CSE 421 Winter 2025 Lecture 21: Linear Duality / Relaxation

Owen Boseley http://www.cs.uw.edu/421

throw new NoPollEVFoundException

Hello.

My name is Owen! I'm uh. An undergrad who is obsessed with teaching and theory.

{Resume = null, Teaching Credentials = null}

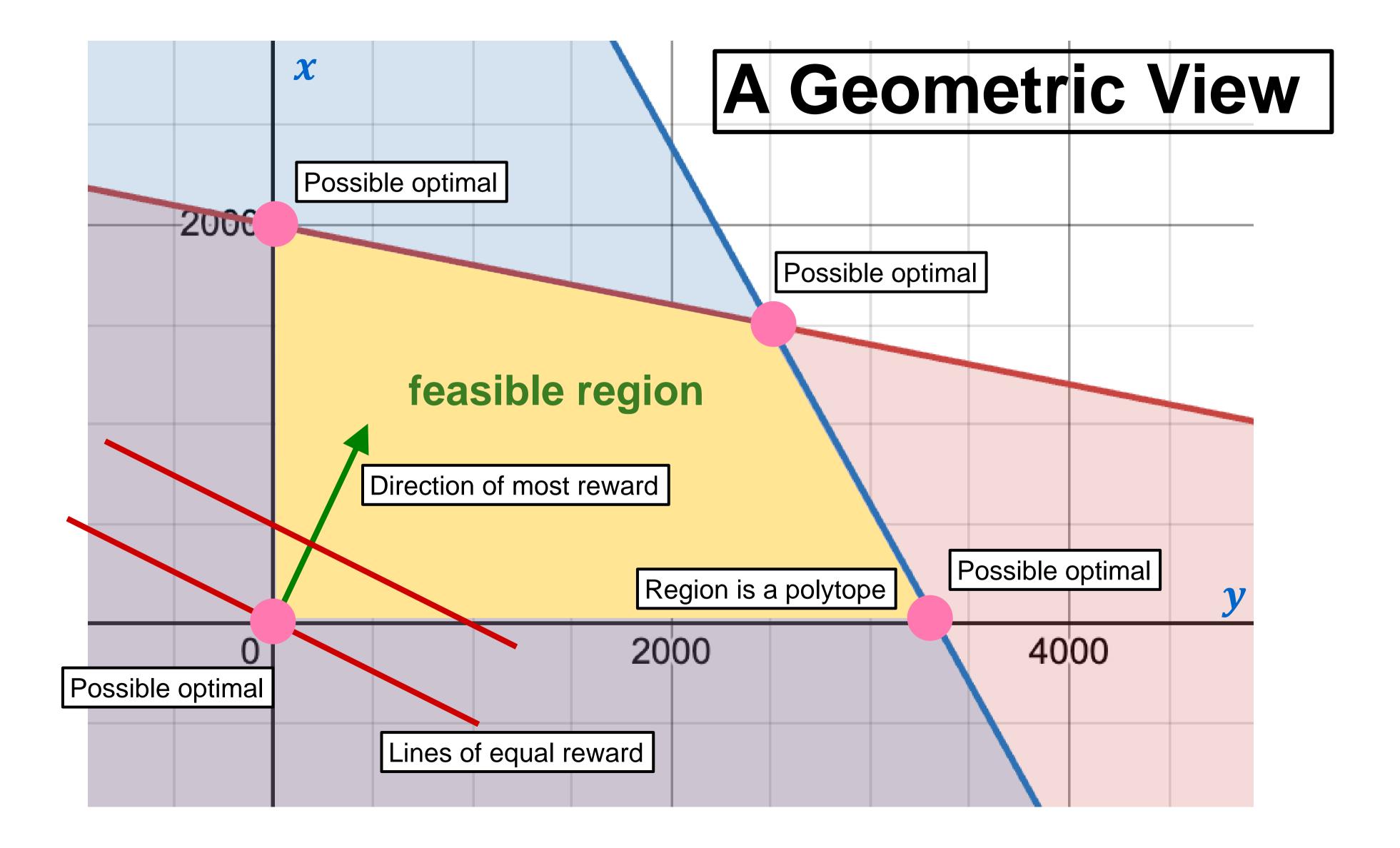
I'll be available for questions after lecture! (only 10 min I have crypto ⊗)

Topic of the Day.

