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Polynomial Time Reduction 
Defn: We write 𝑨 ≤𝑷 𝑩 iff there is an algorithm for 𝑨 using a ‘black box’ (subroutine 

or method) that solves 𝑩 that

• uses only a polynomial number of steps, and 

• makes only a polynomial number of calls to a method for 𝑩.

Theorem: If 𝑨 ≤𝑷 𝑩 then a poly time algorithm for 𝑩 ⇒ poly time algorithm for 𝑨

Proof: Not only is the number of calls polynomial but the size of the inputs on which 
the calls are made is polynomial!

Corollary: If you can prove there is no fast algorithm for 𝑨, then that proves there is 
no fast algorithm for 𝑩.

Intuition for “𝑨 ≤𝑷 𝑩”:  “𝑩 is at least as hard* as 𝑨”   *up to polynomial-time slop.
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Polynomial Time Reductions
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Problem 𝐴 Problem 𝐵

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

𝑌𝑋

𝑂(𝑛𝑝)

Procedure for converting 
instances of 𝐴 into instances of 𝐵 

Algorithm for solving 𝐵

Procedure for converting 
solutions of B into 
solutions of 𝐴 



Polynomial Time Reductions (Decision Problems)
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Decision Problem 𝐴 Decision Problem 𝐵

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Yes/No

𝑂(𝑛𝑝)

Procedure for converting 
instances of 𝐴 into instances of 𝐵 

Algorithm for solving 𝐵

Use the same answer

Yes/No



Let’s do a reduction

4 steps for reducing (decision problem) 𝑨 to problem 𝑩

1. Describe the reduction itself

• i.e., the function that converts the input for 𝑨 to the one for problem 𝑩.

• i.e., describe what the top arrow in the pink box does

2. Make sure the running time would be polynomial 

• In lecture, we’ll sometimes skip writing out this step.

3. Argue that if the correct answer (to the instance for 𝑨) is YES,       
then the input we produced is a YES instance for 𝑩.

4. Argue that if the correct answer (to the instance for 𝑨) is NO,           
then the input we produced is a NO instance for 𝑩.
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Let’s do a reduction

4 steps for reducing (decision problem) 𝑨 to problem 𝑩

1. Describe the reduction itself

• i.e., the function that converts the input for 𝑨 to the one for problem 𝑩.

• i.e., describe what the top arrow in the pink box does

2. Make sure the running time would be polynomial 

• In lecture, we’ll sometimes skip writing out this step.

3. Argue that if the correct answer (to the instance for 𝑨) is YES,       
then the input we produced is a YES instance for 𝑩.

4. Argue that if the input we produced is a YES instance for 𝑩          
then the correct answer (to the instance for 𝑨) is YES.
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Reduce 2Color to 3Color
Defn:  A undirected graph 𝑮 = (𝑽, 𝑬) is 𝒌-colorable iff   
 we can assign one of 𝒌 colors to each vertex of 𝑽 s.t. for 

(𝒖, 𝒗) ∈ 𝑬,  their colors, 𝝌(𝒖) and 𝝌(𝒗), are different.  
           “edges are not monochromatic”

2Color: Given: an undirected graph 𝑮                  
    Is 𝑮 2-colorable?

3Color: Given: an undirected graph 𝑮        
    Is 𝑮 3-colorable?
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2Color ≤𝑷 3Color
• Given a graph 𝑮 figure out whether it can be 2-colored, by using an 

algorithm that figures out whether it can be 3-colored.

Usual outline:

• Transform 𝑮 into an input for the 3Color algorithm

• Run the 3Color algorithm

• Use the answer from the 3Color algorithm as the answer for 𝑮 for 2Color
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Reducing 2Color to 3Color
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2Color 3Color

Solution for 3Color
Solution for 2Color

Reduction

Yes/No

𝑂(𝑛𝑝)

Transform given graph 𝑮 such 
that the output graph 𝑯 was 
3-colorable if and only if 𝑮 
was 2-colorable

Algorithm for solving 
3Color

Use the same answer

Yes/No

𝑯𝑮



Reduction

If we just ask the 3Color algorithm about 𝑮, if 𝑮 is 3-colorable but not 2-
colorable it will give the wrong answer because it has the 3rd color 
available.

