
CSE 421 Winter 2025
Lecture 22:
Reductions

Nathan Brunelle

http://www.cs.uw.edu/421

http://www.cs.uw.edu/421

Q: Does every problem have a polynomial time algorithm?

A: NO. The Halting problem is undecidable so it doesn’t have an
algorithm at all [Turing]

Q: If there is an algorithm for a problem is there is always one that
runs in polynomial time?

A: NO. There are problems that require exponential time to solve.
(See CSE 431)

Q: What about some of the problems we’ve seen so far?

2

How do we know that a problem is hard?
At this point in the quarter, you’ve probably at least once been banging your head
against a problem…

… for so long that you began to think “there’s no way there’s actually an efficient
algorithm for this problem.”

That wasn’t true for any of the problems we have assigned you to solve (so far).

• But we think that it is true for certain types of problems, including one where you
showed how some algorithms failed to work.

• Over the next week we will look at how you can figure out that some problem you
encounter is just as hard as those.

3

Some definitions

Defn: A problem is a set of inputs and their associated correct outputs.

• “Find a Minimum Spanning Tree” is a problem.

• Input is a graph, output is the MST.

• “Tell whether a graph is bipartite” is a problem.

• Input is a graph, output is “yes” or “no”

• “Find the ‘maximum subarray sum’” is a problem.

• Input is an array, output is the number that represents
 the largest sum of a subarray.

4

Some definitions

Defn: An instance is a single input to a problem.

• A single, particular graph is an instance of the MST problem

• A single, particular graph is an instance of the bipartiteness-checking
problem.

• A single, particular array is an instance of the maximum subarray sum
problem.

5

Relative Hardness of Problems
• Want to compare the hardness of problems

• Want to be able to say

“Problem B is solvable in polynomial time

⇒ problem A is solvable in polynomial time”

“Problem B is at least as hard as problem A”

6

Polynomial Time Reduction
Defn: We write 𝑨 ≤𝑷 𝑩 iff there is an algorithm for 𝑨 using a ‘black box’ (subroutine

or method) that solves 𝑩 that

• uses only a polynomial number of steps, and

• makes only a polynomial number of calls to a method for 𝑩.

Theorem: If 𝑨 ≤𝑷 𝑩 then a poly time algorithm for 𝑩 ⇒ poly time algorithm for 𝑨

Proof: Not only is the number of calls polynomial but the size of the inputs on which
the calls are made is polynomial!

Corollary: If you can prove there is no fast algorithm for 𝑨, then that proves there is
 no fast algorithm for 𝑩.

Intuition for “𝑨 ≤𝑷 𝑩”: “𝑩 is at least as hard* as 𝑨” *up to polynomial-time slop.

7

Now the weird part…
We read “𝑨 ≤𝑷 𝑩” as “𝑨 is polynomial-time reducible to 𝑩” or

“𝑨 can be reduced to 𝑩 in polynomial time”
• It means “we can solve 𝑨 using at most a polynomial amount of

 work on top of solving 𝑩.”

• But word reducible seems to go in the opposite direction of the ≤ sign.

The general motivation for the terminology is:

• “To solve 𝑨 we can reduce our attention from all possible things just to solving 𝑩.”

• Often we have easy problem ≤𝑷 harder problem. (e.g. bipartite matching ≤𝑷 flow)

• Sometimes we can show general case ≤𝑷 special case (e.g. stable matching)

• In this case we really use the extra polytime work we’re allowed.

8

Some Previous Examples
• On Homework 1, you reduced “stable matchings with different numbers of

applicants and jobs with only some unacceptable“ to “[standard] stable matching”.

• On Homework 2, you (might have) reduced
 “labelling bear photographs” to “2-coloring”.

• We reduced “Bipartite Matching” to “Network Flow”.

9

Getting the wording right
Lots of people mess this up!

10

Tl;dr check the direction you’re
going every time. It’s going to
take a while to be intuitive.

Reductions

11

Shows how two different problems relate to each other

MacGyver’s Reduction

12

Opening a door

Problem we don’t know how to solve

Lighting a fire

Problem we do know how to solve

Alcohol, wood,
matches

Solution for 𝑩

𝐴 𝐵

Keg cannon
battering ram

Solution for 𝑨

Aim duct at door,
insert keg

H
o

w
?

