CSE 421 Winter 2025 Lecture 1: Intro, Stable Matching

Nathan Brunelle

http://www.cs.uw.edu/421

Course Goals

Two Goals:

- 1. Learn specific noteworthy algorithms
- 2. Hone insights on how to design algorithms for novel problems

What is an algorithm?

- a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation. [January 2025]
- a finite sequence of **well-defined instructions**, typically used to **solve** a class of specific problems or to perform a **computation**. [November 2021]
- a set of instructions, typically to solve a class of problems or perform a computation. [August 2019]
- an unambiguous specification of how to solve a class of problems. [September 2018]
- <u>How it will sometimes feel</u>

Course Goals

Two Goals: Three Goals

- 1. Learn specific noteworthy algorithms
- 2. Hone insights on how to design algorithms for novel problems
- 3. Have Fun!

Nathan Brunelle

• Born: Virginia Beach, VA

- Ugrad: Math and CS at University of Virginia
- Grad: CS at University of Virginia
- Taught at UVA for 6 years
 - Intro to programming (e.g. 121)
 - Discrete Math (e.g. 311)
 - Algorithms (e.g. 412)
 - Theory of Computation (e.g. 431)

Our Amazing TAs!

Course Info

- Text:
 - Kleinberg and Tardos Algorithm Design
 - Recommended but not required
 - Other supplements, which we'll make available
- Course Page:
 - http://www.cs.uw.edu/421

Communication

- EdStem Discussion board
 - Your first stop for questions about course content & assignments
 - Course announcements will be made there
 - Announcements will be forwarded to your email as well

Course Meetings

- Lecture
 - Materials posted (slides before class, inked slides after)
 - Recorded using Panopto
 - Ask questions, focus on key ideas (rarely coding details)
- Section
 - Practice problems!
 - Answer content/homework questions
- Office hours
 - Use them: *please visit us!*

Tasks

- 8 Weekly individual homework exercises (60%)
 - Mechanical Problems (1 per each)
 - Apply knowledge of a specific algorithm
 - Long-Form Problems (3 per each)
 - Design and analyze a new algorithm
- Midterm and final exam (40%)
 - Midterm: 15%
 - Wednesday Feb 19, 6:00pm-7:30pm
 - Final: 25%
 - Monday March 17, 2:30pm-5:20pm
 - cumulative

Grading

- Homework:
 - Each mechanical problem is worth 10 points
 - Each long-form problem is worth 25 points
 - We count your 7 best mechanical problems (1 dropped)
 - We count your 20 best long-form problems (4 dropped)
 - Score is therefore out of 570 points
- Late Work:
 - Unless you talk to Nathan, nothing is accepted 48 hours after the deadline
 - You have 10 late problem-days. After those have been used, late problems will receive a 50% grade penalty (multiplicative)

Collaboration

- Try it yourself first
- Collaborate with classmates (no external interactive help on assignments permitted)
 - Collaboration is "whiteboard only"
 - Looking for a collaborator?
- Cite your sources!

Getting Started (Your TODO List)

- Make sure you are on Ed (a.k.a. EdStem)!
- Attend your first Quiz Section Thursday!
- Homework 1 will be out Wednesday
 - You will have enough to start on it after section Thursday
 - Start thinking about it right away after that
- Sign up for CSE 490D
- Attend lecture and participate
 - Students who participate do better on average

Matching Medical Residents to Hospitals

Goal: Given a set of preferences among hospitals and medical school residents (graduating medical students), design a *self-reinforcing* admissions process.

Unstable pair: applicant x and hospital y are *unstable* if:

- *x* prefers *y* to their assigned hospital.
- **y** prefers **x** to one of its admitted residents.

Stable assignment. Assignment with no unstable pairs.

- Natural and desirable condition.
- Individual self-interest will prevent any applicant/hospital side deal from being made.

Simplification: Stable Matching Problem

Goal: Given two groups of *n* people each, find a "suitable" matching.

- Participants rate members from opposite group.
- Each person lists members from the other group in order of preference from best to worst.

Group P Preference Profile

Perfect matching: everyone is matched to precisely one person from the other group

Stability: self-reinforcing, i.e. no pair has incentive to defect from their assignment.

- For a matching *M*, an unmatched pair *p*-*r* from different groups is *unstable* if *p* and *r* prefer each other to current partners.
- Unstable pair *p*-*r* could each improve by ignoring the assignment.

Stable matching: perfect matching with no unstable pairs.

Stable matching problem: Given the preference lists of *n* people from each of two groups, find a stable matching between the two groups if one exists.

Q: Is matching (X,C), (Y,B), (Z,A) stable?

Group P Preference Profile

Q: Is matching (X,C), (Y,B), (Z,A) stable?

A: No. B and X prefer each other.