Idea: Add extra vertices and edges to to G to force the 3rd color to be used 
there but not on 𝑮 

Reduction 𝒇: Add one extra vertex 𝒗 and attach it to everything in 𝑮.

Write 𝑯 = 𝒇(𝑮).

(𝒇 is polynomial time computable.)
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Reducing 2Color to 3Color
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2Color 3Color

Solution for 3Color
Solution for 2Color

Reduction

Yes/No

𝑂(𝑛𝑝)

Add a new node to 𝑮, connect 
every node to it

Algorithm for solving 
3Color

Use the same answer

Yes/No

𝑯𝑮



Let’s do a reduction
4 steps for reducing (decision problem) 𝑨 to problem 𝑩

1. Describe the reduction itself

•  i.e., the function that converts the input for 𝑨 to the one for problem 𝑩.

2. Make sure the running time would be polynomial 

• In lecture, we’ll sometimes skip writing out this step.

3. Argue that if the correct answer (to the instance for 𝑨) is YES,       
then the input we produced is a YES instance for 𝑩.

4. Argue that if the input we produced is a YES instance for 𝑩          
then the correct answer (to the instance for 𝑨) is YES.
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Correctness
Two statements to prove (two directions):

If 𝑮 is a YES for 2Color (𝑮 is 2-colorable) then 𝑯 is a YES for 3Color (𝑯 is 3-colorable)

 If 𝑯 is a YES for 3Color (𝑯 is 3-colorable) then 𝑮 is a YES for 2Color on (𝑮 is 2-colorable)
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Suppose 𝑮 is 2-colorable:  𝑮 has a 2-coloring 𝝌 so edges of 𝑮 have different 
colored endpoints.    We get a 3-coloring of 𝑯 by using 𝝌 for all the copies of 
original vertices of 𝑮 and a 3rd color for the extra vertex 𝒗:   Original edges of 𝑮 in 
𝑯 have different colored endpoints; the extra edges too.  So 𝑯 is 3-colorable.

Suppose 𝑯 is 3-colorable:  Consider a 3-coloring 𝝌′ of 𝑯.   Consider the extra 
vertex 𝒗 in 𝑯 that was added to 𝑮.    For every vertex 𝒖 of 𝑮, we have an edge 
(𝒖, 𝒗) so 𝝌′ 𝒖 ≠ 𝝌′(𝒗).   This means that every vertex 𝒖 of 𝑮 is colored with 
one of the two colors other than 𝝌′(𝒗).  So we can use 𝝌′ as a 2-coloring of 𝑮 
since all those edges had different colored endpoints in 𝑯.  So 𝑮 is 2-colorable.



Write two separate arguments
The two directions we covered actually prove an if and only if.

To make sure you handle both directions, I strongly recommend:

• Always do two separate proofs! (Don’t try to prove both directions 
at once, don’t refer back to the prior proof and say “for the same 
reason”.  There are usually subtle differences.)

• Don’t use contradiction! (It’s easy to start from the wrong spot and 
accidentally prove the same direction twice without realizing it.)

14



Another proof of 2Color ≤𝑷 3Color
We had an 𝑶(𝒏 + 𝒎) time algorithm for 2Color based on BFS.

Simply solve the 2Color problem without making any calls to a  3Color 
method!
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Reducing 2Color to 3Color
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2Color 3Color

Solution for 3Color
Solution for 2Color

Reduction

Yes/No

𝑂(𝑛𝑝)

Check if graph is bipartite, if so 
then select a pre-chosen 3-
colorable graph. If not then 
select a pre-chosen non-3-
colorable graph

Algorithm for solving 
3Color

Use the same answer

Yes/No

𝑯𝑮



Two More Reductions
Independent-Set: 

Given a graph 𝑮 = (𝑽, 𝑬) and an integer 𝒌 

 Is there a 𝑼 ⊆ 𝑽 with 𝑼 ≥ 𝒌 such that no two vertices in 𝑼 are joined by an 
edge?  (𝑼 is called an independent set.)

Clique: 
Given a graph 𝑮 = (𝑽, 𝑬) and an integer 𝒌

 Is there a 𝑼 ⊆ 𝑽 with 𝑼 ≥ 𝒌 such that every pair of vertices in 𝑼 is joined by an 
edge?   (𝑼 is called a clique.)

