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Polynomial Tme@e@

Defn: We write A <,‘ff there is an algorithm for 4 using a ‘black box’ (subroutine
or method) that solves B that

* uses only a&lynomlal' number of steps, and
* makes only a polynomial number of calls to a method for B.

Theorem: If A <p/B then a poly time algorithm for B = poly time algorithm for A

Proof: Not only is the number of calls polynomial but the size of the inputs on which
the calls are made is polynomiall

Corollary: If you can prove therei is;no fast algorithm for A, then that proves there is

C————  (nofastalgorithmfor B,

Intuition for “A <p B”: “B is at least as hard™ as A” “up to polynomial-time slop.




Polynomial Time Reductions
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Polynomial Time Reductions (Decision Problems)

Decision Problem A 0 (Tlp) Decision Problem B
— —— T T
— B
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Let’s do a reduction

4 steps for reducing (decision problem) A to problem B

1. Describe the reduction itself
* j.e., the function that converts the input for A to the one for problem B.
* j.e., describe what the top arrow in the pink box does

2. Make sure the running time would be polynomial
* In lecture, we’ll sometimes skip writing out this step.

3. Argue that if the correct answer (to the instance for A) is YES,
then the input we produced is a YES instance for B.

4. Argue that if the correct answer (to the instance for A4) is NO,
then the input we produced is a NO instance for B.



Let’s do a reduction

4 steps for reducing (decision problem) A to problem B

@ Describe the reduction itself
* j.e., the function that converts the input for A to the one for problem B.
* j.e., describe what the top arrow in the pink box does

2./ Make sure the running time would be polynomial
* In lecture, we’ll sometimes skip writing out this step.

@ Argue that if the correct answer (to the instance for A) is YES,
then the input we produced is a YES instance for B.

4. Argue that if the input we produced is a YES instance for B

) ) Contrapositive
then the correct answer (to the instance for A) is YES.



Reduce 2Color to 3Color

Defn: A undirected graph ¢ = (V, E) is(k-eOlorable iff
we can assign one of k colors to each vertex of I s.t. for
(u,v) € E, theircolors, y(u) and y(v), are different.
“edges are not monochromatic”

2Color: Given: an undirected graph G
Is G 2-colorable?
No Yes
Is G 3-colorable? @
No es

3Color; Given: an undirected graph G
S—— >
@ Yl



2001 SFLolon

* Given a graph G figure out whether it can be 2-colored, by using an
algorithm that figures out whether it can be 3-colored.

_____——-———_._

Usual outline: N

* Transfor nto an input for the 3Color algorithm
* Run the 3Color algorithm
e Use the answer from the 3Color algorithm as the answer for G for 2Color

‘-h.____--

—



Reducing 2Color to 3Color
e’

2Color 0 (Tlp) 3Color

W

Algorithm for solving
3Color

Transform given graph_G such
that the output graéﬁ/as
3-colorable if and only if G
was 2-colorable ——

Solution for 2Color Use the same answer .
Solution for 3Color

Yes/No Yes/No

Reduction




Reduction

If we just ask the 3Color algorithm about G, if G is 3-colorable but not 2-
colorable it will give the wrong answer because it has the 3™ color

available.

Idea: Add extra vertices and edges to to G to force theo be used
there but not on G

Reduction f: Add one extra vertex v and attach it to everything in G.
Write H = f(G). o

(f is polynomial time computable.)



Reducing 2Color to 3Color

2Color 0 (Tlp) 3Color

Add a new node to G, cong
every node to it
L Algorithm for solving
3Color
\/6 S /1O

se the same answer

Solution for 2Color

Yes/No

Solution for 3Color

Yes/No

Reduction
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Let’s do a reduction

4 steps for reducing (decision problem) 4 to problem B

Argue that if the correct answer (to the instance for A) is YES,
then the input we produced is a YES instance for B.

4. Argue that if the input we produced is a YES instance for B
then the correct answer (to the instance for A) is YES.



Correctness

Two statements to prove (two directions):

M a YES for ZCoIoW"GTZ?CUIUrEbﬁX}then H is a YES for 3Color (H is 3-colorable)

_Suppose G is 2-colorable: G has a 2-coloring x so edges of G have different
colored endpoints. We get a 3-coloring of H by using y for all the copies of
o@vertices of G and a@"j color for the extra vert * Original edges of G in
H have different colored endpoints; the extra edges to6. So H is 3-colorable.

