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Q: Does every problem have a polynomial time algorithm?

A: NO. The Halting problem is undecidable so it doesn’t have an  
algorithm at all [Turing]

Q: If there is an algorithm for a problem is there is always one that 
runs in polynomial time? 

A: NO.  There are problems that require exponential time to solve. 
(See CSE 431)

Q: What about some of the problems we’ve seen so far?
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How do we know that a problem is hard?
At this point in the quarter, you’ve probably at least once been banging your head 
against a problem…

… for so long that you began to think “there’s no way there’s actually an efficient 
algorithm for this problem.”

That wasn’t true for any of the problems we have assigned you to solve (so far).

• But we think that it is true for certain types of problems, including one where you 
showed how some algorithms failed to work.

• Over the next week we will look at how you can figure out that some problem you 
encounter is just as hard as those. 
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Some definitions

Defn: A problem is a set of inputs and their associated correct outputs.

• “Find a Minimum Spanning Tree” is a problem. 

• Input is a graph, output is the MST.

• “Tell whether a graph is bipartite” is a problem.

• Input is a graph, output is “yes” or “no”

• “Find the ‘maximum subarray sum’” is a problem.

• Input is an array, output is the number that represents  
 the largest sum of a subarray.
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Some definitions

Defn: An instance is a single input to a problem.

• A single, particular graph is an instance of the MST problem

• A single, particular graph is an instance of the bipartiteness-checking 
problem.

• A single, particular array is an instance of the maximum subarray sum 
problem.
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Relative Hardness of Problems
• Want to compare the hardness of problems

• Want to be able to say

“Problem B is solvable in polynomial time   

⇒ problem A is solvable in polynomial time”

“Problem B is at least as hard as problem A”
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Polynomial Time Reduction 
Defn: We write 𝑨 ≤𝑷 𝑩 iff there is an algorithm for 𝑨 using a ‘black box’ (subroutine 

or method) that solves 𝑩 that

• uses only a polynomial number of steps, and 

• makes only a polynomial number of calls to a method for 𝑩.

Theorem: If 𝑨 ≤𝑷 𝑩 then a poly time algorithm for 𝑩 ⇒ poly time algorithm for 𝑨

Proof:  Not only is the number of calls polynomial but the size of the inputs on which 
the calls are made is polynomial!

Corollary:  If you can prove there is no fast algorithm for 𝑨, then that proves there is 
 no fast algorithm for 𝑩.

Intuition for “𝑨 ≤𝑷 𝑩”:  “𝑩 is at least as hard* as 𝑨”   *up to polynomial-time slop.
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Now the weird part…
We read “𝑨 ≤𝑷 𝑩” as “𝑨 is polynomial-time reducible to 𝑩” or

“𝑨 can be reduced to 𝑩 in polynomial time”
• It means “we can solve 𝑨 using at most a polynomial amount of  

 work on top of solving 𝑩.”

• But word reducible seems to go in the opposite direction of the ≤ sign.

The general motivation for the terminology is: 

• “To solve 𝑨 we can reduce our attention from all possible things just to solving 𝑩.”

• Often we have easy problem ≤𝑷 harder problem. (e.g. bipartite matching ≤𝑷 flow)

• Sometimes we can show general case ≤𝑷 special case (e.g. stable matching)

• In this case we really use the extra polytime work we’re allowed.
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Some Previous Examples
• On Homework 1, you reduced “stable matchings with different numbers of 

applicants and jobs with only some unacceptable“ to “[standard] stable matching”.

• On Homework 2, you (might have) reduced    
 “labelling bear photographs” to “2-coloring”.

• We reduced “Bipartite Matching” to “Network Flow”.

9



Getting the wording right
Lots of people mess this up!
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Tl;dr check the direction you’re 
going every time. It’s going to 
take a while to be intuitive.



Reductions
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Shows how two different problems relate to each other



MacGyver’s Reduction
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Opening a door

Problem we don’t know how to solve

Lighting a fire

Problem we do know how to solve

Alcohol, wood, 
matches

Solution for 𝑩

𝐴 𝐵

Keg cannon 
battering ram

Solution for 𝑨

Aim duct at door, 
insert keg

H
o

w
?

