CSE 421 Winter 2025 Lecture 18: Max Flow Applications

Nathan Brunelle

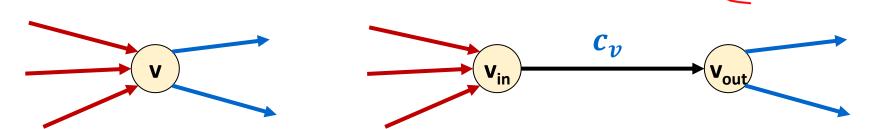
http://www.cs.uw.edu/421

Today – Reductions and Max Flow

- Max flow is primarily useful as the destination of a reduction
- B
- Given some problem that is not already a max flow problem
- Use that to create a flow network
- Run Edmonds Karp on that flow network
- Use the flow assignment to solve your original problem
- Proving correctness:
 - Argue that the flow through your constructed network is maximal if and only if your final answer is correct
 - Valid flow assignment in the network ⇒ Valid answer to original problem
 - The flow we found is guaranteed to give us a feasible solution
 - Valid answer to original problem ⇒ Valid flow assignment in the network
 - We must have had the best feasible solution as a better one would have allowed more flow

Some general ideas for using MaxFlow/MinCut

- If no source/sink, add them with appropriate capacity depending on application
- Sometimes can have edges with no capacity limits
 - Infinite capacity (or, equivalently, very large integer capacity)
- Convert undirected graphs to directed ones
- Can remove unnecessary flow cycles in answers
- Another idea:
 - To use them for vertex capacities c_v
 - Make two copies of each vertex $oldsymbol{v}$ named $oldsymbol{v_{in}}$, $oldsymbol{v_{out}}$

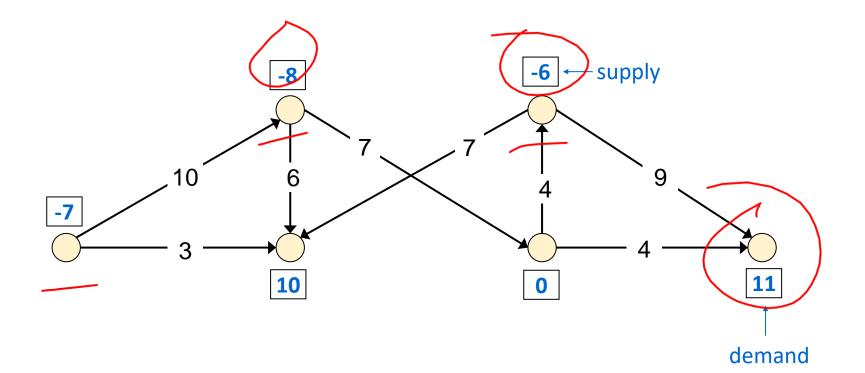


Correctness

- Valid flow ⇒ Valid answer
 - Claim: If we have flow matching the number of games remaining then x can win the season
 - The amount of flow going from each matchup edge to each team edge represents the number of times that team won in that matchup
 - Max flow equaling the number of games means we could assign winners to each remaining game
 - The capacity on the team-to-sink edges guarantees none of them won more games than x
- Valid answer ⇒ Valid flow
 - Claim: If we had a way for \boldsymbol{x} to be champion, we could find flow through the graph to match the number of remaining games
 - Consider the collection of game outcomes which would cause this.
 - For each game, assign 1 unit of flow along the path s, (t_i, t_j) , w, t where w is the winner of the game
 - After doing this for all games we will not have violated any capacity constraints because we required that x would be the champion (and so no other team could have more wins)

Circulation with Demands

Nodes have either a "supply" (negative value) or "demand" (positive value) We want to transport from our supply to our demand through a transportation network



Circulation with Demands

- Single commodity, directed graph G = (V, E)
- Each node v has an associated demand d(v)
 - Needs to receive an amount of the commodity: demand d(v) > 0
 - Supplies some amount of the commodity: "demand" d(v) < 0 (amount = |d(v)|)
- Each edge e has a capacity $c(e) \geq 0$.
- Nothing lost: $\sum_{v} d(v) = 0$.