Put fire under the Keg

Reduction

Using the word “reduction”

• Problem 𝐴: open a door

• Problem 𝐵: light a fire

• MacGyver reduced 𝐴 to 𝐵
• Meaning he used a solution to 𝐵 to produce a solution for 𝐴

• Which statements are correct?
1. 𝐴 ≤ 𝐵

2. 𝐵 ≤ 𝐴

3. 𝐴 is “easier” than 𝐵

4. 𝐵 is “easier” than 𝐴

Using the word “reduction”

• Problem 𝐴: open a door

• Problem 𝐵: light a fire

• MacGyver reduced 𝐴 to 𝐵
• Meaning he used a solution to 𝐵 to produce a solution for 𝐴

• Which statements are correct?
1. 𝑨 ≤ 𝑩

2. 𝐵 ≤ 𝐴

3. 𝑨 is “easier” than 𝑩

4. 𝐵 is “easier” than 𝐴

Polynomial Time Reductions

15

Problem 𝐴 Problem 𝐵

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

𝑌𝑋

𝑂(𝑛𝑝)

Procedure for converting
instances of 𝐴 into instances of 𝐵

Algorithm for solving 𝐵

Procedure for converting
solutions of B into
solutions of 𝐴

Decision Problems
Defn: A decision problem is a problem that has a “YES” or “NO” answer.

• A correct algorithm has a Boolean return type

Example: Is this polytope empty?

• Problems can be rephrased in terms of very similar decision problems.

• Instead of “Find the shortest path from 𝒔 to 𝒕”
 ask “Is there a path from 𝒔 to 𝒕 of length at most 𝒌?”

• Can do binary search to find exact value.

• If a problem is easy then all of its individual output bits must be easy

• If a problem is hard then at least one of its output bits must be hard.

16

Polynomial Time Reductions (Decision Problems)

17

Decision Problem 𝐴 Decision Problem 𝐵

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Yes/No

𝑂(𝑛𝑝)

Procedure for converting
instances of 𝐴 into instances of 𝐵

Algorithm for solving 𝐵

Use the same answer

Yes/No

A Special Kind of Polynomial-Time Reduction

We will often use a restricted form of 𝑨 ≤𝑷 𝑩 often called a Karp or
many-one reduction...

Defn: 𝑨 ≤𝑷
𝟏 𝑩 iff there is an algorithm for 𝑨 given a black box

solving 𝑩 that on input 𝒙 that

• Runs for polynomial time computing 𝒚 = 𝒇(𝒙)

• Makes 𝟏 call to the black box for 𝑩 on input 𝒚

• Returns the answer that the black box gave

 We say that the function 𝒇 is the reduction.

18

Let’s do a reduction

4 steps for reducing (decision problem) 𝑨 to problem 𝑩

1. Describe the reduction itself

• i.e., the function that converts the input for 𝑨 to the one for problem 𝑩.

• i.e., describe what the top arrow in the pink box does

2. Make sure the running time would be polynomial

• In lecture, we’ll sometimes skip writing out this step.

3. Argue that if the correct answer (to the instance for 𝑨) is YES,
then the input we produced is a YES instance for 𝑩.

4. Argue that if the correct answer (to the instance for 𝑨) is NO,
then the input we produced is a NO instance for 𝑩.

19

Let’s do a reduction

4 steps for reducing (decision problem) 𝑨 to problem 𝑩

1. Describe the reduction itself

• i.e., the function that converts the input for 𝑨 to the one for problem 𝑩.

• i.e., describe what the top arrow in the pink box does

2. Make sure the running time would be polynomial

• In lecture, we’ll sometimes skip writing out this step.

3. Argue that if the correct answer (to the instance for 𝑨) is YES,
then the input we produced is a YES instance for 𝑩.

4. Argue that if the input we produced is a YES instance for 𝑩
then the correct answer (to the instance for 𝑨) is YES.

20

Contrapositive

Reduce 2Color to 3Color
Defn: A undirected graph 𝑮 = (𝑽, 𝑬) is 𝒌-colorable iff
 we can assign one of 𝒌 colors to each vertex of 𝑽 s.t. for

(𝒖, 𝒗) ∈ 𝑬, their colors, 𝝌(𝒖) and 𝝌(𝒗), are different.
 “edges are not monochromatic”

2Color: Given: an undirected graph 𝑮
 Is 𝑮 2-colorable?

