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Hi!

I’m Glenn, one of your TAs.

2nd year PhD student in Theory, 

under Paul Beame

Extra OH:

In Nathan’s office after class today, 

2:30pm–3:30pm 



What is linear programming?

• Optimize real-valued, linear functions with constraints

• Widely used in business and operations modeling/research

• Many packages for Python, Excel, etc.

• We cover basics — take MATH 407 to learn more!



A boba shop has 1000 oz of boba and 3000 oz of tea and can make 

drinks of any size.

A standard drink is 10% boba, 90% tea and sells for 20 cents/oz.

A premium drink is 50% boba, 50% tea and sells for 40 cents/oz.

What is the maximum revenue that the boba shop can make?

𝒔 = amount of standard drink produced in oz

𝒑 = amount of premium drink produced in oz

maximize

subject to

20𝑠 + 40𝑝 

0.1𝑠 + 0.5𝑝 ≤ 1000
0.9𝑠 + 0.5𝑝 ≤ 3000

𝑠, 𝑝 ≥ 0



https://www.desmos.com/calculator/4zlr9g7tnn

https://www.desmos.com/calculator/4zlr9g7tnn


feasible region

Which point maximizes 𝟐𝟎𝒔 + 𝟒𝟎𝒑?

𝒔

𝒑



Intuition: To maximize 𝟐𝟎𝒔 + 𝟒𝟎𝒑, we should go in the (20, 40) 

direction as far as possible.

What I mean by this:

𝟐𝟎𝒔 + 𝟒𝟎𝒑 = 𝟎 when 𝒔, 𝒑 ⊥ (𝟐𝟎, 𝟒𝟎)

So 𝟐𝟎𝒔 + 𝟒𝟎𝒑 = 𝒌 are parallel lines.

To maximize, find the farthest line in the (20, 40) 

direction that still touches the feasible region.

(10, 20)𝟐𝟎𝒔 + 𝟒𝟎𝒑 = 𝟎

𝟐𝟎𝒔 + 𝟒𝟎𝒑 = 𝟏𝟎𝟎𝟎

𝟐𝟎𝒔 + 𝟒𝟎𝒑 = 𝟐𝟎𝟎𝟎

𝟐𝟎𝒔 + 𝟒𝟎𝒑 = 𝟑𝟎𝟎𝟎



feasible region

Which point maximizes 𝟐𝟎𝒔 + 𝟒𝟎𝒑?

B
A

C

D
𝒔

Vote now!

pollev.com/glennsun

𝒑



feasible region

Which point maximizes 𝟐𝟎𝒔 + 𝟒𝟎𝒑?

C

𝒔

Maximum revenue is at C.

$𝟎. 𝟐𝟎 𝟐𝟓𝟎𝟎 + $𝟎. 𝟒𝟎 𝟏𝟓𝟎𝟎 = $𝟏𝟏𝟎𝟎

𝒑



Theorem. (Fundamental Theorem of Linear Programming)

If the feasible region is bounded and nonempty, then some vertex is 

an optimal solution.

⇒ Brute force algorithm: Compute the objective at every vertex

But that takes exponential time.

• An 𝒏-dimensional cube is formed by 𝟐𝒏 constraints/faces and 

has 𝟐𝒏 vertices.

There are fast algorithms for linear programming. (Lecture 25)

Today: How to set up various problems as linear programs.



Linear programming solves problems of the form:

This is standard form:

• maximization

≤ inequalities with constant RHS

• nonnegative 𝑥’s

maximize

subject to

𝑐1𝑥1 + ⋯ + 𝑐𝑛𝑥𝑛 

𝑎11𝑥1 + ⋯ + 𝑎1𝑛𝑥𝑛 ≤ 𝑏1

⋮
𝑎𝑚1𝑥1 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 ≤ 𝑏𝑚

𝑥1, … , 𝑥𝑛 ≥ 0

maximize

subject to

𝑐⊤𝑥 

𝐴𝑥 ≤ 𝑏
𝑥 ≥ 0

(equivalently)



Which of these situations can be 

converted into standard form?

• a constraint 𝒙 ≥ 𝒚

• a constraint 𝒙 + 𝒚 = 𝟑

• a constraint 𝒙𝒚 ≥ 𝟓

• a constraint 𝒙 ≤ 𝐦𝐢𝐧 𝒚, 𝒛

• an objective to minimize 𝒙 + 𝟐𝒚

• an objective to maximize 𝒙𝟐 + 𝒚𝟐

• a variable 𝒙 that may be negative

maximize

subject to

𝑐1𝑥1 + ⋯ + 𝑐𝑛𝑥𝑛 

𝑎11𝑥1 + ⋯ + 𝑎1𝑛𝑥𝑛 ≤ 𝑏1

 ⋮
𝑎𝑚1𝑥1 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 ≤ 𝑏𝑚

𝑥1, … , 𝑥𝑛 ≥ 0

(standard form reminder)

Vote now!

pollev.com/glennsun



Which of these situations can be converted into standard form?