- Linear Programs Review
- Linear Duality
- Boba Buying

A review of LPs

- We looked at a very general class of optimization problems
- We looked at few ways of **understanding** them:
 - Geometric View
 - Linear Algebraic View
- We looked at ways of writing them:
 - Standard Form
- We looked at ways of **applying** them to 421:
 - Max Flow / Min Cut
 - Selling Boba.. lul



maximize $c_1 x_1 + \cdots + c_n x_n$ **subject to** $a_{11}x_1 + \dots + a_{1n}x_n \le b_1$ $a_{m1}x_1 + \dots + a_{mn}x_n \le b_m$ $x_1, \ldots, x_n \geq 0$

This is standard form:

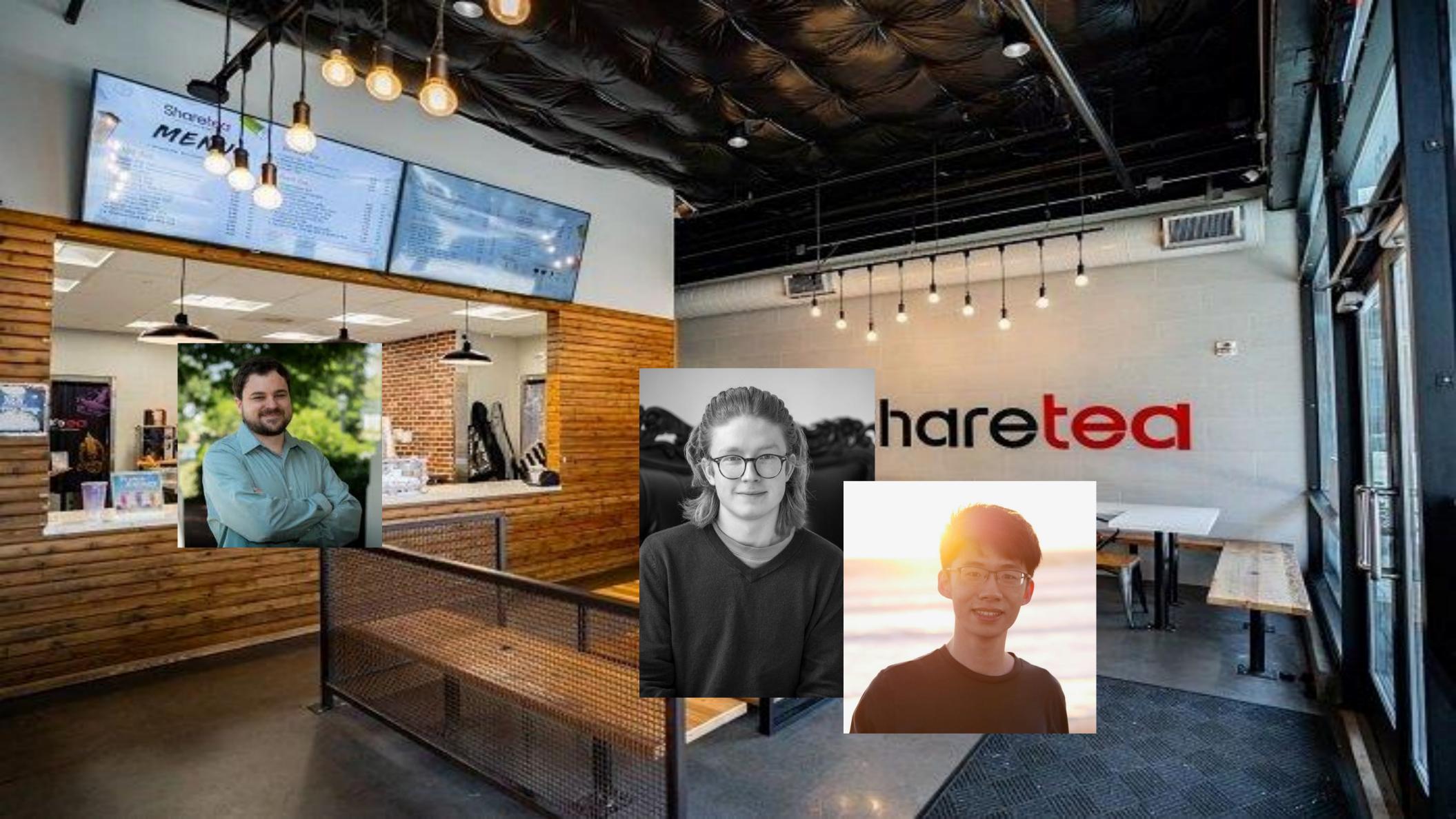
- maximization \bullet
- \leq inequalities with constant RHS \bullet
- nonnegative x's \bullet

An Algebraic View

(equivalently)

maximize $c^{\top}x$ subject to $Ax \leq b$ x > 0

Now back to Boba...



