ll sometimes skip writing out this step.

3. Argue that if the correct answer (to the instance for 𝑨) is YES,       
then the input we produced is a YES instance for 𝑩.

4. Argue that if the input we produced is a YES instance for 𝑩          
then the correct answer (to the instance for 𝑨) is YES.

4

Contrapositive



Relationship among the problems so far

Using polynomial time reductions we have found:
• Independent-Set ≤𝑃 Clique

• Clique ≤𝑃 Independent-Set

• Vertex-Cover ≤𝑃 Independent-Set

• Independent-Set ≤𝑃 Vertex-Cover

• Clique ≤𝑃Vertex-Cover

• Vertex-Cover ≤𝑃 Clique

• All of Independent-Set, Clique, and Vertex-Cover have polynomial-time reductions to each other.

• We do no know of any polynomial time algorithms for them, but we do know:

• If any one problem has a polynomial algorithm, ALL of them do
• By reducing any problem to that one

• If any one problem is unsolvable in polynomial time, NONE of them are
• By reducing that problem to the others 5



6

Extent and Impact of NP-Completeness

Extent of NP-completeness.  [Papadimitriou 1995] 
• 6,000 citations per year (title, abstract, keywords).

• more than "compiler", "operating system", "database"

• Broad applicability and classification power.
• "Captures vast domains of computational, scientific, mathematical endeavors, and 

seems to roughly delimit what mathematicians and scientists had been aspiring to 
compute feasibly."

NP-completeness can guide scientific inquiry.
• 1926:  Ising introduces simple model for phase transitions.
• 1944:  Onsager solves 2D case in tour de force.
• 19xx:  Feynman and other top minds seek 3D solution.
• 2000:  Istrail proves 3D problem NP-complete.

6



Beyond 𝐏?

Independent-Set, Clique, Vertex-Cover, and 3Color are 
examples of natural and practically important problems for 
which we don’t know any polynomial-time algorithms.

There are many others such as...
DecisionTSP:  

Given a weighted graph 𝑮 and an integer 𝒌, 

Is there a simple path that visits all vertices in 𝑮 having 
total weight at most 𝒌?

and...

7



Satisfiability

• Boolean variables 𝒙𝟏, … , 𝒙𝒏
• taking values in {𝟎, 𝟏}.  𝟎=false, 𝟏=true

• Literals
• 𝒙𝒊 or ¬𝒙𝒊 for 𝒊 = 𝟏, … , 𝒏.  (¬𝒙𝒊 also written as 𝒙𝒊.)

• Clause
• a logical OR of one or more literals
• e.g.  (𝒙𝟏 ∨ ¬𝒙𝟑 ∨ 𝒙𝟕 ∨ 𝒙𝟏𝟐)

• CNF formula
• a logical AND of a bunch of clauses

• 𝒌-CNF formula
• All clauses have exactly 𝒌 variables

8



Satisfiability
CNF formula example: 

𝒙𝟏 ∨ ¬𝒙𝟑 ∨ 𝒙𝟒 ∧ ¬𝒙𝟒 ∨ 𝒙𝟑 ∧ 𝒙𝟐 ∨ ¬𝒙𝟏 ∨ 𝒙𝟑

Defn: If there is some assignment of 0’s and 1’s to the variables that makes 
it true then we say the formula is satisfiable

• 𝒙𝟏 ∨ ¬𝒙𝟑 ∨ 𝒙𝟒 ∧ ¬𝒙𝟒 ∨ 𝒙𝟑 ∧ 𝒙𝟐 ∨ ¬𝒙𝟏 ∨ 𝒙𝟑  is satisfiable: 𝒙𝟏 = 𝒙𝟑 = 𝟏

• 𝒙𝟏 ∧ ¬𝒙𝟏 ∨ 𝒙𝟐 ∧ ¬𝒙𝟐 ∨ 𝒙𝟑 ∧ ¬𝒙𝟑 is not satisfiable.

3SAT:  Given a CNF formula 𝑭 with exactly 𝟑 variables per clause, 
   is 𝑭 satisfiable?