Claim: Independent-Set ≤𝑷 Clique
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Examples

• Independent Set

• Clique

𝑘 = 2 𝑘 = 3

𝑘 = 3 𝑘 = 4



Examples

• Independent Set

• Clique

𝑘 = 2 𝑘 = 3

𝑘 = 3 𝑘 = 4

Yes No

Yes No



Reducing Independent Set to Clique
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Independent Set Clique

Solution for Clique
Solution for 
Independent Set

Reduction

Yes/No

𝑂(𝑛𝑝)

Transform given graph 𝑮 and 
number 𝒌 into 𝑮′ and 𝒌′ such 
that 𝑮 has an Independent Set 
of size 𝒌 iff 𝑮′ has a Clique of 
size 𝒌′

Algorithm for solving 
Clique

Use the same answer

Yes/No

𝑘 = 2

𝑮

𝑘 = 3

𝑮
𝑮′, 𝒌′



Independent-Set ≤𝑷 Clique
Given:

• (𝑮, 𝒌) as input to Independent-Set where 𝑮 = (𝑽, 𝑬)

Use function 𝒇 that transforms (𝑮, 𝒌) to (𝑮′, 𝒌) where
• 𝑮′ = (𝑽, 𝑬′) has the same vertices as 𝑮 but 𝑬′ consists of precisely 

those edges on 𝑽 that are not edges of 𝑮.

From the definitions, 𝑼 is an independent set in 𝑮

         𝑼 is a clique in 𝑮′

graph
complement
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Reducing Independent Set to Clique
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Independent Set Clique

Solution for Clique
Solution for 
Independent Set

Reduction

Yes/No

𝑂(𝑛𝑝)

Set 𝑮′ to be the complement 
graph of 𝑮. Set 𝒌′ = 𝒌

Algorithm for solving 
Clique

Use the same answer

Yes/No

𝑘 = 2

𝑮

𝑘 = 3

𝑮

𝑘′ = 2

𝑮′

𝑘′ = 3

𝑮′



Clique ≤𝑷 Independent Set
Given:

• (𝑮, 𝒌) as input to Clique where 𝑮 = (𝑽, 𝑬)

Use function 𝒇 that transforms (𝑮, 𝒌) to (𝑮′, 𝒌) where
• 𝑮′ = (𝑽, 𝑬′) has the same vertices as 𝑮 but 𝑬′ consists of precisely 

those edges on 𝑽 that are not edges of 𝑮.

From the definitions, 𝑼 is an clique in 𝑮

         𝑼 is an independent set in 𝑮′
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Reducing Clique to Independent Set
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Clique Independent Set

Solution for Independent SetSolution for Clique

Reduction

Yes/No

𝑂(𝑛𝑝)

Set 𝑮′ to be the complement 
graph of 𝑮. Set 𝒌′ = 𝒌

Algorithm for solving 
Independent Set

Use the same answer

Yes/No

𝑘′ = 2

𝑮′

𝑘′ = 3

𝑮′

𝑘 = 2

𝑮

𝑘 = 3

𝑮



Another Reduction
Vertex-Cover:

Given a graph 𝑮 = (𝑽, 𝑬) and an integer 𝒌

 Is there a 𝑾 ⊆ 𝑽 with 𝑾 ≤ 𝒌 such that every edge of 𝑮 has an endpoint in 𝑾?   
(𝑾 is a vertex cover, a set of vertices that covers 𝑬.)

Claim: Independent-Set ≤𝑷 Vertex-Cover

Lemma: In a graph 𝑮 = (𝑽, 𝑬) and 𝑼 ⊆ 𝑽 

       𝑼 is an independent set ⇔ 𝑽 − 𝑼 is a vertex cover
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Examples

• Independent Set

• Vertex Cover

𝑘 = 2 𝑘 = 3

𝑘 = 3 𝑘 = 2

Yes No

Yes No



Reducing Independent Set to Vertex Cover
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Independent Set Vertex Cover

Solution for Vertex Cover
Solution for 
Independent Set

Reduction

Yes/No

𝑂(𝑛𝑝)

Set 𝑮′ = 𝑮. Set 𝒌′ = 𝑽 − 𝒌

Algorithm for solving 
Vertex Cover

Use the same answer

Yes/No

𝑘 = 2

𝑮

𝑘 = 3

𝑮

𝑘′ = 3

𝑮′

𝑘′ = 2

𝑮′



Reducing Vertex Cover to Independent Set
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Vertex Cover Independent Set