Put fire under the Keg

Reduction



Using the word “reduction”

• Problem 𝐴: open a door

• Problem 𝐵: light a fire

• MacGyver reduced 𝐴 to 𝐵
• Meaning he used a solution to 𝐵 to produce a solution for 𝐴

• Which statements are correct?
1. 𝐴 ≤ 𝐵

2. 𝐵 ≤ 𝐴

3. 𝐴 is “easier” than 𝐵

4. 𝐵 is “easier” than 𝐴
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• Problem 𝐴: open a door

• Problem 𝐵: light a fire

• MacGyver reduced 𝐴 to 𝐵
• Meaning he used a solution to 𝐵 to produce a solution for 𝐴

• Which statements are correct?
1. 𝑨 ≤ 𝑩

2. 𝐵 ≤ 𝐴

3. 𝑨 is “easier” than 𝑩
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Polynomial Time Reductions
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Problem 𝐴 Problem 𝐵

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

𝑌𝑋

𝑂(𝑛𝑝)

Procedure for converting 
instances of 𝐴 into instances of 𝐵 

Algorithm for solving 𝐵

Procedure for converting 
solutions of B into 
solutions of 𝐴 



Decision Problems
Defn:  A decision problem is a problem that has a “YES” or “NO” answer. 

• A correct algorithm has a Boolean return type

Example: Is this polytope empty?

• Problems can be rephrased in terms of very similar decision problems.

• Instead of “Find the shortest path from 𝒔 to 𝒕”      
        ask “Is there a path from 𝒔 to 𝒕 of length at most 𝒌?”

• Can do binary search to find exact value.

• If a problem is easy then all of its individual output bits must be easy

• If a problem is hard then at least one of its output bits must be hard.
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Polynomial Time Reductions (Decision Problems)
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Decision Problem 𝐴 Decision Problem 𝐵

Solution for 𝑩

𝐴 𝐵

Solution for 𝑨

Reduction

Yes/No

𝑂(𝑛𝑝)

Procedure for converting 
instances of 𝐴 into instances of 𝐵 

Algorithm for solving 𝐵

Use the same answer

Yes/No



A Special Kind of Polynomial-Time Reduction

We will often use a restricted form of 𝑨 ≤𝑷 𝑩 often called a Karp or 
many-one reduction...

Defn: 𝑨 ≤𝑷
𝟏 𝑩 iff there is an algorithm for 𝑨 given a black box   

solving 𝑩 that on input 𝒙 that

• Runs for polynomial time computing 𝒚 = 𝒇(𝒙)

• Makes 𝟏 call to the black box for 𝑩 on input 𝒚

• Returns the answer that the black box gave

 We say that  the function 𝒇 is the reduction.

18



Let’s do a reduction

4 steps for reducing (decision problem) 𝑨 to problem 𝑩

1. Describe the reduction itself

• i.e., the function that converts the input for 𝑨 to the one for problem 𝑩.

• i.e., describe what the top arrow in the pink box does

2. Make sure the running time would be polynomial 

• In lecture, we’ll sometimes skip writing out this step.

3. Argue that if the correct answer (to the instance for 𝑨) is YES,       
then the input we produced is a YES instance for 𝑩.

4. Argue that if the correct answer (to the instance for 𝑨) is NO,           
then the input we produced is a NO instance for 𝑩.
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Let’s do a reduction

4 steps for reducing (decision problem) 𝑨 to problem 𝑩

1. Describe the reduction itself

• i.e., the function that converts the input for 𝑨 to the one for problem 𝑩.

• i.e., describe what the top arrow in the pink box does

2. Make sure the running time would be polynomial 

• In lecture, we’ll sometimes skip writing out this step.

3. Argue that if the correct answer (to the instance for 𝑨) is YES,       
then the input we produced is a YES instance for 𝑩.

4. Argue that if the input we produced is a YES instance for 𝑩          
then the correct answer (to the instance for 𝑨) is YES.
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Reduce 2Color to 3Color
Defn:  A undirected graph 𝑮 = (𝑽, 𝑬) is 𝒌-colorable iff   
 we can assign one of 𝒌 colors to each vertex of 𝑽 s.t. for 

(𝒖, 𝒗) ∈ 𝑬,  their colors, 𝝌(𝒖) and 𝝌(𝒗), are different.  
           “edges are not monochromatic”

2Color: Given: an undirected graph 𝑮                  
    Is 𝑮 2-colorable?

3Color: Given: an undirected graph 𝑮        
    Is 𝑮 3-colorable?
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Reduce 2Color to 3Color
Defn:  A undirected graph 𝑮 = (𝑽, 𝑬) is 𝒌-colorable iff   
 we can assign one of 𝒌 colors to each vertex of 𝑽 s.t. for 

(𝒖, 𝒗) ∈ 𝑬,  their colors, 𝝌(𝒖) and 𝝌(𝒗), are different.  
           “edges are not monochromatic”

2Color: Given: an undirected graph 𝑮                  
    Is 𝑮 2-colorable?