9



Common property of these problems
• There is a special piece of information, a short certificate or proof, 

that allows you to efficiently verify (in polynomial-time) that the 
YES answer is correct.  This certificate might be very hard to find.

  
• 3Color: the assignment of a color to each node. 

• Independent-Set, Clique: the set of vertices

• Vertex-Cover: the set of vertices

• Decision-TSP:  the path

• 3SAT: a truth assignment that makes the CNF formula true.

10



The complexity class 𝐍𝐏
𝐍𝐏 consists of all decision problems where 

• You can verify the YES answers efficiently (in polynomial time) given a 
short (polynomial-size) certificate

and

• No fake certificate can fool your polynomial time verifier into saying 
YES for a NO instance

11



More precise definition of 𝐍𝐏
A decision problem A is in 𝐍𝐏 iff there is

• a polynomial time procedure VerifyA(.,.) and

• a polynomial 𝒑

s.t.
• for every input 𝒙 that is a YES for A there is a string 𝒕 with 𝒕 ≤  𝒑(|𝒙|) 

with VerifyA(𝒙, 𝒕) = YES 

and

• for every input 𝒙 that is a NO for A there does not exist a string 𝒕 with 
𝒕 ≤  𝒑(|𝒙|) with VerifyA(𝒙, 𝒕) = YES

• A string 𝒕 on which VerifyA(𝒙, 𝒕) = YES is called a certificate for 𝒙 or a proof 
that 𝒙 is a YES input

12



Verifying the certificate is efficient

3Color: the coloring

• Check that each vertex has one of only 3 colors and check that the 
endpoints of every edge have different colors

Independent-Set, Clique: the set 𝑼 of vertices

• Check that 𝑼 ≥ 𝒌 and either no (IS) or all (Clique) edges on present on 𝑼

Vertex-Cover: the set 𝑾 of vertices

• Check that 𝑾 ≤ 𝒌 and 𝑾 touches every edge.

Decision-TSP:  the path

• Check that the path touches each vertex and has total weight ≤ 𝒌.

• 3-SAT: a truth assignment 𝜶 that makes the CNF formula 𝑭 true.

• Evaluate 𝑭 on the truth assignment 𝜶.

13



Keys to showing that a problem is in 𝐍𝐏
1. Must be decision probem (YES/NO)

2. For every given YES input, is there a certificate (i.e., a hint) that would help?

• OK if some inputs don’t need a certificate

3. For any given NO input, is there a fake certificate that would trick you?

4. You need a polynomial-time algorithm to be able to tell the difference.

14



Solving 𝐍𝐏 problems without hints
There is an obvious algorithm for all 𝐍𝐏 problems: 

Brute force:

Try all possible certificates and check each one using the verifier to see if it works.

 

Even though the certificates are short, this is exponential time

• 𝟐𝒏 truth assignments for 𝒏 variables

•
𝒏
𝒌

 possible 𝒌-element subsets of 𝒏 vertices

• 𝒏! possible TSP tours of 𝒏 vertices

• etc. 

15



What We Know
• Every problem in 𝐍𝐏 is in exponential time

• Every problem in 𝐏 is in 𝐍𝐏
• You don’t need a certificate for problems in 𝐏 so just ignore any hint you are 

given

• Nobody knows if all problems in 𝐍𝐏 can be solved in polynomial time; 
i.e., does 𝐏 = 𝐍𝐏?
• one of the most important open questions in all of science.

• huge practical implications

• Most CS researchers believe that 𝐏 ≠ 𝐍𝐏 
• $1M prize either way

• but we don’t have good ideas for how to prove this ...

16



𝐍𝐏-hardness & 𝐍𝐏-completeness
Notion of hardness we can prove that is useful unless 𝐏 = 𝐍𝐏:

Defn:  Problem 𝑩 is 𝐍𝐏-hard iff every problem 𝑨 ∈ 𝐍𝐏 satisfies 𝑨 ≤𝑷 𝑩.