Setting.

- Glenn and I love boba. So much that we want to buy out the entirety of Nathan's store's stock!
- Our Goal: Buy all the tea and boba at minimal cost
 - Cause we are TAs and broke...

Setting.

- Glenn and I love boba. So much that we want to buy out the entirety of Nathan's store's stock!
- Our Goal: Buy all the tea and boba at minimal cost
 - Cause we are TAs and broke...
- Our Strategy: Offer the shop a rate for each ingredient • We offer x cents / oz of boba, y cents / oz of tea

Setting.

- Glenn and I love boba. So much that we want to buy out the entirety of Nathan's store's stock!
- Our Goal: Buy all the tea and boba at minimal cost
 - Cause we are TAs and broke...
- Our Strategy: Offer the shop a rate for each ingredient • We offer x cents / oz of boba, y cents / oz of tea
- Our Constraints: Nathan wants us to buy through his standard and premium drinks
 - Our rates must behave as if we had bought standard drinks

Claim, solve with an LP.

maximize 20s + 40p**subject to** $0.1s + 0.5p \le 1000$ $0.9s + 0.5p \le 3000$ $s, p \geq 0$

Original Problem

Try this on your own at home!

minimize 1000x + 3000y**subject to** $0.1x + 0.9y \ge 20$ $0.5x + 0.5y \ge 40$ $x, y \ge 0$

Our Problem

Claim, solve with an LP.

minimize 1000x + 3000y**subject to** $0.1x + 0.9y \ge 20$ $0.5x + 0.5y \ge 40$ $x, y \ge 0$

maximize 20s + 40p**subject to** $0.1s + 0.5p \le 1000$ $0.9s + 0.5p \le 3000$ $s, p \geq 0$

Hold on... this feels familiar?

Question: How is this different and similar to the boba problem on Wednesday?

2 min to discuss with those around you...

Claim, solve with an LP.

minimize 1000x + 3000y**subject to** $0.1x + 0.9y \ge 20$ $0.5x + 0.5y \ge 40$ $x, y \geq 0$

maximize 20s + 40p**subject to** $0.1s + 0.5p \le 1000$ $0.9s + 0.5p \le 3000$ $s, p \geq 0$

- **Claim:** This is the "dual" problem to
- our boba problem from Wednesday.
- We are **buying** not selling
- We are **minimizing** not maximizing
- But... are the solutions the same? Short answer, **YES**!!!!

Duality Definition

$$\begin{array}{ll} \text{minimize} & b^T y \\ \text{subject to} & A^T y \geq c \\ & y \geq 0 \end{array}$$

The Dual "Buying Boba"

The Primal "Selling Boba"

$\begin{array}{ll} \textbf{maximize} & c^T x \\ \textbf{subject to} & Ax \leq b \\ & x \geq 0 \end{array}$

See slides for other formulation....

• Property 1: The **Dual** of a **Dual** is the **Primal**.

• Look at the definition to convince yourself

- Property 1: The **Dual** of a **Dual** is the **Primal**.
 - Look at the definition to convince yourself
- Property 2: Weak Duality
 - Any feasible Dual solution is an upper bound for any feasible **Primal** solution.
 - In some sense, the dual is trying to minimize an upper bound on the primal. Think about the boba problem!

- Property 1: The **Dual** of a **Dual** is the **Primal**.
 - Look at the definition to convince yourself
- Property 2: Weak Duality
 - Any feasible Dual solution is an upper bound for any feasible **Primal** solution.
 - In some sense, the dual is trying to minimize an upper bound on the primal. Think about the boba problem!

Take 2 min to talk about why this might be true of the boba problem!