Defn: A circulation for (G, c, d) is a flow function $f: E \to \mathbb{R}$ meeting all the capacities, $0 \le f(e) \le c(e)$, and demands:

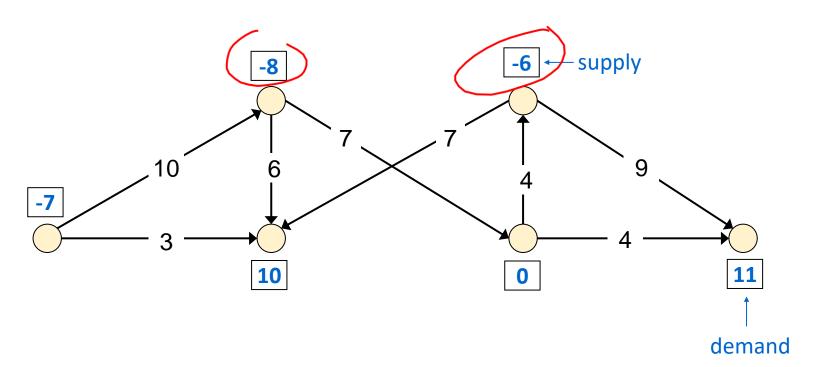
$$\sum_{e \text{ into } v} f(e) - \sum_{e \text{ out of } v} f(e) = d(v).$$

Circulation with Demands: Given (G, c, d), does it have a circulation? If so, find it.

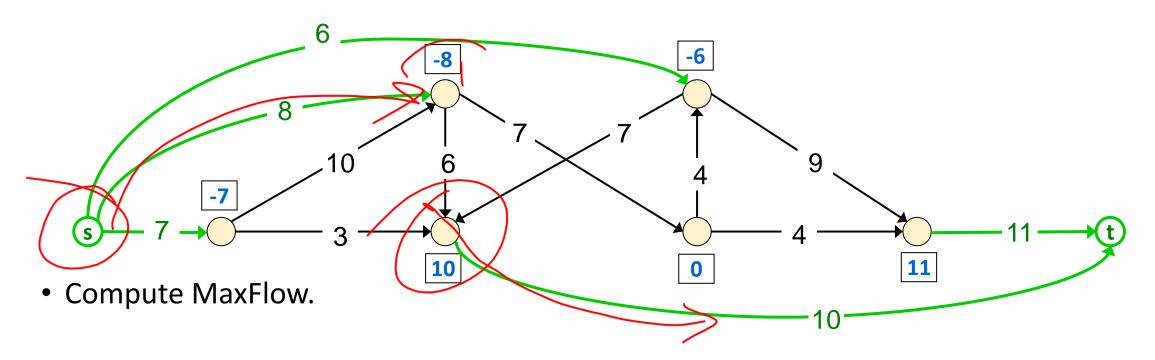
Circulation with Demands

Defn: Total supply $\underline{D} = \sum_{v: d(v) < 0} |d(v)| = -\sum_{v: d(v) < 0} d(v)$.

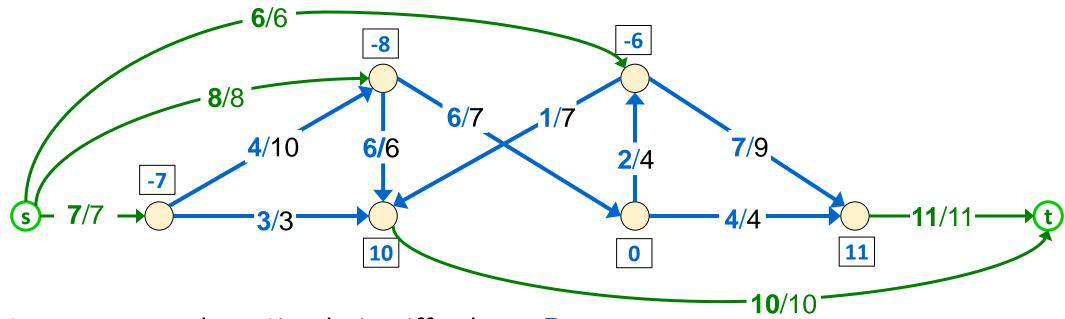
Necessary condition: $\sum_{v:d(v)>0} d(v) = D$ (no supply is lost)



- Add new source s and sink t.
- Add edge (s, v) for all supply nodes v with capacity |d(v)|.
- Add edge (v, t) for all demand nodes v with capacity d(v).