Group P Preference Profile

Q: Is matching (X,A), (Y,B), (Z,C) stable?

Group P Preference Profile

Q: Is matching (X,A), (Y,B), (Z,C) stable?

A: Yes

Group P Preference Profile

Variant: "Stable Roommate" Problem (one set rather than 2)

- **Q.** Do stable matchings always exist?
- A. Not exactly obvious...

Stable roommate problem:

- 2n people; each person ranks others from 1 to 2n 1.
- Assign roommate pairs so that no unstable pairs.

1st 2nd 3rd В С D A В С A D С Α В D D Α В С

 $(A,B), (C,D) \Rightarrow B-C$ unstable $(A,C), (B,D) \Rightarrow A-B$ unstable $(A,D), (B,C) \Rightarrow A-C$ unstable

Observation: Stable matchings do not always exist for stable roommate problem.

Propose-And-Reject Algorithm

Propose-and-reject algorithm: [Gale-Shapley 1962]

Intuitive method that guarantees to find a stable matching.

• Members of one group *P* make *proposals*, the other group *R receives* proposals

```
Initialize each person to be free.
while (some p in P is free) {
   Choose some free p in P
   r = 1<sup>st</sup> person on p's preference list to whom p has not yet proposed
   if (r is free)
        tentatively match (p,r) //p and r both engaged, no longer free
   else if (r prefers p to current tentative match p')
        replace (p',r) by (p,r) //p now engaged, p' now free
   else
        r rejects p
```

Propose and Reject Algorithm Example

```
Initialize each person to be free
while (some p in P is free) {
   Choose some free p in P
   r = 1<sup>st</sup> person on p's preference list to whom p has not yet proposed
   if (r is free)
      tentatively match (p,r) //p and r both engaged, no longer free
   else if (r prefers p to current tentative match p')
      replace (p',r) by (p,r) //p now engaged, p' now free
   else
```

```
r rejects p
```

}	favorite ↓		least favorite ↓		favorite ↓		least favorite ↓		
	1 st	2 nd	3 rd			1 ^{s†}	2 nd	3rd	
×	A	В	С		A	У	X	Z	
У	В	A	С		В	X	У	Z	
Ζ	А	В	С		С	Х	У	Z	

Group P Preference Profile

Group **R** Preference Profile

Tentative Matches:

Why Does This Work?

 What do we need to know before we're convinced that this algorithm is "correct"?

Why Does This Work?

- What do we need to know before we're convinced that this algorithm is "correct"?
 - That is terminates (no infinite loop)
 - That it produces a stable matching
 - It's perfect (everyone gets paired with exactly one partner)
 - It's stable (no unmatched pair mutually prefer each other)

Proof of Correctness: Termination (not obvious from the code) Observation 1: Members of *P* propose in decreasing order of preference.

Claim: The Gale-Shapley Algorithm terminates after at most n^2 iterations.

Proof: Proposals are never repeated (by Observation 1) and there are only n^2 possible proposals.

It could be nearly that bad...

General form of this example will take n(n-1) + 1 proposals.

	1 ^{s†}	2 nd	3 rd	4 th	5 th
V	A	В	С	D	E
W	В	С	D	A	E
×	С	D	A	В	E
У	D	A	В	С	E
Z	A	В	С	D	E

	1 ^{s†}	2 nd	3 rd	4 th	5 th
А	W	х	У	Z	V
В	x	У	Z	v	W
С	У	Z	V	W	х
D	Z	V	W	x	У
E	V	W	х	У	Z

Preference Profile for P

Preference Profile for R

Proof of Correctness: Perfection

Observation 2: Once a member of **R** is matched, they never become free; they only "trade up."

Claim: Everyone gets matched.

Proof:

- If no proposer is free then everyone is matched.
- After some *p* proposes to the last person on their list, all the *r* in *R* have been proposed to by someone (by *p* at least).
- By Observation 2, every *r* in *R* is matched at that point.
- Since |P| = |R| every p in P is also matched.

Proof of Correctness: Stability

Claim: No unstable pairs in the final Gale-Shapley matching *M*

Proof: Consider a pair p-r not matched by M

Case 1: p never proposed to r. $\Rightarrow p$ prefers M-partner to r. $\Rightarrow p-r$ is not unstable for M.

Case 2: *p* proposed to *r*.

 \Rightarrow **r** rejected **p** (right away or later when trading up)

- \Rightarrow **r** prefers **M**-partner to **p**.
- $\Rightarrow p$ -r is not unstable for M.

Stable matching problem: Given *n* people in each of two groups, and their preferences, find a stable matching if one exists.

Stable: No pair of people both prefer to be with each other rather than with their assigned partner

Gale-Shapley algorithm: Guarantees to find a stable matching for *any* problem instance.

 \Rightarrow Stable matching always exists!