3Color: Given: an undirected graph 𝑮        
    Is 𝑮 3-colorable?
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2Color ≤𝑷 3Color
• Given a graph 𝑮 figure out whether it can be 2-colored, by using an 

algorithm that figures out whether it can be 3-colored.

Usual outline:

• Transform 𝑮 into an input for the 3Color algorithm

• Run the 3Color algorithm

• Use the answer from the 3Color algorithm as the answer for 𝑮 for 2Color
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Reducing 2Color to 3Color
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2Color 3Color

Solution for 3Color
Solution for 2Color

Reduction

Yes/No

𝑂(𝑛𝑝)

Transform given graph 𝑮 such 
that the output graph 𝑯 was 
3-colorable if and only if 𝑮 
was 2-colorable

Algorithm for solving 
3Color

Use the same answer

Yes/No

𝑯𝑮



Reduction

If we just ask the 3Color algorithm about 𝑮, if 𝑮 is 3-colorable but not 2-
colorable it will give the wrong answer because it has the 3rd color 
available.

Idea: Add extra vertices and edges to to G to force the 3rd color to be used 
there but not on 𝑮 

Reduction 𝒇: Add one extra vertex 𝒗 and attach it to everything in 𝑮.

Write 𝑯 = 𝒇(𝑮).

(𝒇 is polynomial time computable.)
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Reducing 2Color to 3Color
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2Color 3Color

Solution for 3Color
Solution for 2Color

Reduction

Yes/No

𝑂(𝑛𝑝)

Add a new node to 𝑮, connect 
every node to it

Algorithm for solving 
3Color

Use the same answer

Yes/No

𝑯𝑮



Let’s do a reduction
4 steps for reducing (decision problem) 𝑨 to problem 𝑩

1. Describe the reduction itself

•  i.e., the function that converts the input for 𝑨 to the one for problem 𝑩.

2. Make sure the running time would be polynomial 

• In lecture, we’ll sometimes skip writing out this step.

3. Argue that if the correct answer (to the instance for 𝑨) is YES,       
then the input we produced is a YES instance for 𝑩.

4. Argue that if the input we produced is a YES instance for 𝑩          
then the correct answer (to the instance for 𝑨) is YES.
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Correctness
Two statements to prove (two directions):

If 𝑮 is a YES for 2Color (𝑮 is 2-colorable) then 𝑯 is a YES for 3Color (𝑯 is 3-colorable)

 If 𝑯 is a YES for 3Color (𝑯 is 3-colorable) then 𝑮 is a YES for 2Color on (𝑮 is 2-colorable)

28

Suppose 𝑮 is 2-colorable:  𝑮 has a 2-coloring 𝝌 so edges of 𝑮 have different 
colored endpoints.    We get a 3-coloring of 𝑯 by using 𝝌 for all the copies of 
original vertices of 𝑮 and a 3rd color for the extra vertex 𝒗:   Original edges of 𝑮 in 
𝑯 have different colored endpoints; the extra edges too.  So 𝑯 is 3-colorable.

Suppose 𝑯 is 3-colorable:  Consider a 3-coloring 𝝌′ of 𝑯.   Consider the extra 
vertex 𝒗 in 𝑯 that was added to 𝑮.    For every vertex 𝒖 of 𝑮, we have an edge 
(𝒖, 𝒗) so 𝝌′ 𝒖 ≠ 𝝌′(𝒗).   This means that every vertex 𝒖 of 𝑮 is colored with 
one of the two colors other than 𝝌′(𝒗).  So we can use 𝝌′ as a 2-coloring of 𝑮 
since all those edges had different colored endpoints in 𝑯.  So 𝑮 is 2-colorable.



Write two separate arguments
The two directions we covered actually prove an if and only if.

To make sure you handle both directions, I strongly recommend:

• Always do two separate proofs! (Don’t try to prove both directions 
at once, don’t refer back to the prior proof and say “for the same 
reason”.  There are usually subtle differences.)

• Don’t use contradiction! (It’s easy to start from the wrong spot and 
accidentally prove the same direction twice without realizing it.)
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Another proof of 2Color ≤𝑷 3Color
We had an 𝑶(𝒏 + 𝒎) time algorithm for 2Color based on BFS.