• a constraint 𝒙 ≥ 𝒚

Yes! −𝒙 ≤ −𝒚, then get −𝒙 + 𝒚 ≤ 𝟎

• a constraint 𝒙 + 𝒚 = 𝟑

Yes! 𝒙 + 𝒚 ≤ 𝟑 and 𝒙 + 𝒚 ≥ 𝟑 (i.e. −𝒙 − 𝒚 ≤ −𝟑)

• a constraint 𝒙𝒚 ≥ 𝟓

Not possible.

• a constraint 𝒙 ≤ 𝐦𝐢𝐧 𝒚, 𝒛

Yes! 𝒙 ≤ 𝒚 and 𝒙 ≤ 𝒛 (i.e. 𝒙 − 𝒚 ≤ 𝟎 and 𝒙 − 𝒛 ≤ 𝟎)



Which of these situations can be converted into standard form?

• an objective to minimize 𝒙 + 𝟐𝒚

Yes! maximize −𝒙 − 𝟐𝒚

• an objective to maximize 𝒙𝟐 + 𝒚𝟐

Not possible.



Which of these situations can be converted into standard form?

• a variable 𝒙 that may be negative

Yes! Make two new variables 𝒙′ and 𝒙′′, then replace every 

occurrence of 𝒙 with 𝒙′ − 𝒙′′. We can now have 𝒙′, 𝒙′′ ≥ 𝟎.

maximize

subject to

𝑥 + 3𝑦
−𝑥 + 𝑦 ≤ 10
2𝑥 + 𝑦 ≤ 4

𝑦 ≥ 0

maximize

subject to

𝑥′ − 𝑥′′ + 3𝑦
−𝑥′ + 𝑥′′ + 𝑦 ≤ 10

2𝑥′ − 2𝑥′′ + 𝑦 ≤ 4
𝑥′, 𝑥′′, 𝑦 ≥ 0



Max Flow

Input: A flow network 𝑮 = (𝑽, 𝑬), source 𝒔, sink 𝒕, and 𝒄 ∶ 𝑬 → ℝ≥𝟎

Goal:

maximize flow out of 𝒔

subject to respecting capacities and flow conservation

We want 𝒙𝒆 = flow on edge 𝒆 ∈ 𝑬.

maximize

subject to

σ𝒆 out of 𝒔(𝒙𝒆) 

𝟎 ≤ 𝒙𝒆 ≤ 𝒄(𝒆) for all 𝑒 ∈ 𝐸

σ𝒆 out of 𝒗(𝒙𝒆) = σ𝒆 into 𝒗(𝒙𝒆) for all 𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡} 



Max Flow

𝑠 𝑡

𝑣

𝑢

𝑨

𝑩 𝑬

𝑫

𝑪
3

2
1

4

2

maximize

subject to

𝒙𝑨 + 𝒙𝑩  

𝟎 ≤ 𝒙𝑨 ≤ 𝟑 

𝟎 ≤ 𝒙𝑩 ≤ 𝟐 

𝟎 ≤ 𝒙𝑪 ≤ 𝟏 

𝟎 ≤ 𝒙𝑫 ≤ 𝟐 

𝟎 ≤ 𝒙𝑬 ≤ 𝟒 

𝒙𝑪 + 𝒙𝑫 = 𝒙𝑨 

𝒙𝑬 = 𝒙𝑩 + 𝒙𝑪 

maximize

subject to

σ𝒆 out of 𝒔(𝒙𝒆) 

𝟎 ≤ 𝒙𝒆 ≤ 𝒄(𝒆) for all 𝑒 ∈ 𝐸

σ𝒆 out of 𝒗(𝒙𝒆) = σ𝒆 into 𝒗(𝒙𝒆) for all 𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡} 



Max Flow

In standard form:

maximize

subject to

σ𝒆 out of 𝒔(𝒙𝒆) 

𝟎 ≤ 𝒙𝒆 ≤ 𝒄(𝒆) for all 𝑒 ∈ 𝐸

σ𝒆 out of 𝒗(𝒙𝒆) = σ𝒆 into 𝒗(𝒙𝒆) for all 𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡} 

maximize

subject to

σ𝒆 out of 𝒔(𝒙𝒆) 

𝒙𝒆 ≤ 𝒄(𝒆) for all 𝑒 ∈ 𝐸

σ𝒆 out of 𝒗(𝒙𝒆) − σ𝒆 into 𝒗(𝒙𝒆) ≤ 𝟎 for all 𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡} 