- Property 1: The **Dual** of a **Dual** is the **Primal**.
 - Look at the definition to convince yourself
- Property 2: Weak Duality
 - Any feasible **Dual** solution is an upper bound for any feasible **Primal** solution.
 - In some sense, the dual is trying to minimize an upper bound on the primal. Think about the boba problem!
- Property 3: Strong Duality
 - The Optimal Dual = Optimal Primal (if the primal and dual have a solution).
 - It turns out that they are actually equal (assuming a solution exists).

But... what is a dual? Why care?

- Duals are useful compliments to LPs!
- They convey potentially new information and can also be used in creative proofs of seemingly different problems

Something cool?



Tool in our toolkit

But... what is a dual? Why care?

• Intuitions for the dual are sometimes not good... but to help motivate you guys to love duality, let's look at some approaches to understand them!

Intuition #1: Games

• **Primal**: We want to maximize our reward!

Sell Boba for lots!

• **Dual**: We want to minimize their reward!

Buy Boba for Cheap!

VS.

I'm sure Nathan would sell boba for reasonable prices...

Intuition #2: Geometric

Dual is pushing down!

There are more concrete geometric intuitions...

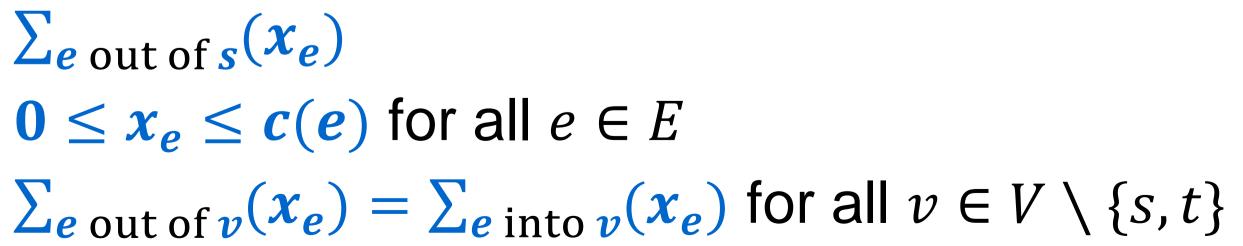
Primal is pushing up!

More fun things...

Max Flow (Revisited) **Input:** A flow network G = (V, E), source s, sink t, and $c : E \to \mathbb{R}^{\geq 0}$ Goal: maximize flow out of s subject to respecting capacities and flow conservation

We want $x_e = flow on edge e \in E$.

maximize $\sum_{e \text{ out of } s} (x_e)$ subject to $0 \le x_e \le c(e)$ for all $e \in E$



Max Flow (Revisited)

maximize $\sum_{e \text{ out of } s} (x_e)$ subject to $0 \le x_e \le c(e)$ for all $e \in E$

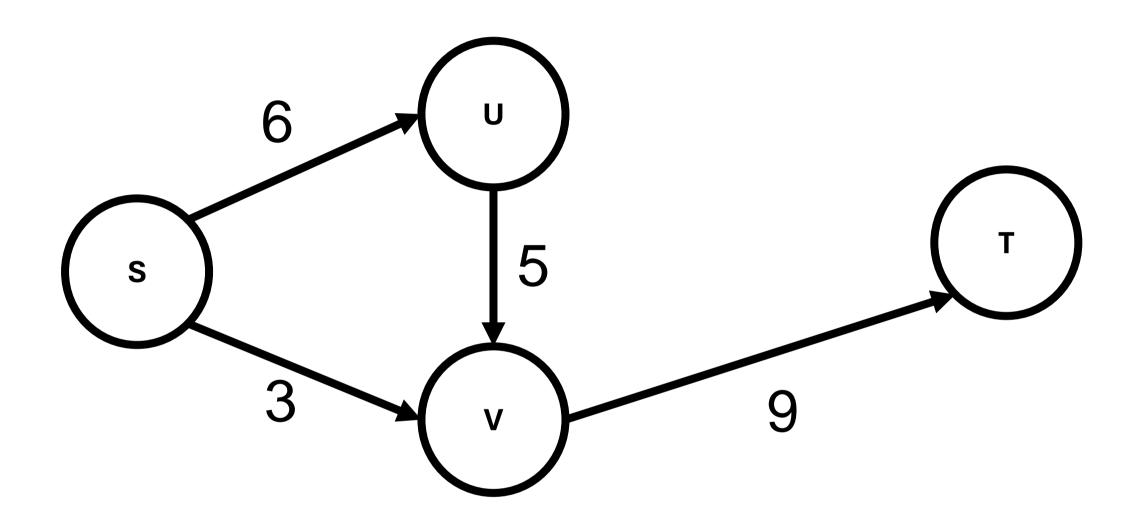
In standard form:

maximize $\sum_{e \text{ out of } s} (x_e)$ subject to $x_e \leq c(e)$ for all $e \in E$ $x_{e} \geq 0$ for all $e \in E$