Solution for Independent Set
Solution for 
Vertex Cover

Reduction

Yes/No

𝑂(𝑛𝑝)

Set 𝑮′ = 𝑮. Set 𝒌′ = 𝑽 − 𝒌

Algorithm for solving 
Independent Set

Use the same answer

Yes/No

𝑘 = 3

𝑮

𝑘 =2

𝑮

𝑘′ = 2

𝑮′

𝑘′ = 3

𝑮′



Reduction Idea
Lemma: In a graph 𝑮 = (𝑽, 𝑬) and 𝑼 ⊆ 𝑽 

       𝑼 is an independent set ⇔ 𝑽 − 𝑼 is a vertex cover

Proof:

(⇒) Let 𝑼 be an independent set in 𝑮

Then for every edge 𝒆 ∈ 𝑬,           
 𝑼 contains at most one endpoint of 𝒆

So, at least one endpoint of 𝒆 must be in 𝑽 − 𝑼

So, 𝑽 − 𝑼 is a vertex cover

(⇐) Let 𝑾 = 𝑽 − 𝑼 be a vertex cover of 𝑮

Then 𝑼 does not contain both endpoints of any edge                    
(else 𝑾 would miss that edge)

So 𝑼 is an independent set

29

𝑼
𝑽 − 𝑼 



Reduction for Clique ≤𝑷 Vertex-Cover

Clique: 
Given a graph 𝑮 = (𝑽, 𝑬) and an integer 𝒌
 Is there a 𝑼 ⊆ 𝑽 with 𝑼 ≥ 𝒌 such that every pair of vertices in 𝑼 is joined by an edge?   
(𝑼 is called a clique.) 

Vertex-Cover:
Given a graph 𝑮 = (𝑽, 𝑬) and an integer 𝒌
 Is there a 𝑾 ⊆ 𝑽 with 𝑾 ≤ 𝒌 such that every edge of 𝑮 has an endpoint in 𝑾?   
(𝑾 is a vertex cover, a set of vertices that covers 𝑬.)

Claim: Clique ≤𝑷 Vertex-Cover

Idea: 

 Use Clique ≤𝑷 Independent-Set and Independent-Set ≤𝑷 Vertex-Cover
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Reducing Clique to Vertex Cover
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Clique Independent Set

Solution for 
Independent Set

Solution for Clique

Yes/No

Algorithm for 
solving 
Independent 
Set

Reduction

𝑂(𝑛𝑝)

Set 𝑮′ to be the 
complement graph of 𝑮. 
Set 𝒌′ = 𝒌

Use the same 
answer

Yes/No

𝑘′ = 2

𝑮′

𝑘′ = 3

𝑮′
𝑘 = 2

𝑮

𝑘 = 3

𝑮

Reduction

𝑂(𝑛𝑝)

Set 𝑮′′ = 𝑮′. 
Set 𝒌′′ = 𝑽 − 𝒌′

Use the same 
answer

Vertex Cover

Solution for
 Vertex Cover

Yes/No

𝑘′′ = 3

𝑮′′

𝑘′′ = 2

𝑮′′

Algorithm for 
solving 
Vertex Cover



Reducing Clique to Vertex Cover
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Clique Vertex Cover

Solution for Vertex CoverSolution for Clique

Reduction

Yes/No

𝑂(𝑛𝑝)

Set 𝑮′ to be the complement 
graph of 𝑮. Set 𝒌′ = 𝑽 − 𝒌

Algorithm for solving 
Vertex Cover

Use the same answer

Yes/No

𝑘′ = 3

𝑮′

𝑘′ = 2

𝑮′

𝑘 = 2

𝑮

𝑘 = 3

𝑮



Polynomial time
Defn: Let 𝐏 (polynomial-time) be the set of all decision problems   

 solvable by algorithms whose worst-case running time is 
  bounded by some polynomial in the input size. 

This is the class of decision problems whose solutions we have called 
“efficient”.
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Polynomial Time Reduction 

Defn: We write 𝑨 ≤𝑷 𝑩 iff there is an algorithm for 𝑨 using a ‘black box’ (subroutine 
or method) that solves 𝑩 that

• uses only a polynomial number of steps, and 

• makes only a polynomial number of calls to a method for 𝑩.