σ𝒆 into 𝒗(𝒙𝒆) − σ𝒆 out of 𝒗(𝒙𝒆) ≤ 𝟎 for all 𝑣 ∈ 𝑉 ∖ {𝑠, 𝑡} 

𝒙𝒆 ≥ 𝟎 for all 𝑒 ∈ 𝐸



Shortest Path

Input: A directed graph 𝑮 = (𝑽, 𝑬) with vertices 𝒔, 𝒕, and (possibly 

negative) weights 𝒘 ∶ 𝑬 → ℝ

Goal: compute length of shortest path from 𝒔 to 𝒕

We want 𝒙𝒗 = length of shortest path from 𝒔 to 𝒗.

maximize

subject to

𝒙𝒕 

𝒙𝒗 ≤ 𝒙𝒖 + 𝒘(𝒆) for all edges 𝑒 = 𝑢, 𝑣 ∈ 𝐸  

𝒙𝒔 = 𝟎 



Shortest Path

If 𝒙𝒗 = the length of the shortest path from 𝒔 to 𝒗, 

 then it is true that 𝒙𝒗 ≤ 𝒙𝒖 + 𝒘(𝒆) and 𝒙𝒔 = 𝟎.

That’s why we could safely include this as a constraint.

To prove “LP computes shortest path”, we need the converse!

maximize

subject to

𝒙𝒕 

𝒙𝒗 ≤ 𝒙𝒖 + 𝒘(𝒆) for all edges 𝑒 = 𝑢, 𝑣 ∈ 𝐸  

𝒙𝒔 = 𝟎 



Shortest Path

Claim. The LP calculates the shortest path from 𝒔 to 𝒕. 

Proof. We will show that the length of the shortest path from 𝒔 to 𝒕 is 

the maximum 𝒙𝒕 satisfying the constraints.

In general, “maximum” means: (1) possible, and (2) upper bound.

Here, need to show:

1. “There is a feasible solution to the LP in which 𝒙𝒕 is the length 

of the shortest path from 𝒔 to 𝒕.”

2. “For all feasible solutions to the LP, 𝒙𝒕 ≤ the length of the 

shortest path from 𝒔 to 𝒕.”



Shortest Path

1. “There is a feasible solution to the LP in which 𝒙𝒕 is the length 

of the shortest path from 𝒔 to 𝒕.”

Setting 𝒙𝒗 = length of shortest path from 𝒔 for all 𝒗 ∈ 𝑽 is feasible.

2. “For all feasible solutions to the LP, 𝒙𝒕 ≤ the length of the 

shortest path from 𝒔 to 𝒕.”

Let 𝒙𝒗 be a feasible solution and (𝒔, 𝒗𝟏, … , 𝒗𝒌, 𝒕) be a shortest path.

𝒙𝒕 ≤ 𝒙𝒗𝒌
+ 𝒘 𝒗𝒌, 𝒕

≤ 𝒙𝒗𝒌−𝟏
+ 𝒘 𝒗𝒌−𝟏, 𝒗𝒌 + 𝒘(𝒗𝒌, 𝒕)

⋮
≤ 𝟎 + 𝒘 𝒔, 𝒗𝟏 + ⋯ + 𝒘 𝒗𝒌, 𝒕
= length of shortest path from 𝒔 to 𝒕



Sneak peek: Vertex Cover?

Input: An undirected graph 𝑮 = (𝑽, 𝑬)

Goal: smallest subset of vertices touching all edges of 𝑮

What variables to pick?

No good choices — want to make a binary decision for vertices (in 

the vertex cover or not), but LPs work with real-valued variables.



Sneak peek: Vertex Cover?

LP Relaxation: Instead of 𝒙𝒗 = 0 or 1 (out/in), have 𝟎 ≤ 𝒙𝒗 ≤ 𝟏

Might give “fractional solutions”:

LP optimum = 1.5, true optimum = 2

Still useful for approximation algorithms, wait for Lecture 24!

minimize

subject to

σ𝒗∈𝑽(𝒙𝒗) 

𝒙𝒖 + 𝒙𝒗 ≥ 𝟏 for all edges 𝑢, 𝑣 ∈ 𝐸  

𝟎 ≤ 𝒙𝒗 ≤ 𝟏 for all vertices 𝑣 ∈ 𝑉

0.5

0.5

0.5



Coming up on Friday…

Substitute instructor: Owen

Duality in Linear Programming

minimize

subject to

𝑏⊤𝑦 

𝐴⊤𝑦 ≥ 𝑐
𝑦 ≥ 0
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