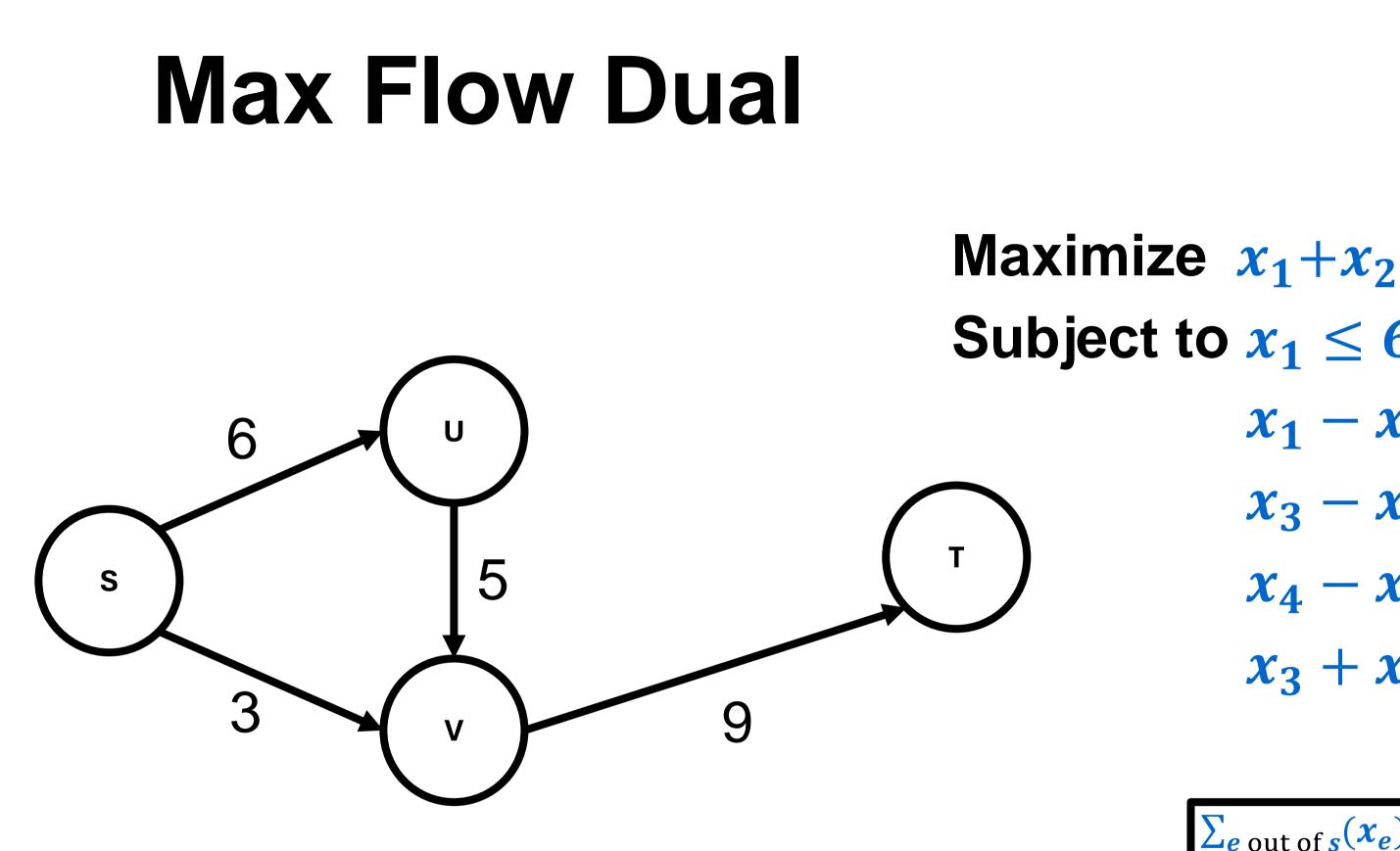
$\sum_{e \text{ out of } v} (x_e) = \sum_{e \text{ into } v} (x_e) \text{ for all } v \in V \setminus \{s, t\}$