Wlf H is a YES for 3Color (H is 3-colorable) then G is a YES for 2Color on (G is 2-colorable)

Suppose H is 3-colorable: Consider a 3-coloring ¥’ of H. Consider the extra
vertex v in H that was added to G. For every vertex u of G, we have an edge
@o )é’ (u) # x'(v). This means that every vertexu of G is colored with
one of thetwo colors other than y'(v). So we can use y' as a 2-coloring of G
since all those edges had different colored endpoints in H. So G is 2-colorable.

13



Write two separate arguments

The two directions we covered actually prove an if and only if.

To make sure you handle both directions, | strongly recommend:

* Always do two separate proofs! (Don’t try to prove both directions
at once, don’trefer back to the prior proof and say “for the same
reason”. There are usually subtle differences.)

'@’t use contradiction! (It’s easy to start from the wrong spot and
accidentally prove the same direction twice without realizing it.)




Another proof of 2Color <p 3Color
We had an O(n + m) time egfgorithm for 2Color based on BFS.

Simply solve the 2Color problem without making any calls to a 3Color
method!
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Reducing 2Color to 3Color

2C

Solution for 2Color

Yes/No

N———

Check if graph is bipartite, if so

then select a pre-chosen 3-

colorable graph. If not then
o

select a pre-chosen non-3-

colorable graph
R

Use wer

Reduction

3Col

Algorithm for solving
3Color

Solution for 3Color

Yes/No
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Two More Reductions
L![\Ment-Se :
= (V,E) and an intege@

Given a grap

Is there a U € V with/|UN> k such that no two vertices in U are joined by an
edge? (U is called an independent set.)

Given a graph G = (V,E) and aninteger k
Is there d\U/ C V with |U| = k such that every pair of vertices in U is joined by an

——

edge? (U is called a clique.) —_—

e Cot <. Cli
ClalmLIndependeLtSy <p Clique

——_'—_-_-




Examples

* Independent Set

* Clique




Examples

* Independent Set

Yes

Yes

No

No



Reducing Independent Set to Clique

Independent Set

G@k:

Solution for
Independent Set

Yes/No

0(nP)

Transform given graph @d
numbe@into_G/’andl(}uch
that G-has an Independent Set
of size k iff G’ has a Clique of
size k' T

R

Use the same answer

Reduction

Algorithm for solving

Clique

Solution for Clique

Yes/No

20



Independent-Set <p Clique

Given:
* (G, k) as input to Independent-Set where G = (V,E)

Use function f that transforms (G, k) to (G, k’s where

@: (V, E") has the same vertices as G but E' consists of precisely
thos€ edges on V that are not'edges of G.

e—

From the definitions, U is an independent set in G_
< Uisacliquein G’

graph
complement

21



Reducing Independent Set to Clique

Independent Set 0 (Tlp) Clique
< K. K]
k=2 k=3 Set G’ to be the complement k= k' =
f\ graph of G.Set k' = k 7\

Algorithm for solving
Clique

Solution for Use the same answer ' _
Independent Set Solution for Clique

rd
Yes/No | = Yes/No

Reduction
22




Cligue <p Independent Set

Given:
* (G, k) as input to Clique where G = (V, E)

Use function f that transforms (G, k) to (G', k) where

* ¢G' = (V,E") has the same vertices as G but E’ consists of precisely
those edges on V that are not edges of G.

From the definitions, U is an clique in G
< Uis an independent set in G’

23



Reducing Clique to Independent Set

Clique

K/
k=2

G./Kkz

!

Solution for Clique

Yes/No

0(nP)

Set ' to be the complement
graph of G. Set k' = k

Use the same answer

Reduction

J Independent Set

/4

GQ ki:zl G’Q ki:zl

Algorithm for solving
Independent Set

Solution for Independent Set

Yes/No

24



Another Reduction

Vertex-Cover:
Givenagraph ¢ = (V,E) and aninteger k

Is there a(W) SV with [IW/| < k such that every edge of G has an endpoint in W?
(W is a vertex cover, a set of vertices that covers E.)