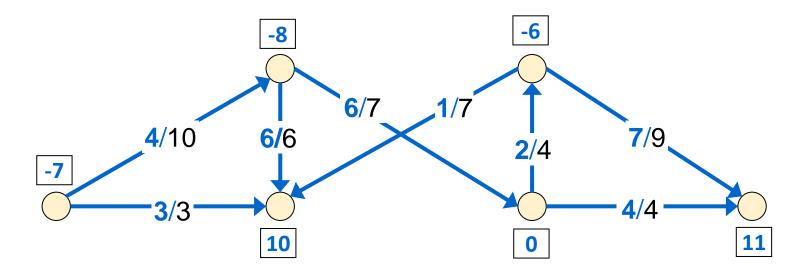
- MaxFlow $\leq D$ based on cuts out of s or into t.
- If MaxFlow = D then all supply/demands satisfied.



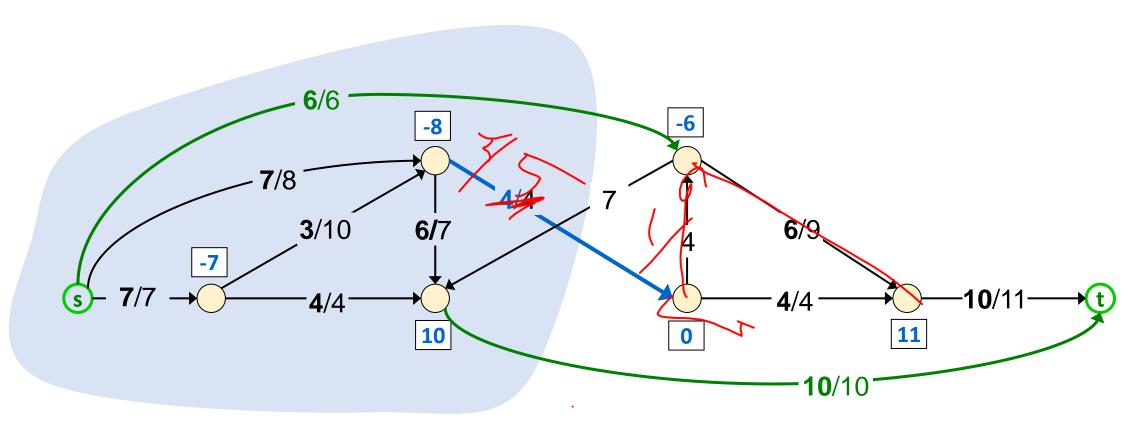
Compute MaxFlow. Circulation iff value = D

Circulation = flow on original edges

Circulations only need integer flows

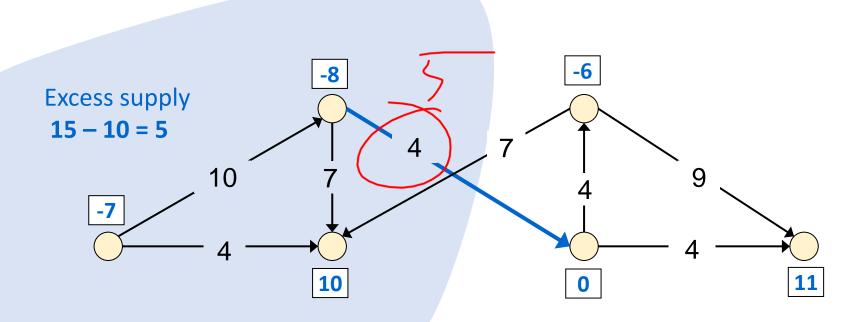


When does a circulation not exist? MaxFlow $\langle D \rangle$ iff MinCut $\langle D \rangle$.



When does a circulation not exist? MaxFlow $\langle D \rangle$ iff MinCut $\langle D \rangle$.

Equivalent to excess supply on "source" side of cut smaller than cut capacity.



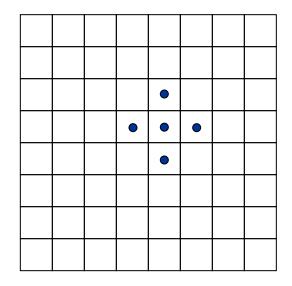
Cut capacity = 4 < 5 = Excess supply

Image segmentation:

Given: an Image

a grid of pixels with RGB values

Divide image into coherent regions.