$\sum_{e \text{ out of } v} (x_e) - \sum_{e \text{ into } v} (x_e) \le 0 \text{ for all } v \in V \setminus \{s, t\}$ $\sum_{e \text{ into } v} (x_e) - \sum_{e \text{ out of } v} (x_e) \leq 0$ for all $v \in V \setminus \{s, t\}$

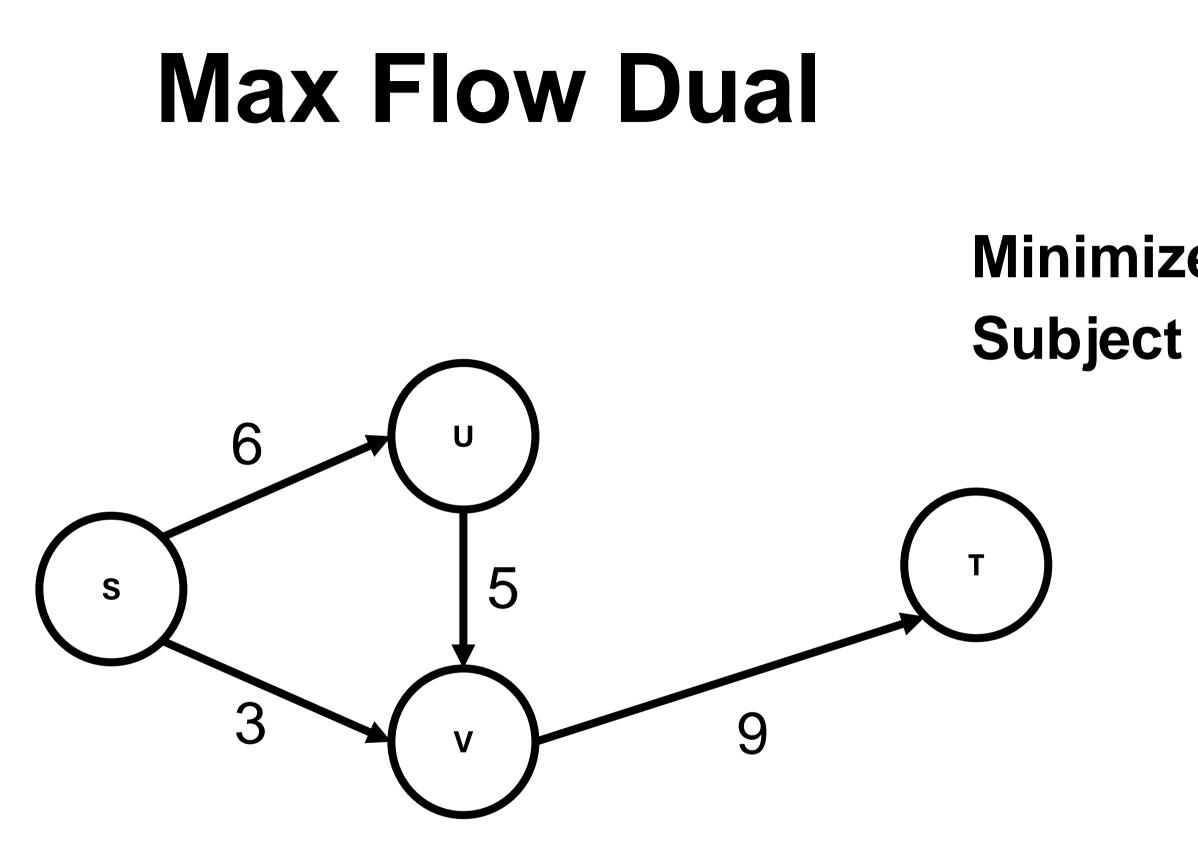
Max Flow Dual



Take 2-3 min to make the LP with those around you

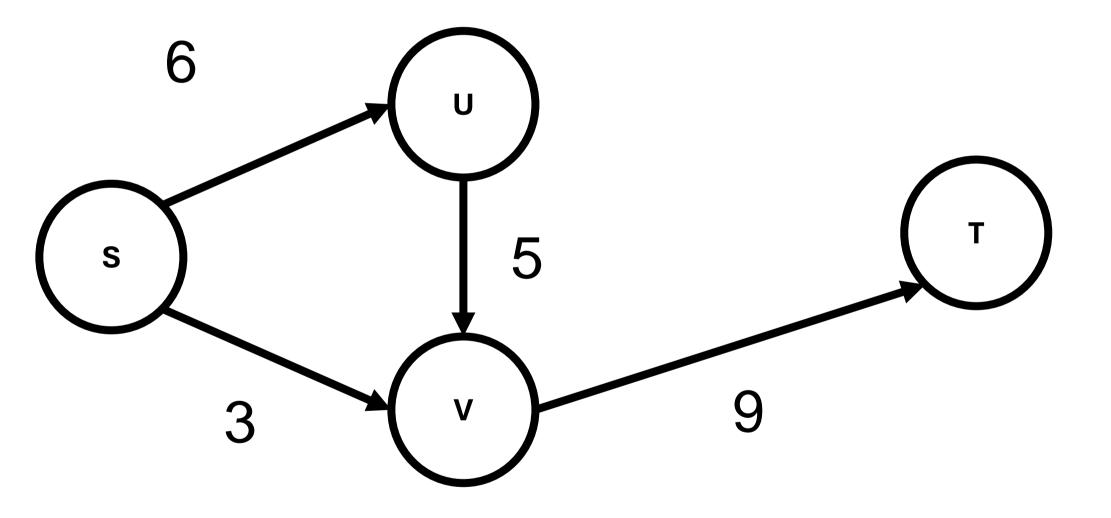