Claim: Independent-Set <p Vertex-Cover

e

Lemma:lnagraphG = (V,E)and U C V
Ly/ is an independent set &V — U ,is a vertex cover

25



Examples

* Independent Set

* Vertex Cover

Yes

Yes

No

No



Reducing Independent Set to Vertex Cover

Independent Set 0 (Tlp) Vertex Cover

I L < <L

7\ Algorithm for solving

Vertex Cover

Solution for Use the same answer '
Independent Set Solution for Vertex Cover

Yes/No Yes/No

Reduction

27




Reducing Vertex Cover to Independent Set

Vertex Cover

|
k=3

G
e

/

Solution for
Vertex Cover

0(nP)

Yes/No

Set G\ =G.Setk' =|V|—k
it G

Use the same answer

Reduction

Independent Set

ngf:zl G@,{rzgl

7]

Algorithm for solving
Independent Set

Solution for Independent Set

Yes/No

28



Reduction ldea
Lemma: In a graph ¢ = (V, E) anﬂ]/ 4

U is an independent set &V — U is a vertex cover
Proof: Nﬁ

’5 (=) Let U be an independent setin G

Then for every edge e € E,
U contains at most gne endpoint of e

So, at least one endpoint of e mustbeinV — U
So, V — U is a vertex cover
(<) Le’_cidé =V — U be a vertex cover of G

Then U does not contain both endpoints of any edge
(else W would miss that edge)

SoLlj is an independent set




Reduction for Clique <p Vertex-Cover

-

Clique:
Given a graph G = (V, E) and an integer k

Isthere a U € V with |U| = k such that every pair of vertices in U is joined by an edge?
(U is called a clique.)

Vertex-Cover:
Given a graph G = (V, E) and an integer k
Is there a W € V with |W| < k such that every edge of G has an endpointin W?
(W is a vertex cover, a set of vertices that covers E.)

Claim: Clique <p Vertex-Cover

ldea:
@Sp Independent-Set and Independent-Set Sp@e
_,_..,——-—'-'—'_'_- — —~—

——

\

—  —e e e

\

30



Reducing Clique to Vertex Cover

Clique ﬁ

Independent Set

OM Vertex Cover

G"Kkz

G"Kkz

Solution for Clique

Yes/No

et G' to be the

complement graph of G.

Setk' =k

Use the same
answer

!

G@ k,:ZI

G’lezgl

Algorithm for

Set¢'"' =G,
Setk' = |V| -k

solving
Independent
Set
Solution for Use the same
Independent Set answer
Reduction

G
e
G

<

solving

folution for
Vertex Cover

Algorithm for

Vertex Cover

i
Yes/No

on
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Reducing Clique to Vertex Cover , , )7
(") —

Clique 0 (Tlp) Vertex Cover

K] [Ko <

Set G’ to be the complement

graph of G.Set k' = |V| — k

Algorithm for solving
Vertex Cover

, . Use the same answer .
Solution for Clique Solution for Vertex Cover

Yes/No Yes/No

Reduction

32




2
L /)
Polynomial time

Defn: Le@polynomial—time) be the set of all decim

solvable by algorithms whose worst-case running time’is
bounded by some polynomial in the input size.

This is the class of decision problems whose solutions we have called

33



Polynomial Time Reduction

Defn: We write/4 <p B iff there is an algorithm for 4 using a ‘black box’ (subroutine
or method) that solves B that

* uses only a polynomial number of steps, and
* makes only a polynomial number of calls to a method for B.

Theorem: IfA <p B thqu EP=>A4€P

Proof: Not only is the number of calls polynomial but the size of the inputs on which
the calls are made is ponnomiaI!

Corollary: IfLA/<£then [/_\/
Theorem: If/A <p B andlEB\CjthenLA <p C/

Proof: Compose the reductions: Plug in “the algorithm for B that uses C” in place of B.