Simply solve the 2Color problem without making any calls to a  3Color 
method!
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Reducing 2Color to 3Color
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2Color 3Color

Solution for 3Color
Solution for 2Color

Reduction

Yes/No

𝑂(𝑛𝑝)

Check if graph is bipartite, if so 
then select a pre-chosen 3-
colorable graph. If not then 
select a pre-chosen non-3-
colorable graph

Algorithm for solving 
3Color

Use the same answer

Yes/No

𝑯𝑮



Two Simple Reductions
Independent-Set: 

Given a graph 𝑮 = (𝑽, 𝑬) and an integer 𝒌 

 Is there a 𝑼 ⊆ 𝑽 with 𝑼 ≥ 𝒌 such that no two vertices in 𝑼 are joined by an 
edge?  (𝑼 is called an independent set.)

Clique: 
Given a graph 𝑮 = (𝑽, 𝑬) and an integer 𝒌

 Is there a 𝑼 ⊆ 𝑽 with 𝑼 ≥ 𝒌 such that every pair of vertices in 𝑼 is joined by an 
edge?   (𝑼 is called a clique.)

Claim: Independent-Set ≤𝑷 Clique
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Examples

• Independent Set

• Clique

𝑘 = 2 𝑘 = 3

𝑘 = 3 𝑘 = 4



Examples

• Independent Set

• Clique

𝑘 = 2 𝑘 = 3

𝑘 = 3 𝑘 = 4

Yes No

Yes No



Reducing Independent Set to Clique
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Independent Set Clique

Solution for Clique
Solution for 
Independent Set

Reduction

Yes/No

𝑂(𝑛𝑝)

Transform given graph 𝑮 and 
number 𝒌 into 𝑮′ and 𝒌′ such 
that 𝑮 has an Independent Set 
of size 𝒌 iff 𝑮′ has a Clique of 
size 𝒌′

Algorithm for solving 
Clique

Use the same answer

Yes/No

𝑘 = 2

𝑮

𝑘 = 3

𝑮
𝑮′, 𝒌′



Independent-Set ≤𝑷 Clique
Given:

• (𝑮, 𝒌) as input to Independent-Set where 𝑮 = (𝑽, 𝑬)

Use function 𝒇 that transforms (𝑮, 𝒌) to (𝑮′, 𝒌) where
• 𝑮′ = (𝑽, 𝑬′) has the same vertices as 𝑮 but 𝑬′ consists of precisely 

those edges on 𝑽 that are not edges of 𝑮.

From the definitions, 𝑼 is an independent set in 𝑮

         𝑼 is a clique in 𝑮′

graph
complement
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Reducing Independent Set to Clique

37

Independent Set Clique

Solution for Clique
Solution for 
Independent Set

Reduction

Yes/No

𝑂(𝑛𝑝)

Set 𝑮′ to be the complement 
graph of 𝑮. Set 𝒌′ = 𝒌

Algorithm for solving 
Clique

Use the same answer

Yes/No

𝑘 = 2

𝑮

𝑘 = 3

𝑮

𝑘′ = 2

𝑮′

𝑘′ = 3

𝑮′



Clique ≤𝑷 Independent Set
Given:

• (𝑮, 𝒌) as input to Clique where 𝑮 = (𝑽, 𝑬)

Use function 𝒇 that transforms (𝑮, 𝒌) to (𝑮′, 𝒌) where
• 𝑮′ = (𝑽, 𝑬′) has the same vertices as 𝑮 but 𝑬′ consists of precisely 

those edges on 𝑽 that are not edges of 𝑮.

From the definitions, 𝑼 is an clique in 𝑮

         𝑼 is an independent set in 𝑮′
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Reducing Clique to Independent Set
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Clique Independent Set

Solution for Independent SetSolution for Clique

Reduction

Yes/No

𝑂(𝑛𝑝)

Set 𝑮′ to be the complement 
graph of 𝑮. Set 𝒌′ = 𝒌

Algorithm for solving 
Independent Set

Use the same answer

Yes/No

𝑘′ = 2

𝑮′

𝑘′ = 3

𝑮′

𝑘 = 2

𝑮

𝑘 = 3

𝑮



Another Reduction
Vertex-Cover:

Given a graph 𝑮 = (𝑽, 𝑬) and an integer 𝒌

 Is there a 𝑾 ⊆ 𝑽 with 𝑾 ≤ 𝒌 such that every edge of 𝑮 has an endpoint in 𝑾?   
(𝑾 is a vertex cover, a set of vertices that covers 𝑬.)