Theorem: If 𝑨 ≤𝑷 𝑩 then 𝑩 ∈ 𝐏 ⇒ 𝑨 ∈ 𝐏

Proof:  Not only is the number of calls polynomial but the size of the inputs on which 
the calls are made is polynomial!

Corollary: If 𝑨 ≤𝑷 𝑩 then 𝑨 ∉ 𝐏 ⇒ 𝑩 ∉ 𝐏.

Theorem: If 𝑨 ≤𝑷 𝑩 and 𝑩 ≤𝑷 𝑪 then 𝑨 ≤𝑷 𝑪

Proof: Compose the reductions: Plug in “the algorithm for 𝑩 that uses 𝑪” in place of 𝑩.
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Relationship among the problems so far

Using polynomial time reductions we have found:
• 2Color ≤𝑃 3Color

• Independent-Set ≤𝑃 Clique

• Clique ≤𝑃 Independent-Set

• Vertex-Cover ≤𝑃 Independent-Set

• Independent-Set ≤𝑃 Vertex-Cover

• Clique ≤𝑃Vertex-Cover
• By composing the reductions for Clique ≤𝑃Independet-Set and Independent-Set ≤𝑃 Vertex-Cover

• We could also conclude Vertex-Cover ≤𝑃 Clique

• Because we can reduce any of Independent-Set, Vertex-Cover, and Clique to any 
other:
• If any one of those belongs to class 𝑃 then all of them do.

• In any one of those does not belong to class 𝑃 then none of them do
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Beyond 𝐏?

Independent-Set, Clique, Vertex-Cover, and 3Color are 
examples of natural and practically important problems for 
which we don’t know any polynomial-time algorithms.

There are many others such as...
DecisionTSP:  

Given a weighted graph 𝑮 and an integer 𝒌, 

Is there a simple path that visits all vertices in 𝑮 having 
total weight at most 𝒌?

and...
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Satisfiability

• Boolean variables 𝒙𝟏, … , 𝒙𝒏
• taking values in {𝟎, 𝟏}.  𝟎=false, 𝟏=true

• Literals
• 𝒙𝒊 or ¬𝒙𝒊 for 𝒊 = 𝟏, … , 𝒏.  (¬𝒙𝒊 also written as 𝒙𝒊.)

• Clause
• a logical OR of one or more literals
• e.g.  (𝒙𝟏 ∨ ¬𝒙𝟑 ∨ 𝒙𝟕 ∨ 𝒙𝟏𝟐)

• CNF formula
• a logical AND of a bunch of clauses

• 𝒌-CNF formula
• All clauses have exactly 𝒌 variables
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Satisfiability
CNF formula example: 

𝒙𝟏 ∨ ¬𝒙𝟑 ∨ 𝒙𝟒 ∧ ¬𝒙𝟒 ∨ 𝒙𝟑 ∧ 𝒙𝟐 ∨ ¬𝒙𝟏 ∨ 𝒙𝟑

Defn: If there is some assignment of 0’s and 1’s to the variables that makes 
it true then we say the formula is satisfiable

• 𝒙𝟏 ∨ ¬𝒙𝟑 ∨ 𝒙𝟒 ∧ ¬𝒙𝟒 ∨ 𝒙𝟑 ∧ 𝒙𝟐 ∨ ¬𝒙𝟏 ∨ 𝒙𝟑  is satisfiable: 𝒙𝟏 = 𝒙𝟑 = 𝟏

• 𝒙𝟏 ∧ ¬𝒙𝟏 ∨ 𝒙𝟐 ∧ ¬𝒙𝟐 ∨ 𝒙𝟑 ∧ ¬𝒙𝟑 is not satisfiable.

3SAT:  Given a CNF formula 𝑭 with exactly 𝟑 variables per clause, 
   is 𝑭 satisfiable?
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Common property of these problems
• There is a special piece of information, a short certificate or proof, 

that allows you to efficiently verify (in polynomial-time) that the 
YES answer is correct.  This certificate might be very hard to find.

  
• 3Color: the assignment of a color to each node. 