This means that 𝑩 is at least as hard as every problem in 𝐍𝐏.

Defn:  Problem 𝑩 is 𝐍𝐏-complete iff 

•  𝑩 ∈ 𝐍𝐏 and

•  𝑩 is 𝐍𝐏-hard.

This means that 𝑩 is a hardest problem in 𝐍𝐏.

𝐍𝐏

𝐍𝐏-hard

𝐍𝐏-complete

𝐏

Not at all obvious that any 𝐍𝐏-complete problems exist!

17



Cook-Levin Theorem
Theorem [Cook 1971, Levin 1973]:   3SAT is 𝐍𝐏-complete

Proof:  See CSE 431.

Corollary:  If 3SAT ≤𝑷 B then B is 𝐍𝐏-hard.

Proof:  Let A be an arbitrary problem in 𝐍𝐏.         
Since 3SAT is 𝐍𝐏-hard we have A ≤𝑷 3SAT.

 Then A ≤𝑷 3SAT and 3SAT ≤𝑷 B imply that A ≤𝑷 B.

 Therefore every problem A in 𝐍𝐏 has A ≤𝑷 B   
 so B is 𝐍𝐏-hard.

Cook & Levin did the 
hard work.

We only need to give 
one reduction to show 

that a problem is     
NP-hard! 

18



What we know: 3Sat is NP-Hard

19

Any NP problem 3Sat

Solution for satisfiability

𝐴

Solution for 𝑨

Reduction

Yes/No

𝑂(𝑛𝑝)

Procedure for converting 
instances of 𝐴 into 3CNF 
formulas

Algorithm for solving 3SAT

Use the same answer

Yes/No

𝒙𝟏 ∨ ¬𝒙𝟑 ∨ 𝒙𝟒 ∧
𝒙𝟐 ∨ ¬𝒙𝟒 ∨ 𝒙𝟑 ∧
𝒙𝟐 ∨ ¬𝒙𝟏 ∨ 𝒙𝟑

This reduction always exists!
(by definition of NP-Hard)



Goal: 𝐵 is NP-Hard

20

Any NP problem

𝐴

Solution for 𝑨

Reduction

Yes/No

𝑂(𝑛𝑝)

Procedure for converting 
instances of 𝐴 into instance of 𝐵

Use the same answer

Yes/No

Solution for 𝑩

𝐵

Algorithm for solving 𝑩

Problem 𝑩



Showing 𝐵 is NP-Hard

21

Any NP problem
3Sat

Solution for 
satisfiability

Solution for 𝑨

Yes/No

Algorithm for 
solving 3SAT

Reduction

𝑂(𝑛𝑝)

Procedure for converting 
instances of 𝐴 into 3CNF 
formulas

Use the same 
answer

Yes/No
Reduction

𝑂(𝑛𝑝)

Procedure for converting 
a 3CNF formula into an 
instance of 𝐵

Use the same 
answer

Problem 𝑩

Solution for 𝑩

Yes/No

Algorithm for 
solving 𝑩

𝐴

𝒙𝟏 ∨ ¬𝒙𝟑 ∨ 𝒙𝟒 ∧
𝒙𝟐 ∨ ¬𝒙𝟒 ∨ 𝒙𝟑 ∧
𝒙𝟐 ∨ ¬𝒙𝟏 ∨ 𝒙𝟑

We know this exists We just need to provide this

𝐵



Steps to Proving Problem 𝑩 is 𝐍𝐏-complete
• Show 𝑩 is in 𝐍𝐏

• State what the hint/certificate is.

• Argue that it is polynomial-time to check and you won’t get fooled.

• Show 𝑩 is 𝐍𝐏-hard:  
• State: “Reduction is from 𝐍𝐏-hard Problem 𝑨”

• Show what the reduction function 𝒇 is.

• Argue that 𝒇 is polynomial time.

• Argue correctness in two directions:

•  𝒙 a YES for 𝑨 implies 𝒇(𝒙) is a YES for 𝑩
• Do this by showing how to convert a certificate for 𝒙 being YES for 𝑨 to a certificate 

for 𝒇(𝒙) being a YES for 𝑩.