Claim: Independent-Set ≤𝑷 Vertex-Cover

Lemma: In a graph 𝑮 = (𝑽, 𝑬) and 𝑼 ⊆ 𝑽 

       𝑼 is an independent set ⇔ 𝑽 − 𝑼 is a vertex cover
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Examples

• Independent Set

• Vertex Cover

𝑘 = 2 𝑘 = 3

𝑘 = 3 𝑘 = 2

Yes No

Yes No



Reducing Independent Set to Vertex Cover
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Independent Set Vertex Cover

Solution for Vertex Cover
Solution for 
Independent Set

Reduction

Yes/No

𝑂(𝑛𝑝)

Set 𝑮′ = 𝑮. Set 𝒌′ = 𝑽 − 𝒌

Algorithm for solving 
Vertex Cover

Use the same answer

Yes/No

𝑘 = 2

𝑮

𝑘 = 3

𝑮

𝑘′ = 3

𝑮′

𝑘′ = 2

𝑮′



Reducing Vertex Cover to Independent Set
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Vertex Cover Independent Set

Solution for Independent Set
Solution for 
Vertex Cover

Reduction

Yes/No

𝑂(𝑛𝑝)

Set 𝑮′ = 𝑮. Set 𝒌′ = 𝑽 − 𝒌

Algorithm for solving 
Independent Set

Use the same answer

Yes/No

𝑘 = 3

𝑮

𝑘 =2

𝑮

𝑘′ = 2

𝑮′

𝑘′ = 3

𝑮′



Reduction Idea
Lemma: In a graph 𝑮 = (𝑽, 𝑬) and 𝑼 ⊆ 𝑽 

       𝑼 is an independent set ⇔ 𝑽 − 𝑼 is a vertex cover

Proof:

(⇒) Let 𝑼 be an independent set in 𝑮

Then for every edge 𝒆 ∈ 𝑬,           
 𝑼 contains at most one endpoint of 𝒆

So, at least one endpoint of 𝒆 must be in 𝑽 − 𝑼

So, 𝑽 − 𝑼 is a vertex cover

(⇐) Let 𝑾 = 𝑽 − 𝑼 be a vertex cover of 𝑮

Then 𝑼 does not contain both endpoints of any edge                    
(else 𝑾 would miss that edge)

So 𝑼 is an independent set

44
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𝑽 − 𝑼 



Reduction for Clique ≤𝑷 Vertex-Cover

Clique: 
Given a graph 𝑮 = (𝑽, 𝑬) and an integer 𝒌
 Is there a 𝑼 ⊆ 𝑽 with 𝑼 ≥ 𝒌 such that every pair of vertices in 𝑼 is joined by an edge?   
(𝑼 is called a clique.) 

Vertex-Cover:
Given a graph 𝑮 = (𝑽, 𝑬) and an integer 𝒌
 Is there a 𝑾 ⊆ 𝑽 with 𝑾 ≤ 𝒌 such that every edge of 𝑮 has an endpoint in 𝑾?   
(𝑾 is a vertex cover, a set of vertices that covers 𝑬.)

Claim: Clique ≤𝑷 Vertex-Cover

Idea: 

 Use Clique ≤𝑷 Independent-Set and Independent-Set ≤𝑷 Vertex-Cover
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Reducing Clique to Vertex Cover
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Clique Independent Set

Solution for 
Independent Set

Solution for Clique

Yes/No

Algorithm for 
solving 
Independent 
Set

Reduction

𝑂(𝑛𝑝)

Set 𝑮′ to be the 
complement graph of 𝑮. 
Set 𝒌′ = 𝒌

Use the same 
answer

Yes/No

𝑘′ = 2

𝑮′

𝑘′ = 3

𝑮′
𝑘 = 2

𝑮

𝑘 = 3

𝑮

Reduction

𝑂(𝑛𝑝)

Set 𝑮′′ = 𝑮′. 
Set 𝒌′′ = 𝑽 − 𝒌′

Use the same 
answer

Vertex Cover

Solution for
 Vertex Cover

Yes/No

𝑘′′ = 3

𝑮′′

𝑘′′ = 2

𝑮′′

Algorithm for 
solving 
Vertex Cover



Reducing Clique to Vertex Cover
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Clique Vertex Cover

Solution for Vertex CoverSolution for Clique

Reduction

Yes/No

𝑂(𝑛𝑝)

Set 𝑮′ to be the complement 
graph of 𝑮. Set 𝒌′ = 𝑽 − 𝒌

Algorithm for solving 
Vertex Cover

Use the same answer

Yes/No

𝑘′ = 3

𝑮′

𝑘′ = 2

𝑮′

𝑘 = 2

𝑮

𝑘 = 3

𝑮
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