• Independent-Set, Clique: the set of vertices

• Vertex-Cover: the set of vertices

• Decision-TSP:  the path

• 3SAT: a truth assignment that makes the CNF formula true.
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The complexity class 𝐍𝐏
𝐍𝐏 consists of all decision problems where 

• You can verify the YES answers efficiently (in polynomial time) given a 
short (polynomial-size) certificate

and

• No fake certificate can fool your polynomial time verifier into saying 
YES for a NO instance
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More precise definition of 𝐍𝐏
A decision problem A is in 𝐍𝐏 iff there is

• a polynomial time procedure VerifyA(.,.) and

• a polynomial 𝒑

s.t.
• for every input 𝒙 that is a YES for A there is a string 𝒕 with 𝒕 ≤  𝒑(|𝒙|) 

with VerifyA(𝒙, 𝒕) = YES 

and

• for every input 𝒙 that is a NO for A there does not exist a string 𝒕 with 
𝒕 ≤  𝒑(|𝒙|) with VerifyA(𝒙, 𝒕) = YES

• A string 𝒕 on which VerifyA(𝒙, 𝒕) = YES is called a certificate for 𝒙 or a proof 
that 𝒙 is a YES input
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Verifying the certificate is efficient

3Color: the coloring

• Check that each vertex has one of only 3 colors and check that the 
endpoints of every edge have different colors

Independent-Set, Clique: the set 𝑼 of vertices

• Check that 𝑼 ≥ 𝒌 and either no (IS) or all (Clique) edges on present on 𝑼

Vertex-Cover: the set 𝑾 of vertices

• Check that 𝑾 ≤ 𝒌 and 𝑾 touches every edge.

Decision-TSP:  the path

• Check that the path touches each vertex and has total weight ≤ 𝒌.

• 3-SAT: a truth assignment 𝜶 that makes the CNF formula 𝑭 true.

• Evaluate 𝑭 on the truth assignment 𝜶.
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Keys to showing that a problem is in 𝐍𝐏
1. Must be decision probem (YES/NO)

2. For every given YES input, is there a certificate (i.e., a hint) that would help?

• OK if some inputs don’t need a certificate

3. For any given NO input, is there a fake certificate that would trick you?

4. You need a polynomial-time algorithm to be able to tell the difference.

43



Solving 𝐍𝐏 problems without hints
There is an obvious algorithm for all 𝐍𝐏 problems: 

Brute force:

Try all possible certificates and check each one using the verifier to see if it works.

 

Even though the certificates are short, this is exponential time

• 𝟐𝒏 truth assignments for 𝒏 variables

•
𝒏
𝒌

 possible 𝒌-element subsets of 𝒏 vertices

• 𝒏! possible TSP tours of 𝒏 vertices

• etc. 
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What We Know
• Every problem in 𝐍𝐏 is in exponential time

• Every problem in 𝐏 is in 𝐍𝐏
• You don’t need a certificate for problems in 𝐏 so just ignore any hint you are 

given

• Nobody knows if all problems in 𝐍𝐏 can be solved in polynomial time; 
i.e., does 𝐏 = 𝐍𝐏?
• one of the most important open questions in all of science.

• huge practical implications

• Most CS researchers believe that 𝐏 ≠ 𝐍𝐏 
• $1M prize either way

• but we don’t have good ideas for how to prove this ...
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𝐍𝐏-hardness & 𝐍𝐏-completeness
Notion of hardness we can prove that is useful unless 𝐏 = 𝐍𝐏:

Defn:  Problem 𝑩 is 𝐍𝐏-hard iff every problem 𝑨 ∈ 𝐍𝐏 satisfies 𝑨 ≤𝑷 𝑩.

This means that 𝑩 is at least as hard as every problem in 𝐍𝐏.

Defn:  Problem 𝑩 is 𝐍𝐏-complete iff 

•  𝑩 ∈ 𝐍𝐏 and

•  𝑩 is 𝐍𝐏-hard.

This means that 𝑩 is a hardest problem in 𝐍𝐏.

𝐍𝐏

𝐍𝐏-hard

𝐍𝐏-complete

𝐏

Not at all obvious that any 𝐍𝐏-complete problems exist!
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Cook-Levin Theorem
Theorem [Cook 1971, Levin 1973]:   3SAT is 𝐍𝐏-complete

Proof:  See CSE 431.

Corollary:  If 3SAT ≤𝑷 B then B is 𝐍𝐏-hard.

Proof:  Let A be an arbitrary problem in 𝐍𝐏.         
Since 3SAT is 𝐍𝐏-hard we have A ≤𝑷 3SAT.

 Then A ≤𝑷 3SAT and 3SAT ≤𝑷 B imply that A ≤𝑷 B.