34



Relationship among the problems so far

Using polynomial time reductions we have found:

e 2Color <
ependent-Set <, Clique
* Clique <p Independeﬁt
* Vertex-Cover <p Independent-Set
* Independent-Set <p Vertex-Cover

ligue <pVertex-Cover
* By composing the reductions for Clique <pIndependet-Set and Independent-Set <, Vertex-Cover

* We could also conclude Vertex-Cover <p Clique

* Because we can reduce any of Independent-Set, Vertex-Cover, and Clique to any
other:
* If any one of those belongs to class P then all of them do.
* In any one of those does not belong to class P then none of them do



Beyond P?

Independent-Set, Clique, Vertex-Cover, and 3Color are
examples of natural and practically important problems for
which we don’t know any polynomial-time algorithms.

There are many others such as...
DecisionTSP: —

mgighted graph G and an integer k,

Is there a simple path that visits all vertices in G having
. _—
total weight at most k?

and...

36



LSatii@biIity’

* Boolean variables x4, ..., x,,
* taking values in {0, 1}. O=false, 1=true
* Literals
e x;or —x;fori =1,...,n. (—x; also written as x;.)

* Clause
* a logical OR of one or more literals
* e.g. (x1 V X3 V X7 V x12)

e CNF formula

* a logical AND of a bunch of clauses

e k-CNF formula
 All clauses have exactly k variables

37



Satisfiability

CNF formula example:
(x1 VX3V x4) N (—IX4_ V x?,) N\ (Xz V-axq1V X3)

Defn: If there is some assignment of 0’s and 1’s to the variables that makes
it true then we say the formula is satisfiable
* (x1V—ax3Vxy) A(—xsVxs)A(xy,V—axqVXx3)issatisfiable: x; = x3 =1
* x4 A (=x1 V X3) A(=xy V x3) A —X3 is not satisfiable.

3SAT: Given a CNF formula F with exactly 3 variables per clause,
is F satisfiable?

38



Common property of these problems

* There is a special piece of information, a short certificate or proof,
that allows you to efficiently verify (in polynomial-time) that the
YES answer is correct. This certificate might be very hard to find.

3Color: the assignment of a color to each node.
Independent-Set, Clique: the set of vertices

Vertex-Cover: the set of vertices

Decision-TSP: the path

3SAT: a truth assignment that makes the CNF formula true.

39



The complexity class NP

NP consists of all decision problems where

* You can verify the YES answers efficiently (in polynomial time) given a
short (polynomial-size) certificate

and

* No fake certificate can fool your polynomial time verifier into saying
YES for a NO instance

40



More precise definition of NP

A decision problem A is in NP iff there is
* a polynomial time procedure VerifyA(.,.) and
* a polynomial p

S.t.

* for every input x that is a YES for A there is a string t with |[t| < p(|x]|)
with VerifyA(x, t) = YES

and

* for every input x that is a NO for A there does not exist a string t with
It| < p(|x|) with VerifyA(x, t) = YES

* Astring t on which VerifyA(x, t) = YES is called a certificate for x or a proof
that x is a YES input

41



Verifying the certificate is efficient

3Color: the coloring

* Check that each vertex has one of only 3 colors and check that the
endpoints of every edge have different colors

Independent-Set, Clique: the set U of vertices
* Check that |U| = k and either no (IS) or all (Clique) edges on present on U
Vertex-Cover: the set W of vertices
* Check that |W| < k and W touches every edge.
Decision-TSP: the path
* Check that the path touches each vertex and has total weight < k.
e 3-SAT: a truth assignment a that makes the CNF formula F true.
e Evaluate F on the truth assignment a.

42



Keys to showing that a problem is in NP

1. Must be decision probem (YES/NO)

2. For every given YES input, is there a certificate (i.e., a hint) that would help?
 OKif some inputs don’t need a certificate

3. Forany given NO input, is there a fake certificate that would trick you?

4. You need a polynomial-time algorithm to be able to tell the difference.



Solving NP problems without hints

There is an obvious algorithm for all NP problems:

Brute force:
Try all possible certificates and check each one using the verifier to see if it works.

Even though the certificates are short, this is exponential time
e 2™ truth assignments for n variables

n . -
° (k) possible k-element subsets of nn vertices

* n! possible TSP tours of n vertices
* etc.