3Color: Given: an undirected graph 𝑮
 Is 𝑮 3-colorable?

21

Reduce 2Color to 3Color
Defn: A undirected graph 𝑮 = (𝑽, 𝑬) is 𝒌-colorable iff
 we can assign one of 𝒌 colors to each vertex of 𝑽 s.t. for

(𝒖, 𝒗) ∈ 𝑬, their colors, 𝝌(𝒖) and 𝝌(𝒗), are different.
 “edges are not monochromatic”

2Color: Given: an undirected graph 𝑮
 Is 𝑮 2-colorable?

3Color: Given: an undirected graph 𝑮
 Is 𝑮 3-colorable?

22

YesNo

YesNo

2Color ≤𝑷 3Color
• Given a graph 𝑮 figure out whether it can be 2-colored, by using an

algorithm that figures out whether it can be 3-colored.

Usual outline:

• Transform 𝑮 into an input for the 3Color algorithm

• Run the 3Color algorithm

• Use the answer from the 3Color algorithm as the answer for 𝑮 for 2Color

23

Reducing 2Color to 3Color

24

2Color 3Color

Solution for 3Color
Solution for 2Color

Reduction

Yes/No

𝑂(𝑛𝑝)

Transform given graph 𝑮 such
that the output graph 𝑯 was
3-colorable if and only if 𝑮
was 2-colorable

Algorithm for solving
3Color

Use the same answer

Yes/No

𝑯𝑮

Reduction

If we just ask the 3Color algorithm about 𝑮, if 𝑮 is 3-colorable but not 2-
colorable it will give the wrong answer because it has the 3rd color
available.

Idea: Add extra vertices and edges to to G to force the 3rd color to be used
there but not on 𝑮

Reduction 𝒇: Add one extra vertex 𝒗 and attach it to everything in 𝑮.

Write 𝑯 = 𝒇(𝑮).

(𝒇 is polynomial time computable.)

25

Reducing 2Color to 3Color

26

2Color 3Color

Solution for 3Color
Solution for 2Color

Reduction

Yes/No

𝑂(𝑛𝑝)

Add a new node to 𝑮, connect
every node to it

Algorithm for solving
3Color

Use the same answer

Yes/No

𝑯𝑮

Let’s do a reduction
4 steps for reducing (decision problem) 𝑨 to problem 𝑩

1. Describe the reduction itself

• i.e., the function that converts the input for 𝑨 to the one for problem 𝑩.

2. Make sure the running time would be polynomial

• In lecture, we’ll sometimes skip writing out this step.

3. Argue that if the correct answer (to the instance for 𝑨) is YES,
then the input we produced is a YES instance for 𝑩.

4. Argue that if the input we produced is a YES instance for 𝑩
then the correct answer (to the instance for 𝑨) is YES.

27

Correctness
Two statements to prove (two directions):

If 𝑮 is a YES for 2Color (𝑮 is 2-colorable) then 𝑯 is a YES for 3Color (𝑯 is 3-colorable)

 If 𝑯 is a YES for 3Color (𝑯 is 3-colorable) then 𝑮 is a YES for 2Color on (𝑮 is 2-colorable)

28

Suppose 𝑮 is 2-colorable: 𝑮 has a 2-coloring 𝝌 so edges of 𝑮 have different
colored endpoints. We get a 3-coloring of 𝑯 by using 𝝌 for all the copies of
original vertices of 𝑮 and a 3rd color for the extra vertex 𝒗: Original edges of 𝑮 in
𝑯 have different colored endpoints; the extra edges too. So 𝑯 is 3-colorable.

