CSE 421 Winter 2025 Lecture 20: Linear Programming

Glenn Sun (substitute) http://www.cs.uw.edu/421

Today's lecture will involve pollev.com (not graded).

pollev.com/glennsun

Use UW login, not guest

Hi!

I'm Glenn, one of your TAs. 2nd year PhD student in Theory, under Paul Beame

Extra OH:

In Nathan's office after class today, 2:30pm–3:30pm

What is linear programming?

- Optimize real-valued, linear functions with constraints
- Widely used in business and operations modeling/research \bullet
- Many packages for Python, Excel, etc.
- We cover basics take MATH 407 to learn more! \bullet

A boba shop has 1000 oz of boba and 3000 oz of tea and can make drinks of any size.

A standard drink is 10% boba, 90% tea and sells for 20 cents/oz.

A premium drink is 50% boba, 50% tea and sells for 40 cents/oz. What is the maximum revenue that the boba shop can make?

- **s** = amount of **standard** drink produced in oz
- p =amount of **premium** drink produced in oz

maximize 20s + 40p**subject to** $0.1s + 0.5p \le 1000$

- $0.9s + 0.5p \le 3000$ $s, p \ge 0$

https://www.desmos.com/calculator/4zlr9g7tnn

Intuition: To maximize 20s + 40p, we should go in the (20, 40) direction as far as possible. 20s + 40p = 300020s + 40p = 200020s + 40p = 1000What I mean by this: 20s + 40p = 020s + 40p = 0 when $(s, p) \perp (20, 40)$ So 20s + 40p = k are parallel lines.

To maximize, find the **farthest line** in the (20, 40) direction that still touches the feasible region.

(10, 20) 🛰

Theorem. (Fundamental Theorem of Linear Programming) If the feasible region is bounded and nonempty, then **some vertex is** an optimal solution.

 \Rightarrow Brute force algorithm: Compute the objective at every vertex

But that takes exponential time.

 An n-dimensional cube is formed by 2n constraints/faces and has 2^n vertices.

There are fast algorithms for linear programming. (Lecture 25)

Today: How to **set up** various problems as linear programs.

Linear programming solves problems of the form:

 $\begin{array}{ll} \mbox{maximize} & c_1 x_1 + \dots + c_n x_n \\ \mbox{subject to} & a_{11} x_1 + \dots + a_{1n} x_n \leq b_1 \\ & & \vdots \\ & a_{m1} x_1 + \dots + a_{mn} x_n \leq b_m \\ & & x_1, \dots, x_n \geq 0 \end{array}$

This is standard form:

- maximization
- \leq inequalities with constant RHS
- nonnegative *x*'s

Vote now!

pollev.com/glennsun

Which of these situations can be converted into standard form?

- a constraint $x \ge y$
- a constraint x + y = 3
- a constraint $xy \ge 5$
- a constraint $x \leq \min(y, z)$
- an objective to minimize x + 2y
- an objective to maximize $x^2 + y^2$
- a variable \mathbf{x} that may be negative

$$\begin{array}{ll} \textbf{maximize} & c_1 x_1 + \dots + c_n x_n \\ \textbf{subject to} & a_{11} x_1 + \dots + a_{1n} x_n \leq b_1 \\ & & \vdots \\ & a_{m1} x_1 + \dots + a_{mn} x_n \leq b_m \\ & & x_1, \dots, x_n \geq 0 \end{array}$$

(standard form reminder)

Which of these situations can be converted into standard form?

- a constraint $x \ge y$ Yes! $-x \leq -y$, then get $-x + y \leq 0$
- a constraint x + y = 3Yes! $x + y \le 3$ and $x + y \ge 3$ (i.e. $-x - y \le -3$)
- a constraint $xy \ge 5$ Not possible.
- a constraint $x \leq \min(y, z)$ Yes! $x \leq y$ and $x \leq z$ (i.e. $x - y \leq 0$ and $x - z \leq 0$)

Which of these situations can be converted into standard form?

- an objective to minimize x + 2yYes! maximize -x - 2y
- an objective to maximize $x^2 + y^2$ **Not possible.**

Which of these situations can be converted into standard form?

• a variable \mathbf{x} that may be negative Yes! Make two new variables x' and x'', then replace every occurrence of x with x' - x''. We can now have $x', x'' \ge 0$.