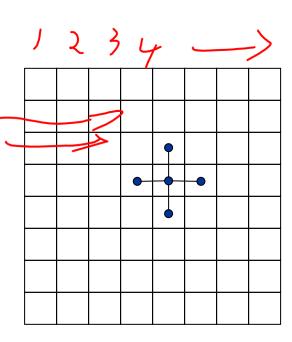


Example: Three people standing in front of complex background scene. Identify each person as a coherent object.

Foreground / background segmentation:

Given: A grid V of pixels, E set of pairs of neighboring pixels.

- $a_i \neq 0$ is likelihood pixel i is foreground. $b_i \neq 0$ is likelihood pixel i is background. For $(i,j) \in E$ $p_{ij} \geq 0$ is separation penalty for labeling one of i and j as foreground, and the other as background.



Label each pixel in image as belonging to foreground (in A) or background (in B)

Goals: Maximize

Accuracy: if $a_i > b_i$ in isolation, prefer to label i in foreground.

Smoothness: if many neighbors of *i* are labeled foreground, we should be inclined not to label *i* as background.

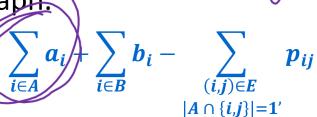
so... Find: partition
$$(A, B)$$
 that maximizes $\sum_{i \in A} a_i + \sum_{i \in B} b_i - \sum_{(i,j) \in E, |A \cap \{i,j\}| = 1} p_{ij}$

Issues with formulating as min cut problem:

- Maximization.
- No source or sink.

Undirected graph.

But maximizing

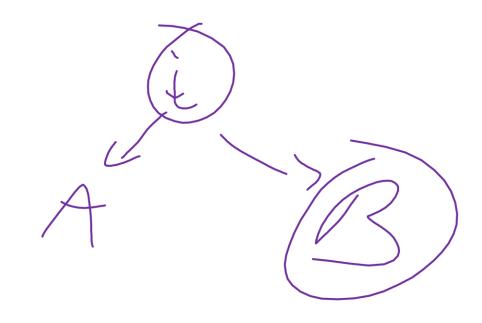


 p_{ij}

is equivalent to maximizing

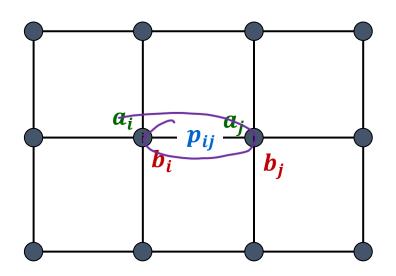
$$\sum_{i \in A} b_i + \sum_{i \in B} a_i + \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}| = 1'}} p_{ij}$$

 $i \in a$



Minimize $\sum_{i \in A} b_i + \sum_{i \in B} a_i + \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}| = 1'}} p_{ij}$

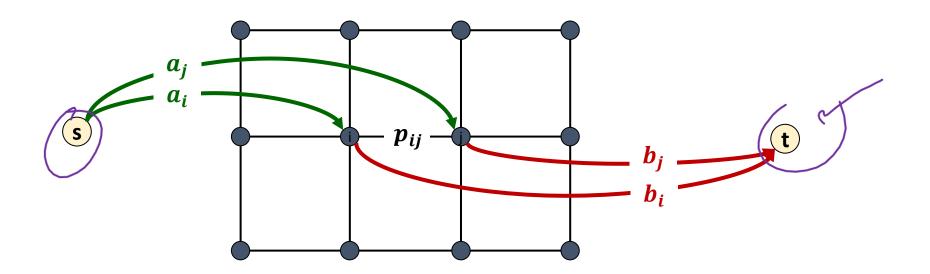
Formulate as min cut problem.



Minimize $\sum_{i \in A} b_i + \sum_{i \in B} a_i + \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}| = 1'}} p_{ij}$

Formulate as min cut problem.

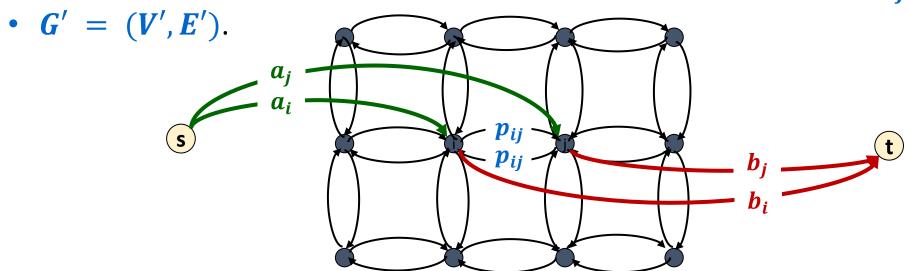
• Add source s to correspond to foreground, edges (s, i) with capacity a_i ; add sink t to correspond to background, edges (j, t) with capacity b_i .