Suppose 𝑯 is 3-colorable: Consider a 3-coloring 𝝌′ of 𝑯. Consider the extra
vertex 𝒗 in 𝑯 that was added to 𝑮. For every vertex 𝒖 of 𝑮, we have an edge
(𝒖, 𝒗) so 𝝌′ 𝒖 ≠ 𝝌′(𝒗). This means that every vertex 𝒖 of 𝑮 is colored with
one of the two colors other than 𝝌′(𝒗). So we can use 𝝌′ as a 2-coloring of 𝑮
since all those edges had different colored endpoints in 𝑯. So 𝑮 is 2-colorable.

Write two separate arguments
The two directions we covered actually prove an if and only if.

To make sure you handle both directions, I strongly recommend:

• Always do two separate proofs! (Don’t try to prove both directions
at once, don’t refer back to the prior proof and say “for the same
reason”. There are usually subtle differences.)

• Don’t use contradiction! (It’s easy to start from the wrong spot and
accidentally prove the same direction twice without realizing it.)

29

Another proof of 2Color ≤𝑷 3Color
We had an 𝑶(𝒏 + 𝒎) time algorithm for 2Color based on BFS.

Simply solve the 2Color problem without making any calls to a 3Color
method!

30

Reducing 2Color to 3Color

31

2Color 3Color

Solution for 3Color
Solution for 2Color

Reduction

Yes/No

𝑂(𝑛𝑝)

Check if graph is bipartite, if so
then select a pre-chosen 3-
colorable graph. If not then
select a pre-chosen non-3-
colorable graph

Algorithm for solving
3Color

Use the same answer

Yes/No

𝑯𝑮

Two Simple Reductions
Independent-Set:

Given a graph 𝑮 = (𝑽, 𝑬) and an integer 𝒌

 Is there a 𝑼 ⊆ 𝑽 with 𝑼 ≥ 𝒌 such that no two vertices in 𝑼 are joined by an
edge? (𝑼 is called an independent set.)

Clique:
Given a graph 𝑮 = (𝑽, 𝑬) and an integer 𝒌

 Is there a 𝑼 ⊆ 𝑽 with 𝑼 ≥ 𝒌 such that every pair of vertices in 𝑼 is joined by an
edge? (𝑼 is called a clique.)

Claim: Independent-Set ≤𝑷 Clique

32

Examples

• Independent Set

• Clique

𝑘 = 2 𝑘 = 3

𝑘 = 3 𝑘 = 4

Examples

• Independent Set

• Clique

𝑘 = 2 𝑘 = 3

𝑘 = 3 𝑘 = 4

Yes No

Yes No

Reducing Independent Set to Clique

35

Independent Set Clique

Solution for Clique
Solution for
Independent Set

Reduction

Yes/No

𝑂(𝑛𝑝)

Transform given graph 𝑮 and
number 𝒌 into 𝑮′ and 𝒌′ such
that 𝑮 has an Independent Set
of size 𝒌 iff 𝑮′ has a Clique of
size 𝒌′

Algorithm for solving
Clique

Use the same answer

Yes/No

𝑘 = 2

𝑮

𝑘 = 3

𝑮
𝑮′, 𝒌′

Independent-Set ≤𝑷 Clique
Given:

• (𝑮, 𝒌) as input to Independent-Set where 𝑮 = (𝑽, 𝑬)

Use function 𝒇 that transforms (𝑮, 𝒌) to (𝑮′, 𝒌) where
• 𝑮′ = (𝑽, 𝑬′) has the same vertices as 𝑮 but 𝑬′ consists of precisely

those edges on 𝑽 that are not edges of 𝑮.

From the definitions, 𝑼 is an independent set in 𝑮

  𝑼 is a clique in 𝑮′

graph
complement

36

Reducing Independent Set to Clique

37

Independent Set Clique

Solution for Clique
Solution for
Independent Set

Reduction

Yes/No

𝑂(𝑛𝑝)

Set 𝑮′ to be the complement
graph of 𝑮. Set 𝒌′ = 𝒌

Algorithm for solving
Clique

Use the same answer

Yes/No

𝑘 = 2

𝑮

𝑘 = 3

𝑮

𝑘′ = 2

𝑮′

𝑘′ = 3

𝑮′

Clique ≤𝑷 Independent Set
Given:

• (𝑮, 𝒌) as input to Clique where 𝑮 = (𝑽, 𝑬)

Use function 𝒇 that transforms (𝑮, 𝒌) to (𝑮′, 𝒌) where
• 𝑮′ = (𝑽, 𝑬′) has the same vertices as 𝑮 but 𝑬′ consists of precisely

those edges on 𝑽 that are not edges of 𝑮.