•  𝒇(𝒙) a YES for 𝑩 implies 𝒙 is a YES for 𝑨 
• … by converting certificates for 𝒇(𝒙) to certificates for 𝒙 

22



Next up: Let’s show Independent Set is NP-Hard

23

Decision Problem 𝐴 Decision Problem 𝐵

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Yes/No

𝑂(𝑛𝑝)

Procedure for converting 
instances of 𝐴 into instances of 𝐵 

Algorithm for solving 𝐵

Use the same answer

Yes/No



Showing Independent Set is NP-Hard

24

3Sat Independent Set

Solution for the instance of 
Independent Set

Solution for the instance 
of 3Sat

Reduction

Yes/No

𝑂(𝑛𝑝)

Covert a 3CNF formula 𝑭 into a 
graph 𝑮 and a number 𝒌 such 
that 𝑮 has an independent set of 
size 𝒌 if and only if 𝑭 has a 
satisfying assignment

Algorithm for solving 
Independent Set

Use the same answer

Yes/No

𝒙𝟏 ∨ ¬𝒙𝟑 ∨ 𝒙𝟒 ∧
𝒙𝟐 ∨ ¬𝒙𝟒 ∨ 𝒙𝟑 ∧
𝒙𝟐 ∨ ¬𝒙𝟏 ∨ 𝒙𝟑

𝑘 = 2

𝑮

𝑘 = 3

𝑮



Another 𝐍𝐏-complete problem: 3SAT ≤𝑷 Independent-Set

1. The reduction:
• Map CNF formula 𝑭 to a graph 𝑮 and integer 𝒌 

• Let 𝒎 = # of clauses of 𝑭

• Create a vertex in 𝑮 for each literal occurrence in 𝑭
• 3𝑚 total vertices

• Join two vertices 𝒖, 𝒗 in 𝑮 by an edge iff

• 𝒖 and 𝒗 correspond to literals in the same clause of 𝑭 or

• 𝒖 and 𝒗 correspond to literals 𝒙 and ¬𝒙 (or vice versa) for some 
variable 𝒙 (i.e. they contradict).

• Set 𝒌 = 𝒎

2. Clearly polynomial-time computable

25



Another 𝐍𝐏-complete problem: 3SAT ≤𝑷 Independent-Set

26

𝑭 = 𝒙𝟏 ∨ ¬𝒙𝟑 ∨ 𝒙𝟒 ∧ 𝒙𝟐 ∨ ¬𝒙𝟒 ∨ 𝒙𝟑 ∧ ¬𝒙𝟐 ∨ ¬𝒙𝟏 ∨ 𝒙𝟑

𝒎 = 𝟑

𝒙𝟒

¬𝒙𝟑

𝒙𝟏

𝒙𝟑

¬𝒙𝟒

𝒙𝟐

𝒙𝟑

¬𝒙𝟏

¬𝒙𝟐

𝑮 has both kinds of edges.
The color is just to show why the edges were included.

𝒌 = 𝒎



Correctness (⇒)

Suppose that 𝑭 is satisfiable (YES for 3SAT)

• Let 𝜶 be a satisfying assignment; it satisfies at 

least one literal in each clause.  

• Choose the set 𝑼 in 𝑮 to correspond to the first 
satisfied literal in each clause. 

• |𝑼| = 𝒎

• Since 𝑼 has 𝟏 vertex per clause, no green 

edges inside 𝑼.

• A truth assignment never satisfies both 𝒙 and 
¬𝒙, so no red edges inside 𝑼.

• Therefore 𝑼 is an independent set of size 𝒎

Therefore (𝑮, 𝒎) is a YES for Independent-Set.

Satisfying assignment 𝜶:

 𝜶 𝒙𝟏 = 𝜶 𝒙𝟐 = 𝜶 𝒙𝟑 = 𝜶 𝒙𝟒 = 𝟏

Set 𝑼 marked in purple is independent.

