
CSE 421 Winter 2025
Lecture 18:

Max Flow Applications
Nathan Brunelle

http://www.cs.uw.edu/421

http://www.cs.uw.edu/421

Max Flow Algorithm Summary

• Ford-Fulkerson:
• “Find an augmenting path, identify a bottleneck edge, add flow to fill the bottleneck”
• Worst case running time: Θ(𝑉 ⋅ 𝐸 ⋅ 𝐶) where 𝐶 is the maximum capacity of any

edge

• Edmonds-Karp:
• “Do Ford Fulkerson, but use the shortest augmenting path (with BFS)”
• Worst case running time: Θ 𝐸 2 𝑉

• Observation:
• Since Edmonds-Karp is just a special case of Ford-Fulkerson the running time of

Edmonds-Karp should be:

• Θ min 𝑉 ⋅ 𝐸 ⋅ 𝐶, 𝐸 2 𝑉
• Use the FF bound when 𝐶 > 𝐸 , otherwise use EK.

Today – Reductions and Max Flow

• Max flow is primarily useful as the destination of a reduction
• Given some problem that is not already a max flow problem

• Use that to create a flow network

• Run Edmonds Karp on that flow network

• Use the flow assignment to solve your original problem

• Proving correctness:
• Argue that the flow through your constructed network is maximal if and only

if your final answer is correct
• Valid flow assignment in the network ⇒ Valid answer to original problem

• The flow we found is guaranteed to give us a feasible solution

• Valid answer to original problem ⇒ Valid flow assignment in the network
• We must have had the best feasible solution as a better one would have allowed more flow

Recall: Bipartite Graph

Definition: An undirected graph 𝑮 is bipartite iff we can color its
vertices red and green so each edge has different color endpoints

Alternative: A graph 𝑮 is bipartite iff we can find a cut 𝐿, 𝑅 such that
every edge in the graph crosses the cut

On a cycle the two colors must alternate, so
• green every 2nd vertex
• red every 2nd vertex
Can’t have either if length is not divisible by 2.

Bipartite Matching

Input: Undirected Bipartite graph 𝑮 = (𝑳 ∪ 𝑹, 𝑬)

Goal: Find the largest subset of edges 𝑀 ⊆ 𝐸 such that ever vertex is
adjacent to at most one edge

Maximum Bipartite Matching

6

Dog Lovers Dogs

Maximum Bipartite Matching

7

Dog Lovers Dogs

A (non-maximum)
bipartite matching

Maximum Bipartite Matching

8

A maximum
bipartite matching!

Dog Lovers Dogs

Reducing to Max Flow

• We need to create a flow network
• Add/remove any edges/nodes as needed (must be directed)

• Identify a source/sink

• Give capacities to each edge

Reducing to Max Flow

• We need to create a flow network
• Add/remove any edges/nodes as needed

• Make each edge directed from 𝐿 to 𝑅

• Add nodes 𝑠 and 𝑡

• Draw an edge from 𝑠 to each node in 𝐿

• Draw an edge from each node in 𝑅 to 𝑡

• Identify a source/sink
• Make 𝑠 the source and 𝑡 the sink

• Give capacities to each edge
• Give each edge capacity 1

𝒔 𝒕

1

1

1

1

1

1 1

1 1

1

1

1

1

1

1

1

1

1

Reducing to Max Flow

• Next, run Edmonds-Karp

• Use the answer to select a Matching
• 𝑀 = the set of 𝐿-to-𝑅 edges with flow

• 𝑀 = 𝑒 ∶ 𝑒 ∈ 𝐿 × 𝑅, 𝑓 𝑒 = 1

• Running Time:
• Constructing the graph

• 𝑉 + |𝐸|

• Running Edmonds-Karp
• 𝑉 ⋅ |𝐸|

• Finding 𝑀
• 𝑉

• Overall
• Θ 𝑉 ⋅ 𝐸

𝒔 𝒕

1/1

1/1

1/1

1/1

1

1/1 1

1 1/1

1/1

1

1

1/1

1

1/1

1/1

1/1

1/1

Correctness
• Valid flow ⇒ Valid answer

• Need to show: 𝑀 is a valid match
• Requirement 1: 𝑀 ⊆ 𝐸
• Requirement 2: each node is part of at most