 Therefore every problem A in 𝐍𝐏 has A ≤𝑷 B   
 so B is 𝐍𝐏-hard.

Cook & Levin did the 
hard work.

We only need to give 
one reduction to show 

that a problem is     
NP-hard! 

47



Another 𝐍𝐏-complete problem: 3SAT ≤𝑷 Independent-Set

1. The reduction:
• Map CNF formula 𝑭 to a graph 𝑮 and integer 𝒌 

• Let 𝒎 = # of clauses of 𝑭

• Create a vertex in 𝑮 for each literal occurrence in 𝑭

• Join two vertices 𝒖, 𝒗 in 𝑮 by an edge iff

• 𝒖 and 𝒗 correspond to literals in the same clause of 𝑭 (green edges) or

• 𝒖 and 𝒗 correspond to literals 𝒙 and ¬𝒙 (or vice versa) for some 
variable 𝒙 (red edges).

• Set 𝒌 = 𝒎

2. Clearly polynomial-time computable
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Another 𝐍𝐏-complete problem: 3SAT ≤𝑷 Independent-Set

49

𝑭 = 𝒙𝟏 ∨ ¬𝒙𝟑 ∨ 𝒙𝟒 ∧ 𝒙𝟐 ∨ ¬𝒙𝟒 ∨ 𝒙𝟑 ∧ ¬𝒙𝟐 ∨ ¬𝒙𝟏 ∨ 𝒙𝟑

𝒎 = 𝟑

𝒙𝟒

¬𝒙𝟑

𝒙𝟏

𝒙𝟑

¬𝒙𝟒

𝒙𝟐

𝒙𝟑

¬𝒙𝟏

¬𝒙𝟐

𝑮 has both kinds of edges.
The color is just to show why the edges were included.

𝒌 = 𝒎



Correctness (⇒)

Suppose that 𝑭 is satisfiable (YES for 3SAT)

• Let 𝜶 be a satisfying assignment; it satisfies at 

least one literal in each clause.  

• Choose the set 𝑼 in 𝑮 to correspond to the first 
satisfied literal in each clause. 

• |𝑼| = 𝒎

• Since 𝑼 has 𝟏 vertex per clause, no green 

edges inside 𝑼.

• A truth assignment never satisfies both 𝒙 and 
¬𝒙, so no red edges inside 𝑼.

• Therefore 𝑼 is an independent set of size 𝒎

Therefore (𝑮, 𝒎) is a YES for Independent-Set.

Satisfying assignment 𝜶:

 𝜶 𝒙𝟏 = 𝜶 𝒙𝟐 = 𝜶 𝒙𝟑 = 𝜶 𝒙𝟒 = 𝟏

Set 𝑼 marked in purple is independent.
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Correctness (⇐)

Suppose that 𝑮 has an independent set of size 𝒎 

((𝑮, 𝒎) is a YES for Independent-Set)

• Let 𝑼 be the independent set of size 𝒎; 

• 𝑼 must have one vertex per column (green edges)

• Because of red edges, 𝑼 doesn’t have vertex 
labels with conflicting literals. 

• Set all literals labelling vertices in 𝑼 to true

• This may not be a total assignment but just extend 
arbitrarily to a total assignment 𝜶.

• This assignment satisfies 𝑭 since it makes at 
least one literal per clause true.

Therefore 𝑭 is satisfiable and a YES for 3SAT.

Given independent set 𝑼 of size 𝒎

Satisfying assignment 𝜶:  Part defined by 𝑼:

 𝜶 𝒙𝟏 = 𝟎, 𝜶 𝒙𝟐 = 𝟏, 𝜶 𝒙𝟑 = 𝟎

Set 𝜶 𝒙𝟒 = 𝟎.
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Many 𝐍𝐏-complete problems

Since 3SAT ≤𝑷 Independent-Set, Independent-Set is 𝐍𝐏-hard.

We already showed that Independent-Set is in 𝐍𝐏. 

⇒ Independent-Set is 𝐍𝐏-complete

Corollary:  Clique and Vertex-Cover are also 𝐍𝐏-complete.

Proof:  We already showed that all are in 𝐍𝐏.

We also showed that Independent-Set polytime reduces to all of them. 

Combining this with 3SAT ≤𝑷 Independent-Set we get that all are 𝐍𝐏-hard.
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