Minimize $\sum_{i \in A} b_i + \sum_{i \in B} a_i + \sum_{\substack{(i,j) \in E \\ |A \cap \{i,j\}| = 1'}} p_{ij}$

Formulate as min cut problem.

- Add source s to correspond to foreground, edges (s, i) with capacity a_i ; add sink t to correspond to background, edges (j, t) with capacity b_j .
- Use two anti-parallel edges instead of undirected edge, capacity p_{ij} .

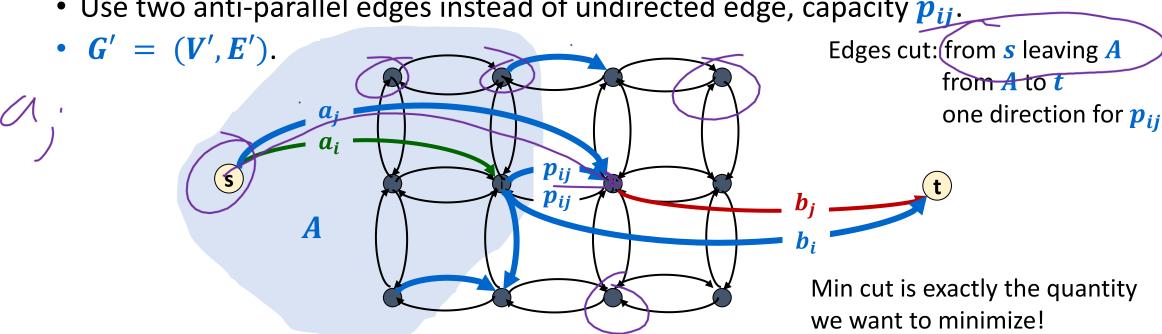


Minimize $\sum_{i \in A} b_i + \sum_{i \in B} a_i$ $(i,j)\in E$ $|A \cap \{i,j\}| = 1$

Formulate as min cut problem.

• Add source s to correspond to foreground, edges (s, i) with capacity a_i ; add sink t to correspond to background, edges (j, t) with capacity b_i .

• Use two anti-parallel edges instead of undirected edge, capacity p_{ii} .



Baseball Elimination

- Though you probably don't care at all about baseball or sports in general, the way that the solution works is interesting.
 - This particular problem is a bit old style since baseball scheduling doesn't work this way any more...
- Near the end of a season
 - Sportswriters use simple notions to tell which teams can be eliminated from getting a top place finish:
 - "magic number", "elimination number", etc.
- These are not accurate
 - We can do better with network flow

Baseball Elimination: Scenario

Team	Wins	Losses	To play	Against = r_{ij}			
i	W_i	l_i	r_i	Tex	Hou	Sea	Oak
Huskies	83	71	8	-	1	6	1
Wolverines	80	79	3	1	-	0	2
Buckeyes	78	78	6	6	0	-	0
Ducks	77	82	3	1	2	0	-

- Which teams have a chance of finishing the season with most wins?
 - Ducks eliminated since they can finish with at most 80 wins, but the Huskies already have 83.
 - If $w_i + r_i < w_j \implies$ team i eliminated.
 - Only reason sports broadcasters appear to be aware of.
 - Sufficient, but not necessary!

Baseball Elimination: Scenario

Team	Wins	Losses	To play	Against = r_{ij}				
i	W_i	l_i	r_i	Tex	Hou	Sea	Oak	
Texas	83	71	8	-	1	6	1	
Houston	80	79	3	1	-	0	2	
Seattle	78	78	6	6	0	-	0	
Oakland	77	82	3	1	2	0	-	

- Which teams have a chance of finishing the season with most wins?
 - Wolverines can win 83 games, but are still eliminated . . .
 - If the Huskies don't get to 84 wins then the Buckeyes will get 6 more wins and finish with 84 wins.
- The answer depends on more than current wins and # of remaining games
 - It also depends on all the games that are being played.