one match
• No node in 𝐿 is adjacent to more than one edge

because the capacity of the edge from 𝑠 is 1
• No node in 𝑅 is adjacent to more than one edge

because the capacity of the edge to 𝑡 is 1

• Valid answer ⇒ Valid flow
• Any matching 𝑀 enables a flow with value

equal to 𝑀
• Idea: “reverse” the construction to derive a flow

from the match
• For each edge in 𝑀, assign flow across that edge,

then add flow incoming to each 𝐿 endpoint and
outgoing form each 𝑡 endpoint

• This must be a valid flow because
• No edge exceeds its capacity (we only assign 1 unit)

• All nodes (except 𝑠 and 𝑡) have 0 net flow because
each node is incident at most one edge in 𝑀

𝒔 𝒕

1/1

1/1

1/1

1/1

1

1/1 1

1 1/1

1/1

1

1

1/1

1

1/1

1/1

1/1

1/1

Defn: Two paths in a graph are edge-disjoint iff they have no edge in common.

Edge disjoint path problem: Given: a directed graph 𝑮 = (𝑽, 𝑬) and two vertices 𝒔 and 𝒕.
 Find: the maximum # of edge-disjoint simple 𝒔-𝒕 paths in 𝑮.

Edge-Disjoint Paths

s

a

b

c

d

e

f

t

13

Edge-Disjoint Paths – Example of size 2

s

a

b

c

d

e

f

t

14

Defn: Two paths in a graph are edge-disjoint iff they have no edge in common.

Edge disjoint path problem: Given: a directed graph 𝑮 = (𝑽, 𝑬) and two vertices 𝒔 and 𝒕.
 Find: the maximum # of edge-disjoint simple 𝒔-𝒕 paths in 𝑮.

Edge-Disjoint Paths
MaxFlow for edge-disjoint paths

• Assign capacity 𝟏 to every edge

• Add a source 𝒔′ and a sink 𝒕′

• Connect 𝒔′ to 𝒔 and 𝒕′ to 𝒕 with
capacity ∞

• Compute max flow

Running Time:

Constructing the flow network: 𝑉 + |𝐸|

Computing Max Flow: 𝑉 ⋅ 𝐸 2

Overall: Θ 𝑉 ⋅ 𝐸 2

15

s

a

b

c

d

e

f

t

1

1

1

1

1
1

1

1

1 1

1
1

1

1

𝒔′ 𝒕′∞ ∞

Edge-Disjoint Paths
MaxFlow for edge-disjoint paths

• Assign capacity 𝟏 to every edge

• Add a source 𝒔′ and a sink 𝒕′

• Connect 𝒔′ to 𝒔 and 𝒕′ to 𝒕 with
capacity ∞

• Compute max flow

Theorem: MaxFlow = # edge-disjoint paths

Valid flow ⇒ Valid answer:

Need to show: no edge is used more than once all
paths go from 𝒔 to 𝒕

 Each edge has capacity 1, so its used once.
To get from 𝑠′ to 𝑡′ we must go from 𝑠 to 𝑡 along the
way

Valid answer ⇒ Valid flow:

Need to show: Any set of edge-disjoint paths could
be used to produce flow of the same amount.

 Add 1 unit of flow along each path. Since no
path uses the same edge twice, capacity constraint is
satisfied. Because the indegree matches the
outdegree for each node (except 𝑠′ and 𝑡′), the flow
constraint is satisfied.

16

s

a

b

c

d

e

f

t

1/1

1/1

1

1

1
1/1

1/1

1/1

1/1 1/1

1
1

1/1

1/1

𝒔′ ∞ 𝒕′∞

Defn: Two paths in a graph are vertex-disjoint iff they have no vertices in common, except
their end points.

Vertex disjoint path problem: Given: a directed graph 𝑮 = (𝑽, 𝑬) and two vertices 𝒔 and 𝒕.