From the definitions, 𝑼 is an clique in 𝑮

  𝑼 is an independent set in 𝑮′

38

Reducing Clique to Independent Set

39

Clique Independent Set

Solution for Independent SetSolution for Clique

Reduction

Yes/No

𝑂(𝑛𝑝)

Set 𝑮′ to be the complement
graph of 𝑮. Set 𝒌′ = 𝒌

Algorithm for solving
Independent Set

Use the same answer

Yes/No

𝑘′ = 2

𝑮′

𝑘′ = 3

𝑮′

𝑘 = 2

𝑮

𝑘 = 3

𝑮

Another Reduction
Vertex-Cover:

Given a graph 𝑮 = (𝑽, 𝑬) and an integer 𝒌

 Is there a 𝑾 ⊆ 𝑽 with 𝑾 ≤ 𝒌 such that every edge of 𝑮 has an endpoint in 𝑾?
(𝑾 is a vertex cover, a set of vertices that covers 𝑬.)

Claim: Independent-Set ≤𝑷 Vertex-Cover

Lemma: In a graph 𝑮 = (𝑽, 𝑬) and 𝑼 ⊆ 𝑽

 𝑼 is an independent set ⇔ 𝑽 − 𝑼 is a vertex cover

40

Examples

• Independent Set

• Vertex Cover

𝑘 = 2 𝑘 = 3

𝑘 = 3 𝑘 = 2

Yes No

Yes No

Reducing Independent Set to Vertex Cover

42

Independent Set Vertex Cover

Solution for Vertex Cover
Solution for
Independent Set

Reduction

Yes/No

𝑂(𝑛𝑝)

Set 𝑮′ = 𝑮. Set 𝒌′ = 𝑽 − 𝒌

Algorithm for solving
Vertex Cover

Use the same answer

Yes/No

𝑘 = 2

𝑮

𝑘 = 3

𝑮

𝑘′ = 3

𝑮′

𝑘′ = 2

𝑮′

Reducing Vertex Cover to Independent Set

43

Vertex Cover Independent Set

Solution for Independent Set
Solution for
Vertex Cover

Reduction

Yes/No

𝑂(𝑛𝑝)

Set 𝑮′ = 𝑮. Set 𝒌′ = 𝑽 − 𝒌

Algorithm for solving
Independent Set

Use the same answer

Yes/No

𝑘 = 3

𝑮

𝑘 =2

𝑮

𝑘′ = 2

𝑮′

𝑘′ = 3

𝑮′

Reduction Idea
Lemma: In a graph 𝑮 = (𝑽, 𝑬) and 𝑼 ⊆ 𝑽

 𝑼 is an independent set ⇔ 𝑽 − 𝑼 is a vertex cover

Proof:

(⇒) Let 𝑼 be an independent set in 𝑮

Then for every edge 𝒆 ∈ 𝑬,
 𝑼 contains at most one endpoint of 𝒆

So, at least one endpoint of 𝒆 must be in 𝑽 − 𝑼

So, 𝑽 − 𝑼 is a vertex cover

(⇐) Let 𝑾 = 𝑽 − 𝑼 be a vertex cover of 𝑮

Then 𝑼 does not contain both endpoints of any edge
(else 𝑾 would miss that edge)

So 𝑼 is an independent set

44

𝑼
𝑽 − 𝑼

Reduction for Clique ≤𝑷 Vertex-Cover

Clique:
Given a graph 𝑮 = (𝑽, 𝑬) and an integer 𝒌
 Is there a 𝑼 ⊆ 𝑽 with 𝑼 ≥ 𝒌 such that every pair of vertices in 𝑼 is joined by an edge?
(𝑼 is called a clique.)

Vertex-Cover:
Given a graph 𝑮 = (𝑽, 𝑬) and an integer 𝒌
 Is there a 𝑾 ⊆ 𝑽 with 𝑾 ≤ 𝒌 such that every edge of 𝑮 has an endpoint in 𝑾?
(𝑾 is a vertex cover, a set of vertices that covers 𝑬.)