Max Flow

Input: A flow network G = (V, E), source s, sink t, and $c : E \to \mathbb{R}^{\geq 0}$ Goal:

maximize flow out of s subject to respecting capacities and flow conservation

We want $x_e =$ flow on edge $e \in E$.

maximize $\sum_{e \text{ out of } s} (x_e)$ subject to $0 \le x_e \le c(e)$ for all $e \in E$

Max Flow

maximize $\sum_{e \text{ out of } s} (x_e)$ subject to $0 \le x_e \le c(e)$ for all $e \in E$ $\sum_{e \text{ out of } v} (x_e) = \sum_{e \text{ into } v} (x_e) \text{ for all } v \in V \setminus \{s, t\}$

maximize $x_A + x_B$

- subject to $0 \le x_A \le 3$
 - $0 \leq x_B \leq 2$
 - $0 \leq x_C \leq 1$
 - $0 \leq x_D \leq 2$
 - $0 \leq x_E \leq 4$
- $x_C + x_D = x_A$ $x_E = x_B + x_C$

Max Flow

maximize $\sum_{e \text{ out of } s} (x_e)$ subject to $0 \le x_e \le c(e)$ for all $e \in E$

In standard form:

maximize $\sum_{e \text{ out of } s} (x_e)$ subject to $x_e \leq c(e)$ for all $e \in E$ $x_{e} \geq 0$ for all $e \in E$

$\sum_{e \text{ out of } v} (x_e) = \sum_{e \text{ into } v} (x_e) \text{ for all } v \in V \setminus \{s, t\}$

$\sum_{e \text{ out of } v} (x_e) - \sum_{e \text{ into } v} (x_e) \leq 0$ for all $v \in V \setminus \{s, t\}$ $\sum_{e \text{ into } v} (x_e) - \sum_{e \text{ out of } v} (x_e) \leq 0$ for all $v \in V \setminus \{s, t\}$

Input: A directed graph G = (V, E) with vertices s, t, and (possibly) negative) weights $w : E \to \mathbb{R}$

Goal: compute length of shortest path from s to t

We want x_{ν} = length of shortest path from s to ν .

maximize x_t subject to $x_v \leq x_u + w(e)$ for all edges $e = (u, v) \in E$ $x_{s} = 0$

maximize x_t subject to $x_v \leq x_u + w(e)$ for all edges $e = (u, v) \in E$ $x_{s} = 0$

If x_{ν} = the length of the shortest path from s to ν , then it is true that $x_{\nu} \leq x_{\mu} + w(e)$ and $x_{s} = 0$. That's why we could safely include this as a constraint.

To prove "LP computes shortest path", we need the converse!

Claim. The LP calculates the shortest path from s to t. *Proof.* We will show that the length of the shortest path from s to t is the maximum x_t satisfying the constraints.

In general, "maximum" means: (1) possible, and (2) upper bound. Here, need to show:

- 1. "There is a feasible solution to the LP in which x_t is the length of the shortest path from s to t."
- 2. "For all feasible solutions to the LP, $x_t \leq$ the length of the shortest path from s to t."

1. "There is a feasible solution to the LP in which x_t is the length of the shortest path from s to t."

Setting x_{ν} = length of shortest path from s for all $\nu \in V$ is feasible.

2. "For all feasible solutions to the LP, $x_t \leq$ the length of the shortest path from s to t."

Let x_{ν} be a feasible solution and $(s, \nu_1, \dots, \nu_k, t)$ be a shortest path.

$$\begin{aligned} x_t &\leq x_{v_k} + w(v_k, t) \\ &\leq x_{v_{k-1}} + w(v_{k-1}, v_k) \\ &\vdots \\ &\leq 0 + w(s, v_1) + \cdots + \end{aligned}$$

= length of shortest path from *s* to *t*

- (\mathbf{v}_k, t)
- $+ w(v_k, t)$

Sneak peek: Vertex Cover?

Input: An undirected graph G = (V, E)

Goal: smallest subset of vertices touching all edges of **G**

What variables to pick?

No good choices — want to make a binary decision for vertices (in the vertex cover or not), but LPs work with real-valued variables.

Sneak peek: Vertex Cover?

LP Relaxation: Instead of $x_{\nu} = 0$ or 1 (out/in), have $0 \le x_{\nu} \le 1$

minimize $\sum_{v \in V} (x_v)$ subject to $x_u + x_v \ge 1$ for all edges $(u, v) \in E$ $0 \leq x_{v} \leq 1$ for all vertices $v \in V$

Might give "fractional solutions": LP optimum = 1.5, true optimum = 2

Still useful for approximation algorithms, wait for Lecture 24!

Coming up on Friday...

Substitute instructor: Owen

Duality in Linear Programming

$\begin{array}{ll} \textbf{minimize} & b^{\top}y \\ \textbf{subject to} & A^{\top}y \geq c \\ & y \geq 0 \end{array}$