27



Correctness (⇐)

Suppose that 𝑮 has an independent set of size 𝒎 

((𝑮, 𝒎) is a YES for Independent-Set)

• Let 𝑼 be the independent set of size 𝒎; 

• 𝑼 must have one vertex per column (green edges)

• Because of red edges, 𝑼 doesn’t have vertex 
labels with conflicting literals. 

• Set all literals labelling vertices in 𝑼 to true

• This may not be a total assignment but just extend 
arbitrarily to a total assignment 𝜶.

• This assignment satisfies 𝑭 since it makes at 
least one literal per clause true.

Therefore 𝑭 is satisfiable and a YES for 3SAT.

Given independent set 𝑼 of size 𝒎

Satisfying assignment 𝜶:  Part defined by 𝑼:

 𝜶 𝒙𝟏 = 𝟎, 𝜶 𝒙𝟐 = 𝟏, 𝜶 𝒙𝟑 = 𝟎

Set 𝜶 𝒙𝟒 = 𝟎.

28



Showing Independent Set is NP-Hard

29

3Sat Independent Set

Solution for the instance of 
Independent Set

Solution for the instance 
of 3Sat

Reduction

Yes/No

𝑂(𝑛𝑝)

Make one node per literal, 
connect each to other nodes in 
the same clause, connect literals 
with their negations, set 𝑘 to be 
the number of clauses

Algorithm for solving 
Independent Set

Use the same answer

Yes/No

𝒙𝟏 ∨ ¬𝒙𝟑 ∨ 𝒙𝟒 ∧
𝒙𝟐 ∨ ¬𝒙𝟒 ∨ 𝒙𝟑 ∧
𝒙𝟐 ∨ ¬𝒙𝟏 ∨ 𝒙𝟑

𝒌 = 𝟑

𝒙𝟒

¬𝒙𝟑

𝒙𝟏

𝒙𝟑

¬𝒙𝟒

𝒙𝟐

𝒙𝟑

¬𝒙𝟏

¬𝒙𝟐



Many 𝐍𝐏-complete problems

Since 3SAT ≤𝑷 Independent-Set, Independent-Set is 𝐍𝐏-hard.

We already showed that Independent-Set is in 𝐍𝐏. 

⇒ Independent-Set is 𝐍𝐏-complete

Corollary:  Clique and Vertex-Cover are also 𝐍𝐏-complete.

Proof:  We already showed that all are in 𝐍𝐏.

We also showed that Independent-Set polytime reduces to all of them. 

Combining this with 3SAT ≤𝑷 Independent-Set we get that all are 𝐍𝐏-hard.

30



𝐍𝐏-complete problems so far
So far:  

3SAT → Independent-Set → Clique

                            ↓

                Vertex-Cover   

31



Recall: Graph Colorability
Defn:  A undirected graph 𝑮 = (𝑽, 𝑬) is 𝒌-colorable iff             

we can assign one of 𝒌 colors to each vertex of 𝑽 s.t.  
 for every edge (𝒖, 𝒗) has different colored endpoints, 𝝌 𝒖 ≠ 𝝌(𝒗). 

 “edges are not monochromatic”

Theorem: 3Color is 𝐍𝐏-complete

Proof: 

1. 3Color is in 𝐍𝐏:
• We already showed this; the certificate was the coloring.

2. 3Color is 𝐍𝐏-hard:

        Claim: 3SAT≤𝑷3Color 

       We need to find a function 𝒇 that maps a 3CNF formula 𝑭 to a graph 𝑮 s.t.
  𝑭 is satisfiable ⇔ 𝑮 is 3-colorable.