 Find: the maximum # of vertex-disjoint simple 𝒔-𝒕 paths in 𝑮.

Vertex-Disjoint Paths

17

s

a

b

c

d

e

f

t

Defn: Two paths in a graph are vertex-disjoint iff they have no vertices in common.

Vertex disjoint path problem: Given: a directed graph 𝑮 = (𝑽, 𝑬) and two vertices 𝒔 and 𝒕.

 Find: the maximum # of vertex-disjoint simple 𝒔-𝒕 paths in 𝑮.

Vertex-Disjoint Paths

18

Observation: Every vertex-disjoint
path is also edge-disjoint.
(Two paths which share an edge
also share that edge’s endpoints)

Idea: Modify the graph so that all
edge-disjoint paths are also
vertex disjoint

s

a

b

c

d

e

f

t

𝒂 𝒂𝒐𝒖𝒕

Vertex-Disjoint Paths
MaxFlow for vertex-disjoint paths

• For each node 𝑣, add in 𝑣𝑜𝑢𝑡

• For every outgoing edge from 𝑣, instead
make it an outgoing edge from 𝑣𝑜𝑢𝑡

• Add edge (𝑣, 𝑣𝑜𝑢𝑡)

• Compute edge-disjoint paths

Running Time:

Constructing the new graph: 𝑉 + |𝐸|

Computing edge disjoint paths: 𝑉 ⋅ 𝐸 2

Overall: Θ 𝑉 ⋅ 𝐸 2

19

s

a

b

c

d

e

f

t

Shift Scheduling

• The manager at a bagel shop needs to staff all shifts during the day.

• We have the following constraints:
• Shift 𝑠𝑖 must have at least 𝑝𝑖 people assigned to it

• Each employee 𝑒𝑖 has a list of shifts that they are able to work

• No employee is able to work more than 𝑥 shifts

Shifts:
1. 6am, 2
2. 9am, 2
3. 12pm, 1
4. 3pm, 1

Employees:
1. 6am, 9am, 3pm
2. 6am, 9am, 12pm
3. 6am, 3pm

𝑥 = 2
Solution:
• Employee 1 assigned to 6am, 9am
• Employee 2 assigned to 9am, 12pm
• Employee 3 assigned to 6am, 3pm

Shift Scheduling problem

Given: A list of 𝑛 shifts 𝑠1, … 𝑠𝑛, the number of employees needed for
each shift 𝑝1, … 𝑝𝑛, the availability of 𝑚 employees 𝑒1, … , 𝑒𝑚, and a
number 𝑥

Find: whether it is possible to assign employees to their available shifts
such that all shifts are full-staffed and no employee is assigned to more
than 𝑥 shifts

Shifts:
1. 6am, 2
2. 9am, 2
3. 12pm, 1
4. 3pm, 1

Employees:
1. 6am, 9am, 3pm
2. 6am, 9am, 12pm
3. 6am, 3pm

𝑥 = 2
Solution:
• Employee 1 assigned to 6am, 9am
• Employee 2 assigned to 9am, 12pm
• Employee 3 assigned to 6am, 3pm