Baseball Elimination

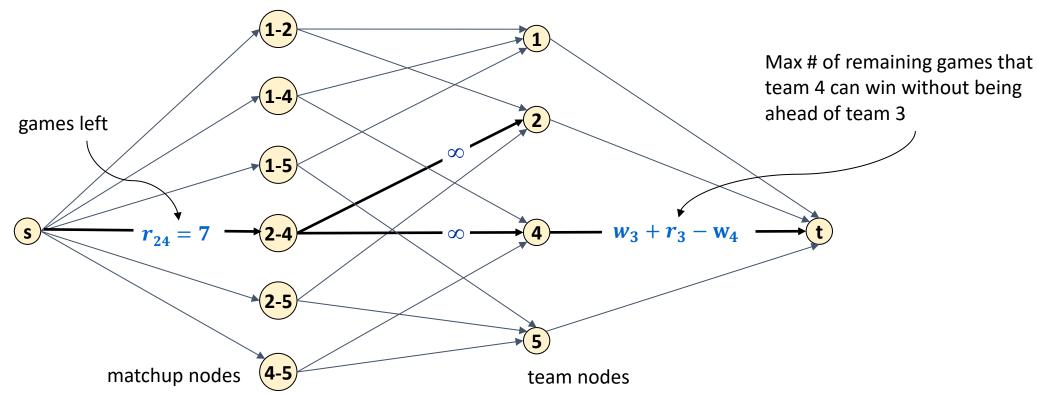
Baseball elimination problem:

- Set of teams S.
- Distinguished team $z \in S$.
- Team x has won w_x games already.
- Teams x and y play each other r_{xy} additional times.
- Is there any outcome of the remaining games in which team **z** finishes with the most (or tied for the most) wins?

Baseball Elimination: Max Flow Formulation

Can team 3 finish with most wins?

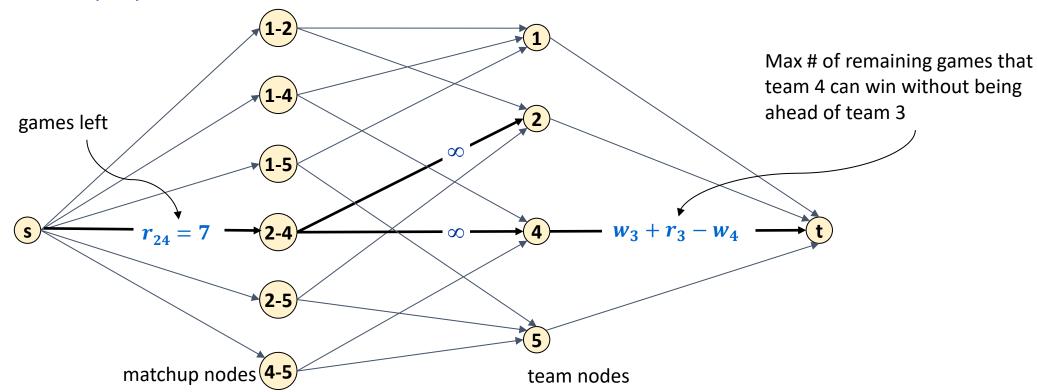
- Assume team 3 wins all remaining games $\Rightarrow w_3 + r_3$ wins.
- Divide up remaining games so that all teams have $\leq w_3 + r_3$ wins.



Baseball Elimination: Max Flow Formulation

Theorem: Team 3 is not eliminated iff max flow equals capacity leaving source.

- Integrality implies that each remaining x-y game counts as a win for x or y.
- Capacity on (x, t) edge ensures no team wins too many games.



Writers

Team	Wins w_i	Losses l_i	To play r_{i}	Against = r_{ij}				
i				NY	Bal	Bos	Tor	Det
NY	75	59	28	-	3	8	7	3
Baltimore	71	63	28	3	-	2	7	4
Boston	69	66	27	8	2	-	0	0
Toronto	63	72	27	7	7	0	-	-
Detroit	49	86	27	3	4	0	0	-

AL East: August 30, 1996

Which teams have a chance of finishing the season with most wins?

Detroit could finish season with 49 + 27 = 76 wins.

Certificate of elimination. $T = \{NY, Bal, Bos, Tor\}$

- Have already won w(T) = 75+71+69+63=278 games.
- Must win at least r(T) = 3+8+7+2+7=27 more among themselves.
- Average team in T wins at least 305/4 > 76 games.