32



Next up: Let’s show 3Color is NP-Hard

33

Decision Problem 𝐴 Decision Problem 𝐵

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Yes/No

𝑂(𝑛𝑝)

Procedure for converting 
instances of 𝐴 into instances of 𝐵 

Algorithm for solving 𝐵

Use the same answer

Yes/No



Showing 3Color is NP-Hard

34

3Sat 3Color

Solution for the instance of 
Independent Set

Solution for the instance 
of 3Sat

Reduction

Yes/No

𝑂(𝑛𝑝)

Covert a 3CNF formula 𝑭 into a 
graph 𝑮 such that 𝑮 is 3 
colorable if and only if 𝑭 has a 
satisfying assignment

Algorithm for solving 
Independent Set

Use the same answer

Yes/No

𝒙𝟏 ∨ ¬𝒙𝟑 ∨ 𝒙𝟒 ∧
𝒙𝟐 ∨ ¬𝒙𝟒 ∨ 𝒙𝟑 ∧
𝒙𝟐 ∨ ¬𝒙𝟏 ∨ 𝒙𝟑



3SAT ≤𝑷 3Color

Base Triangle

O

TF

Start with a base triangle with vertices T, F, and O.      
         We can assume that T, F, and O are the 
three colors used.

• Intuition: T and F will stand for true and false; O will stand for other.

To represent the properties of the 3CNF formula 𝑭 we will need both a 
Boolean variable part and a clause part.

35



3SAT ≤𝑷 3Color

Base Triangle

O

TF

...

𝒙𝟏

𝒙𝟐

𝒙𝒏

¬𝒙𝟏

¬𝒙𝟐

¬𝒙𝒏

Boolean variable part: 

• For each Boolean variable add a 
triangle with two nodes labelled 
by literals as shown.

• Since both nodes are joined to 
node O and to each other, they 
must have opposite colors T and 
F in any 3-coloring.

• So, any 3-coloring corresponds to 
a unique truth assignment.

36



3SAT ≤𝑷 3Color

O

FT

...

¬𝒙𝟏

¬𝒙𝟐

¬𝒙𝒏

𝒙𝟏

𝒙𝟐

𝒙𝒏

Idea:

Create a “middle” node per 
literal for each clause, we will 
consider a T-colored middle 
node to satisfy a clause.

In the graph: 

For each clause of 𝑭 add 3 
“middle” nodes. Then:

• Join each middle node to it 
opposite literal node

• Join each middle node to F

Now each middle node must 
be either T or O, and any 
connect to something  T-
colored must be O-colored 37

𝒙𝒏

𝒙𝟐

¬𝒙𝟏



3SAT ≤𝑷 3Color

O

FT

...

¬𝒙𝟏

¬𝒙𝟐

¬𝒙𝒏

𝒙𝟏

𝒙𝟐

𝒙𝒏

Idea:

Force at least one middle node 
per clause to be T-colored.

In the graph: 

For each clause of 𝑭 add an 
outer triangle.

• Join each middle node a 
vertex in the triangle

No middle node can be  F-
colored (all connect to  F)

Not all middle nodes are O-
colored (because something in 
the outer triangle must be)

So at least one is T-colored
38



3SAT ≤𝑷 3Color
Key property: 

In any 3-coloring:

outer nodes either T or O

inner triangle must use O 

39

O

FT

...

¬𝒙𝟏

¬𝒙𝟐

¬𝒙𝒏

𝒙𝟏

𝒙𝟐

𝒙𝒏



Showing 3Color is NP-Hard

40

3Sat 3Color

Solution for the instance of 
3Color

Solution for the instance 
of 3Sat

Reduction

Yes/No

𝑂(𝑛𝑝)

Create “base triangle” and one 
node per variable and negation. 
Connect each variable node to 
the “false color” node. Per 
clause, create a triangle and one 
middle node per literal. Connect 
each middle to the triangle, 
false, and the opposite variable

Algorithm for solving 
3Color

Use the same answer

Yes/No

𝒙𝟏 ∨ ¬𝒙𝟑 ∨ 𝒙𝟒 ∧
𝒙𝟐 ∨ ¬𝒙𝟒 ∨ 𝒙𝟑 ∧
𝒙𝟐 ∨ ¬𝒙𝟏 ∨ 𝒙𝟑

...