Reducing to Max Flow

• We need to create a flow network
• One node per shift

• One node per employee

• A source node and a sink node

• An edge from the source to each
employee node with capacity 𝑥

• An edge from each employee to each
available shift with capacity 1

• An edge from each shift node 𝑠𝑖 to
the sink with capacity 𝑝𝑖

𝒔 𝒕

𝑥

𝑥

𝑥

𝑥

𝑝1

𝑝2

𝑝3

𝑝𝑛

𝒆𝟏

𝒆𝟐

𝒆𝒎

𝒆𝟑

𝒔𝟏

𝒔𝟐

𝒔𝟑

𝒔𝒏

1

1

1

1

1

1

1

1

1
… …

Reducing to Max Flow

• We need to create a flow network
• One node per shift

• One node per employee

• A source node and a sink node

• An edge from the source to each
employee node with capacity 𝑥

• An edge from each employee to each
available shift with capacity 1

• An edge from each shift node 𝑠𝑖 to
the sink with capacity 𝑝𝑖

𝒔 𝒕

2

2

2

2

2

1

1

𝒆𝟏

𝒆𝟐

𝒆𝟑

𝟔

𝟗

𝟏𝟐

𝟑

1

Shifts:
1. 6am, 2
2. 9am, 2
3. 12pm, 1
4. 3pm, 1

Employees:
1. 6am, 9am, 3pm
2. 6am, 9am, 12pm
3. 6am, 3pm

𝑥 = 2

1
1

1
1

1

1

Running Time

• Constructing the graph
• 𝑛 ⋅ 𝑚

• Running Max Flow
• Which bound to use depends on the

value of 𝑥 and each 𝑝𝑖, so probably
best to just use the Edmonds-Karp
bound

• Θ 𝑛 ⋅ 𝑚 2(𝑛 + 𝑚)
𝒔 𝒕

𝑥

𝑥

𝑥

𝑥

𝑝1

𝑝2

𝑝3

𝑝𝑛

𝒆𝟏

𝒆𝟐

𝒆𝒎

𝒆𝟑

𝒔𝟏

𝒔𝟐

𝒔𝟑

𝒔𝒏

1

1

1

1

1

1

1

1

1
… …

Correctness
• Valid flow ⇒ Valid answer

• No employee is assigned to more than 𝑥
shifts (capacity on 𝑠 to 𝑒𝑖)

• No employee is assigned to the same
shift more than once (capacity of 𝑒𝑖 to 𝑠𝑗)

• No employee is assigned to an
unavailable shift (by selection of edges to
draw)

• All shifts staffed if flow value is σ 𝑝𝑖

• Valid answer ⇒ Valid flow
• Suppose we had a way of staffing the

shifts, we will show that there must be
flow through the graph whose value
matches σ𝑝𝑖
• All capacity constraints will be observed
• It will only use edges we drew

• It will assign flow across σ𝑝𝑖 𝑒𝑖-to-𝑠𝑗 shifts

𝒔 𝒕

𝑥

𝑥

𝑥

𝑥

𝑝1

𝑝2

𝑝3

𝑝𝑛

𝒆𝟏

𝒆𝟐

𝒆𝒎

𝒆𝟑

𝒔𝟏

𝒔𝟐

𝒔𝟑

𝒔𝒏

1

1

1

1

1

1

1

1

1
… …

Baseball Elimination

• The champion will be the one with the most wins at the end of the season

• A team is “eliminated” if it has become impossible for them to become the
champion

• Given a current win/loss record for each team, and the remaining games in
the season, determine whether a team has been eliminated

Input: The win/loss record for each team 𝑤𝑖 , ℓ𝑖 , the number of games
remaining between each pair of teams 𝑟𝑖,𝑗, and the team 𝑥 that we’re
checking

Goal: Determine whether 𝑥 can be the champion (i.e. there is a way to
assign winners/losers to the remaining games such that 𝑥 has the most wins)

Baseball Elmination

Remaining Opponents

Team Wins Losses Games Left Huskies Ducks Bruins Wolverines

Huskies 83 71 8 -- 1 6 1

Ducks 80 79 3 1 -- 0 2

Bruins 78 78 6 6 0 -- 0

Wolverines 77 82 3 1 2 0 --

If the Huskies lose all
of these, then the
Ducks win them all

Idea: Can we “distribute” wins so that all are
less than the Duck’s best possible record?

Can The Ducks Win the Season?

B,W

H,B

H,W

H

B

W

S t

Edge from Match-up to
participating teams

Node per non-Ducks
Match-up

Node per Team
(except Ducks)

Capacity = games
remaining

6

1

0

Capacity = additional wins before
overtaking Ducks’ max wins

∞
∞

∞

∞

∞
∞

Answer is “Yes” if
max flow = total
games remaining

Remaining Opponents

Team Wins Losses Games Left Huskies Ducks Bruins Wolverines

Huskies 83 71 8 -- 1 6 1

Ducks 80 79 3 1 -- 0 2

Bruins 78 78 6 6 0 -- 0

Wolverines 77 82 3 1 2 0 --

Constructing the flow network
• Suppose we have 𝒏 total teams

• Make a node for each team except for 𝑥
• 𝑛 − 1 nodes

• Make a node of each remaining matchup (𝑡𝑖 , 𝑡𝑗) that does not involve 𝑥
• 𝑛 − 1 2 nodes