Defn: Given a set *T* of teams define

- $w(T) = \sum_{x \in T} w_x$ total number of wins for teams in T
- $r(T) = \sum_{\{x,y\} \subseteq T} r_{xy}$ total remaining games between teams in T

We say that T eliminates team z iff $\frac{w(T)+r(T)}{|T|} > w_z + r_z$ since an average team in T will win more than $w_z + r_z$ games.

Theorem [Hoffman-Rivlin 1967]: Team z is eliminated

 \Leftrightarrow there is some set T of teams that eliminates Z (as defined above).

Proof: ← Shown above

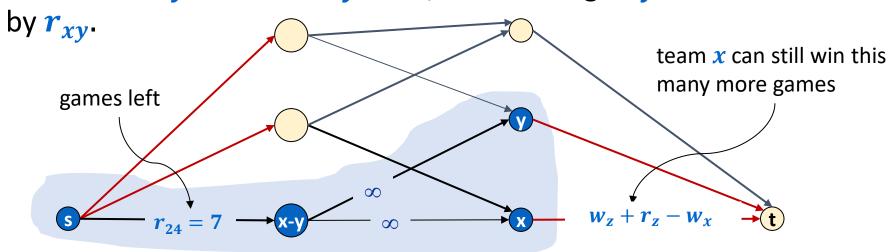
 \Rightarrow Choose T to be the set of teams on the source side of the min cut...

Proof of \Rightarrow : Assume that \mathbf{z} is eliminated

Let T = team nodes in A for minimum cut (A, B) with capacity $< \sum_{xy} r_{xy}$.

Claim: $x-y \in A \iff \text{both } x \in A \text{ and } y \in A \text{ (equivalently } x \in T \text{ and } y \in T \text{)}.$

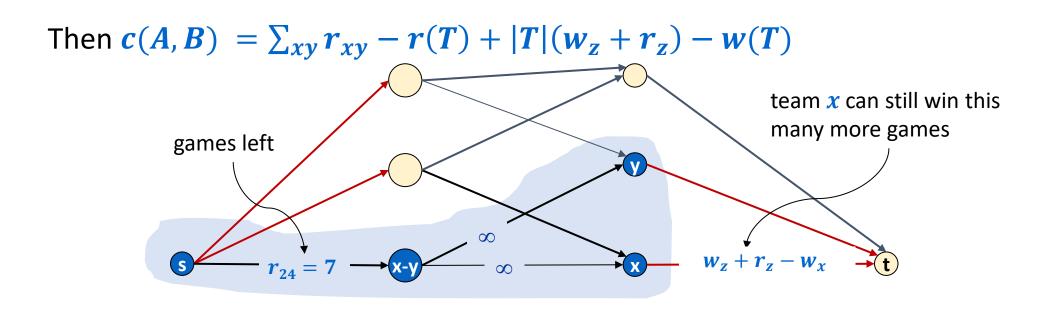
- infinite capacity edges ensure that if $x-y \in A$ then $x \in A$ and $y \in A$
- if $x \in A$ and $y \in A$ but $x-y \notin A$, then adding x-y to A decreases cut capacity



Proof of \Rightarrow : Assume that \mathbf{z} is eliminated.

Let T = team nodes in A for minimum cut (A, B) with capacity $< \sum_{xy} r_{xy}$.

Claim: $x-y \in A \iff \text{both } x \in A \text{ and } y \in A \text{ (equivalently } x \in T \text{ and } y \in T \text{)}.$



Proof of \Rightarrow : Assume that \mathbf{z} is eliminated.

Let T = team nodes in A for minimum cut (A, B) with capacity $< \sum_{xy} r_{xy}$.

Claim: $x-y \in A \iff \text{both } x \in A \text{ and } y \in A \text{ (equivalently } x \in T \text{ and } y \in T \text{)}.$

Then
$$c(A, B) = \sum_{xy} r_{xy} - r(T) + |T|(w_z + r_z) - w(T)$$

Now $c(A, B) < \sum_{xy} r_{xy}$ implies that $r(T) - |T|(w_z + r_z) + w(T) > 0$.

Rearranging, we have $r(T)+w(T)>|T|(w_z+r_z)$ so $\frac{w(T)+r(T)}{|T|}>w_z+r_z$ which means that T eliminates z.