𝐹 satisfiable ⇒ 3 Colorable
Suppose 𝑭 is satisfiable. We 
can then 3-Color the graph 
by:
• Make each True literal 

node T-colored
• Make each False literal 

node F-colored
• Make one True middle 

node per clause T-colored
• Make the remaining 

middle nodes O-colored
• Color each outer triangle 

(node connect to the T-
colored middle node will 
be O-colored, the others 
can be either T-colored or 
F-colored) 41

O

FT

...

¬𝒙𝟏

¬𝒙𝟐

¬𝒙𝒏

𝒙𝟏

𝒙𝟐

𝒙𝒏

F

T

T

T

F

F

T

O

O

O

O

T

T

F

F

TO

O



3 Colorable ⇒ 𝐹 satisfiable
Suppose the graph is 3-
colorable. We can satisfy 𝑭 by:
• Making each T-colored literal 

node True and each F-
colored literal node False
• No nodes are O-colored, 

so this will work out
• We know this satisfies 𝑭 

because:
• Each clause will have 

one T-colored middle 
node (connected to the 
O-colored outer triangle 
node) which matches 
the color of its 
equivalent literal

42

O

FT

...

¬𝒙𝟏

¬𝒙𝟐

¬𝒙𝒏

𝒙𝟏

𝒙𝟐

𝒙𝒏

F

T

T

T

F

F

T

T

T

F

F

TO

O


	Slide 1: CSE 421 Winter 2025 Lecture 24: NP-Complete
	Slide 2: Polynomial Time Reduction 
	Slide 3: Polynomial Time Reductions (Decision Problems)
	Slide 4: Let’s do a reduction
	Slide 5: Relationship among the problems so far
	Slide 6: Extent and Impact of NP-Completeness
	Slide 7: Beyond bold cap P?
	Slide 8: Satisfiability
	Slide 9: Satisfiability
	Slide 10: Common property of these problems
	Slide 11: The complexity class bold cap N bold cap P 
	Slide 12: More precise definition of bold cap N bold cap P 
	Slide 13: Verifying the certificate is efficient
	Slide 14: Keys to showing that a problem is in bold cap N bold cap P 
	Slide 15: Solving, bold cap N bold cap P problems without hints
	Slide 16: What We Know
	Slide 17: bold cap N bold cap P -hardness & bold cap N bold cap P -completeness
	Slide 18: Cook-Levin Theorem
	Slide 19: What we know: 3Sat is NP-Hard
	Slide 20: Goal: cap B is NP-Hard
	Slide 21: Showing cap B is NP-Hard
	Slide 22: Steps to Proving Problem bold italic cap B is bold cap N bold cap P -complete
	Slide 23: Next up: Let’s show Independent Set is NP-Hard
	Slide 24: Showing Independent Set is NP-Hard
	Slide 25: Another bold cap N bold cap P -complete problem: 3SAT less than or equal to sub bold italic cap P  Independent-Set
	Slide 26: Another bold cap N bold cap P -complete problem: 3SAT less than or equal to sub bold italic cap P  Independent-Set
	Slide 27: Correctness (⇒)
	Slide 28: Correctness (⇐)
	Slide 29: Showing Independent Set is NP-Hard
	Slide 30: Many bold cap N bold cap P -complete problems
	Slide 31: bold cap N bold cap P -complete problems so far
	Slide 32: Recall: Graph Colorability
	Slide 33: Next up: Let’s show 3Color is NP-Hard
	Slide 34: Showing 3Color is NP-Hard
	Slide 35: 3SAT less than or equal to sub bold italic cap P  3Color
	Slide 36: 3SAT less than or equal to sub bold italic cap P  3Color
	Slide 37: 3SAT less than or equal to sub bold italic cap P  3Color
	Slide 38: 3SAT less than or equal to sub bold italic cap P  3Color
	Slide 39: 3SAT less than or equal to sub bold italic cap P  3Color
	Slide 40: Showing 3Color is NP-Hard
	Slide 41: cap F satisfiable implies 3 Colorable
	Slide 42: 3 Colorable implies cap F satisfiable