• Add a source node 𝑠 and a sink node 𝑡
• 2 nodes

• Draw an edge from 𝑠 to each matchup node 𝑡𝑖 , 𝑡𝑗 with capacity 𝑟𝑖,𝑗
• 𝑛 − 1 2 edges

• Draw an edge from each matchup node 𝑡𝑖 , 𝑡𝑗 to each team node 𝑡𝑖 and 𝑡𝑗 with capacity ∞
• 2 𝑛 − 1 2 edges

• Draw an edge from each team node 𝑡𝑖 to the sink 𝑡 with capacity representing the number of
wins team 𝑥 has if they win all remaining games minus the number of wins 𝑡𝑖 currently has
• 𝑛 − 1 edges

• 𝑉 = Θ 𝑛2 , 𝐸 = Θ 𝑛2

• Running time: Θ 𝑛6

Correctness
• Valid flow ⇒ Valid answer

• Claim: If we have flow matching the number of games remaining then 𝑥 can win the season
• The amount of flow going from each matchup edge to each team edge represents the number

of times that team won in that matchup
• Max flow equaling the number of games means we could assign winners to each remaining

game
• The capacity on the team-to-sink edges guarantees none of them won more games than 𝑥

• Valid answer ⇒ Valid flow
• Claim: If we had a way for 𝑥 to be champion, we could find flow through the graph to match the

number of remaining games
• Consider the collection of game outcomes which would cause this.

• For each game, assign 1 unit of flow along the path 𝑠, 𝑡𝑖 , 𝑡𝑗 , 𝑤, 𝑡 where 𝑤 is the winner of the
game

• After doing this for all games we will not have violated any capacity constraints because we
required that 𝑥 would be the champion (and so no other team could have more wins)

Circulation with Demands

31

3

10 6

-7

-8

11

-6

9

10 0

7

4

7

4

demand

supply

Nodes have either a “supply” (negative value) or “demand” (positive value)

We want to transport from our supply to our demand through a
transportation network

Circulation with Demands
• Single commodity, directed graph 𝑮 = (𝑽, 𝑬)

• Each node 𝒗 has an associated demand 𝒅(𝒗)

• Needs to receive an amount of the commodity: demand 𝒅 𝒗 > 𝟎

• Supplies some amount of the commodity: “demand” 𝒅 𝒗 < 𝟎 (amount = |𝒅(𝒗)|)

• Each edge 𝒆 has a capacity 𝒄 𝒆 ≥ 𝟎.

• Nothing lost: σ𝒗 𝒅 𝒗 = 𝟎.

Defn: A circulation for (𝑮, 𝒄, 𝒅) is a flow function 𝒇: 𝑬 → ℝ meeting all the
capacities, 𝟎 ≤ 𝒇 𝒆 ≤ 𝒄(𝒆), and demands:

σ𝒆 into 𝒗 𝒇 𝒆 − σ𝒆 out of 𝒗 𝒇 𝒆 = 𝒅(𝒗).

Circulation with Demands: Given (𝑮, 𝒄, 𝒅), does it have a circulation? If so, find it.

32

Circulation with Demands
Defn: Total supply 𝑫 = σ𝒗: 𝒅 𝒗 <𝟎 𝒅 𝒗 = − σ𝒗: 𝒅 𝒗 <𝟎 𝒅(𝒗).

Necessary condition: σ𝒗: 𝒅 𝒗 >𝟎 𝒅 𝒗 = 𝑫 (no supply is lost)

33

3

10 6

-7

-8

11

-6

9

10 0

7

4

7

4

demand

supply

Circulation with Demands using Network Flow
• Add new source 𝒔 and sink 𝒕.

• Add edge (𝒔, 𝒗) for all supply nodes 𝒗 with capacity |𝒅(𝒗)|.