Maximize $x_1 + x_2$ Subject to $x_1 \le 6, x_2 \le 3, x_3 \le 5, x_4 \le 9$ $x_1 - x_3 \le 0$ $x_3 - x_1 \le 0$ $x_4 - x_3 - x_2 \le 0$ $x_3 + x_2 - x_4 \le 0$



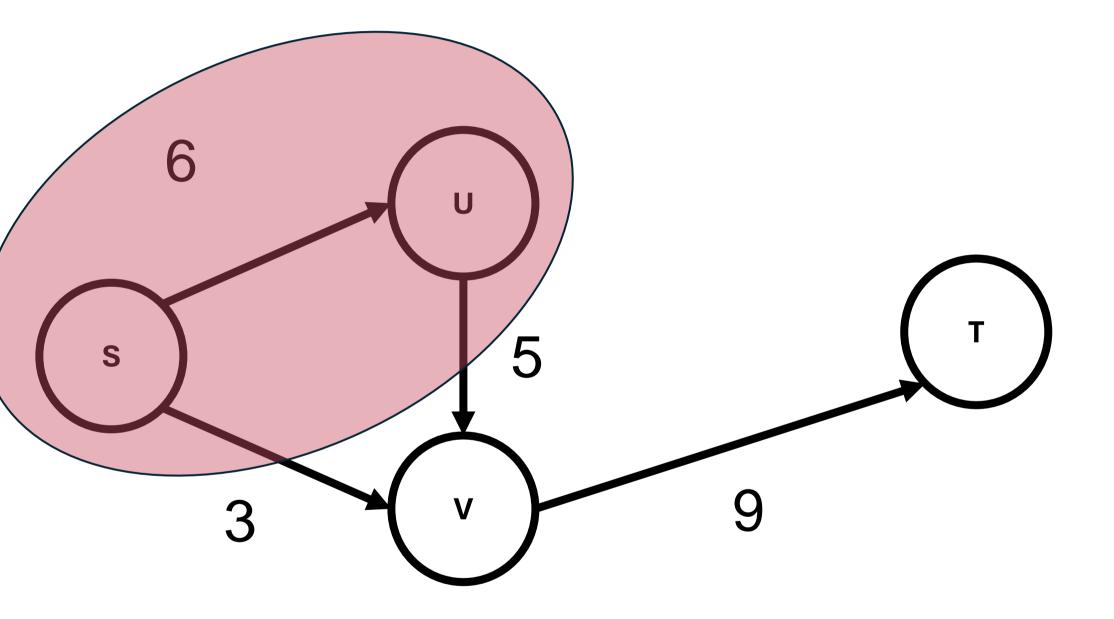
Minimize $6y_1 + 3y_2 + 5y_3 + 9y_4$ Subject to $y_1 + y_5 - y_6 \ge 1$ $y_2 + y_8 - y_7 \ge 1$ $y_3 + y_6 + y_8 - y_5 - y_7 \ge 0$ $y_4 + y_7 - y_8 \ge 0$