Claim: Clique ≤𝑷 Vertex-Cover

Idea:

 Use Clique ≤𝑷 Independent-Set and Independent-Set ≤𝑷 Vertex-Cover

45

Reducing Clique to Vertex Cover

46

Clique Independent Set

Solution for
Independent Set

Solution for Clique

Yes/No

Algorithm for
solving
Independent
Set

Reduction

𝑂(𝑛𝑝)

Set 𝑮′ to be the
complement graph of 𝑮.
Set 𝒌′ = 𝒌

Use the same
answer

Yes/No

𝑘′ = 2

𝑮′

𝑘′ = 3

𝑮′
𝑘 = 2

𝑮

𝑘 = 3

𝑮

Reduction

𝑂(𝑛𝑝)

Set 𝑮′′ = 𝑮′.
Set 𝒌′′ = 𝑽 − 𝒌′

Use the same
answer

Vertex Cover

Solution for
 Vertex Cover

Yes/No

𝑘′′ = 3

𝑮′′

𝑘′′ = 2

𝑮′′

Algorithm for
solving
Vertex Cover

Reducing Clique to Vertex Cover

47

Clique Vertex Cover

Solution for Vertex CoverSolution for Clique

Reduction

Yes/No

𝑂(𝑛𝑝)

Set 𝑮′ to be the complement
graph of 𝑮. Set 𝒌′ = 𝑽 − 𝒌

Algorithm for solving
Vertex Cover

Use the same answer

Yes/No

𝑘′ = 3

𝑮′

𝑘′ = 2

𝑮′

𝑘 = 2

𝑮

𝑘 = 3

𝑮

	Slide 1: CSE 421 Winter 2025 Lecture 22: Reductions
	Slide 2: Q: Does every problem have a polynomial time algorithm?
	Slide 3: How do we know that a problem is hard?
	Slide 4: Some definitions
	Slide 5: Some definitions
	Slide 6: Relative Hardness of Problems
	Slide 7: Polynomial Time Reduction
	Slide 8: Now the weird part…
	Slide 9: Some Previous Examples
	Slide 10: Getting the wording right
	Slide 11: Reductions
	Slide 12: MacGyver’s Reduction
	Slide 13: Using the word “reduction”
	Slide 14: Using the word “reduction”
	Slide 15: Polynomial Time Reductions
	Slide 16: Decision Problems
	Slide 17: Polynomial Time Reductions (Decision Problems)
	Slide 18: A Special Kind of Polynomial-Time Reduction
	Slide 19: Let’s do a reduction
	Slide 20: Let’s do a reduction
	Slide 21: Reduce 2Color to 3Color
	Slide 22: Reduce 2Color to 3Color
	Slide 23: 2Color less than or equal to sub bold italic cap P 3Color
	Slide 24: Reducing 2Color to 3Color
	Slide 25: Reduction
	Slide 26: Reducing 2Color to 3Color
	Slide 27: Let’s do a reduction
	Slide 28: Correctness
	Slide 29: Write two separate arguments
	Slide 30: Another proof of 2Color less than or equal to sub bold italic cap P 3Color
	Slide 31: Reducing 2Color to 3Color
	Slide 32: Two Simple Reductions
	Slide 33: Examples
	Slide 34: Examples
	Slide 35: Reducing Independent Set to Clique
	Slide 36: Independent-Set less than or equal to sub bold italic cap P Clique
	Slide 37: Reducing Independent Set to Clique
	Slide 38: Clique less than or equal to sub bold italic cap P Independent Set
	Slide 39: Reducing Clique to Independent Set
	Slide 40: Another Reduction
	Slide 41: Examples
	Slide 42: Reducing Independent Set to Vertex Cover
	Slide 43: Reducing Vertex Cover to Independent Set
	Slide 44: Reduction Idea
	Slide 45: Reduction for Clique less than or equal to sub bold italic cap P Vertex-Cover
	Slide 46: Reducing Clique to Vertex Cover
	Slide 47: Reducing Clique to Vertex Cover