• Add edge (𝒗, 𝒕) for all demand nodes 𝒗 with capacity 𝒅(𝒗).

• Compute MaxFlow.

34

3

10 6
-7

-8

11

-6

9

10 0

7

4

7

4

s t11

10

6

8

7

Circulation with Demands using Network Flow

• MaxFlow ≤ 𝑫 based on cuts out of 𝒔 or into 𝒕.

• If MaxFlow = 𝑫 then all supply/demands satisfied.

• If.

• Compute MaxFlow. Circulation iff value = 𝑫
35

3/3

4/10 6/6
-7

-8

11

-6

7/9

10 0

6/7

4/4

1/7

2/4

s t11/11

10/10

6/6

8/8

7/7

Circulation with Demands using Network Flow
Circulation = flow on original edges

Circulations only need integer flows

36

3/3

4/10 6/6
-7

-8

11

-6

7/9

10 0

6/7

4/4

1/7

2/4

Circulation with Demands using Network Flow
When does a circulation not exist? MaxFlow < 𝑫 iff MinCut < 𝑫.

• If.

37

4/4

3/10 6/7
-7

-8

11

-6

6/9

10 0

4/4

4

4/4

7

4

s t10/11

10/10

6/6

7/8

7/7

Circulation with Demands using Network Flow
When does a circulation not exist? MaxFlow < 𝑫 iff MinCut < 𝑫.

Equivalent to excess supply on “source” side of cut smaller than cut capacity.

• If.

38

4

10 7
-7

-8

11

-6

9

10 0

4

4

7

4

Excess supply
 15 – 10 = 5

Cut capacity = 4 < 5 = Excess supply

Some general ideas for using MaxFlow/MinCut
• If no source/sink, add them with appropriate capacity depending on application

• Sometimes can have edges with no capacity limits

• Infinite capacity (or, equivalently, very large integer capacity)

• Convert undirected graphs to directed ones

• Can remove unnecessary flow cycles in answers

• Another idea:

• To use them for vertex capacities 𝒄𝒗

• Make two copies of each vertex 𝒗 named 𝒗𝒊𝒏, 𝒗𝒐𝒖𝒕

39

v vin vout

𝒄𝒗

	Slide 1: CSE 421 Winter 2025 Lecture 18: Max Flow Applications
	Slide 2: Max Flow Algorithm Summary
	Slide 3: Today – Reductions and Max Flow
	Slide 4: Recall: Bipartite Graph
	Slide 5: Bipartite Matching
	Slide 6: Maximum Bipartite Matching
	Slide 7: Maximum Bipartite Matching
	Slide 8: Maximum Bipartite Matching
	Slide 9: Reducing to Max Flow
	Slide 10: Reducing to Max Flow
	Slide 11: Reducing to Max Flow
	Slide 12: Correctness
	Slide 13: Edge-Disjoint Paths
	Slide 14: Edge-Disjoint Paths – Example of size 2
	Slide 15: Edge-Disjoint Paths
	Slide 16: Edge-Disjoint Paths
	Slide 17: Vertex-Disjoint Paths
	Slide 18: Vertex-Disjoint Paths
	Slide 19: Vertex-Disjoint Paths
	Slide 20: Shift Scheduling
	Slide 21: Shift Scheduling problem
	Slide 22: Reducing to Max Flow
	Slide 23: Reducing to Max Flow
	Slide 24: Running Time
	Slide 25: Correctness
	Slide 26: Baseball Elimination
	Slide 27: Baseball Elmination
	Slide 28: Can The Ducks Win the Season?
	Slide 29: Constructing the flow network
	Slide 30: Correctness
	Slide 31: Circulation with Demands
	Slide 32: Circulation with Demands
	Slide 33: Circulation with Demands
	Slide 34: Circulation with Demands using Network Flow
	Slide 35: Circulation with Demands using Network Flow
	Slide 36: Circulation with Demands using Network Flow
	Slide 37: Circulation with Demands using Network Flow
	Slide 38: Circulation with Demands using Network Flow
	Slide 39: Some general ideas for using MaxFlow/MinCut