Max Flow Dual



Optimal Solution: $y_1 = 0$ $y_2 = 1$ $y_3 = 1$ $y_4 = 0$ $y_5 = 1$ $y_6 = 0$ $y_7 = 0$ $y_8 = 0$

Max Flow Dual



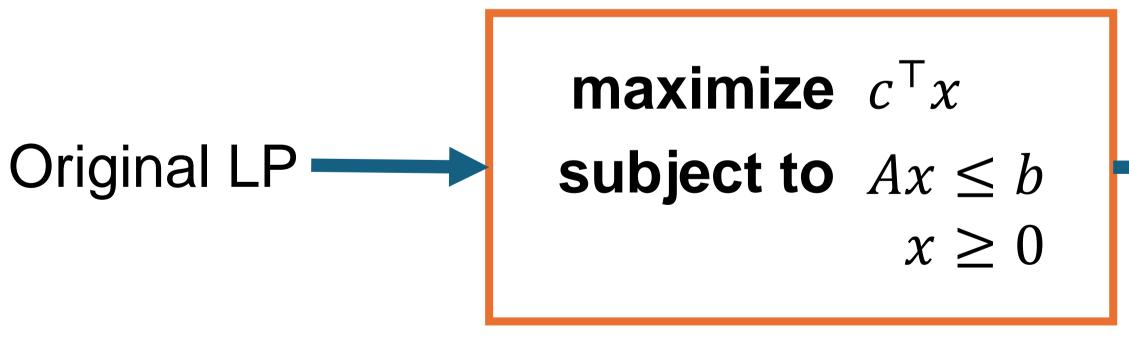
This is just the minimum cut!

Optimal Solution: $y_1 = 0$ $y_2 = 1$ $y_3 = 1$ $y_4 = 0$ $y_5 = 1$ $y_6 = 0$ $y_7 = 0$ $y_8 = 0$

The LP Dual of Maximum Flow is the Minimum Cut!

(exam) Tips to compute duality Convert the primal into standard form first!

- Use the formula!
 - I recommend the linear algebra way because it is easier to remember (just transpose, swap, swap)



Standard Form

minimize $b^T y$ subject to $A^T y \ge c$ $\mathbf{v} \geq 0$

Dual Form

(exam) Tips to compute duality Convert the primal into standard form first!

- Use the formula!
 - I recommend the linear algebra way because it is easier to remember (just transpose, swap, swap)
- Remember that the variables of your dual are fundamentally **not** the same as your primal.

Boba Problem: Amount of drinks vs the rate of ingredients

(exam) Tips to compute duality Convert the primal into standard form first!

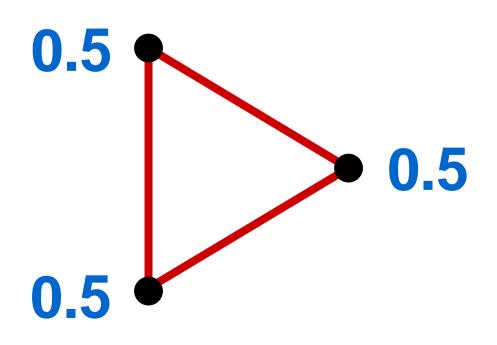
- Use the formula!
 - I recommend the linear algebra way because it is easier to remember (just transpose, swap, swap)
- Remember that the variables of your dual are fundamentally not the same as your primal.
- Remember the dual of an LP is its own LP, meaning it can be converted to standard form as well!

Sneak peek: Vertex Cover?

LP Relaxation: Instead of $x_n = 0$ or 1 (out/in), have $0 \le x_n \le 1$

minimize $\sum_{v \in V} (x_v)$ subject to $x_u + x_v \ge 1$ for all edges $(u, v) \in E$ $0 \leq x_{v} \leq 1$ for all vertices $v \in V$

Might give "fractional solutions": LP optimum = 1.5, true optimum = 2



Back to your regularly scheduled program....

Have a good weekend.