What We Know

* Every problem in NP is in exponential time
* Every problem in P isin NP

* You don’t need a certificate for problems in P so just ignore any hint you are
given

* Nobody knows if all problems in NP can be solved in polynomial time;
i.e., does P = NP?
e one of the most important open questions in all of science.
* huge practical implications

* Most CS researchers believe that P = NP

* S1IM prize either way
* but we don’t have good ideas for how to prove this ...



NP-hardness & NP-completeness

Notion of hardness we can prove that is useful unless P = NP:

Defn: Problem B is NP-hard iff every problem A € NP satisfies A <p B.

NP-hard

This means that B is at least as hard as every problem in NP.

Defn: Problem B is NP-complete iff NP-complete
* B € NP and
* B is NP-hard.

This means that B is a hardest problem in NP.

Not at all obvious that any NP-complete problems exist!

46



Cook-Levin Theorem

Theorem [Cook 1971, Levin 1973]: 3SAT is NP-complete
Proof: See CSE 431.

Corollary: If 3SAT <p B then B is NP-hard.

Proof: Let A be an arbitrary problem in NP.
Since 3SAT is NP-hard we have A <p 3SAT.

Then A <p 3SAT and 3SAT <p B imply that A <p B.

Therefore every problem Ain NP has A <, B
so B is NP-hard.

Cook & Levin did the
hard work.

We only need to give
one reduction to show
that a problem is
NP-hard!

47



Another NP-complete problem: 3SAT <p Independent-Set

1. The reduction:
 Map CNF formula F to a graph G and integer k
Let m = # of clauses of F
Create a vertex in G for each literal occurrence in F
Join two vertices u, v in G by an edge iff
* u and v correspond to literals in the same clause of F (green edges) or

* u and v correspond to literals x and —x (or vice versa) for some
variable x (red edges).

Setk=m

2. Clearly polynomial-time computable

48



Another NP-complete problem: 3SAT <p Independent-Set

F = (x1 VX3V x4) N (xz VX4 V x3) N\ (—Ixz V-axq1V x3)

X1 X2 X2 m=3

—1X4

X3 —1X1

X4 X3 / X3

G has both kinds of edges.
The color is just to show why the edges were included.

k=m

49



Correctness (=)

Suppose that F is satisfiable (YES for 3SAT)

* Let ¢ be a satisfying assignment; it satisfies at
least one literal in each clause.

* Choose the set U in G to correspond to the first
satisfied literal in each clause.

e U =m
* Since U has 1 vertex per clause, no green

edges inside U.

* A truth assignment never satisfies both x and
—X, s0 no red edges inside U.

* Therefore U is an independent set of size m

Therefore (G, m) is a YES for Independent-Set.

F=(x1V-ax3Vxy)A(xaV-axgVxs)A(axyV-axgVaxg)

Satisfying assighment «a:
a(xq) = alxz) = alxz) = a(xy) =1

Set U marked in purple is independent.

50



Correctness (&)

Suppose that G has an independent set of size m
((G,m) is a YES for Independent-Set)

Let U be the independent set of size m;

U must have one vertex per column (green edges)

Because of red edges, U doesn’t have vertex
labels with conflicting literals.

Set all literals labelling vertices in U to true

This may not be a total assignment but just extend
arbitrarily to a total assignment «.

* This assignment satisfies F since it makes at
least one literal per clause true.

Therefore F is satisfiable and a YES for 3SAT.

F=(x1VaxzgVxy) A(XzV-axgVxz)A(—xyV-axgVxs)

X1

—1X3

X4

X2

_|X4,

X3

—1X2

|

1
\‘x:;

Given independent set U of size m

m=3

Satisfying assighnment a: Part defined by U
a(xy) = 0,a(xz) =1,a(x3) =0
Set a(x,) = 0.

51



Many NP-complete problems

Since 3SAT <p Independent-Set, Independent-Set is NP-hard.
We already showed that Independent-Set is in NP.
= Independent-Set is NP-complete

Corollary: Clique and Vertex-Cover are also NP-complete.

Proof: We already showed that all are in NP.

We also showed that Independent-Set polytime reduces to all of them.
Combining this with 3SAT <, Independent-Set we get that all are NP-hard.
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