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Max Flow Algorithm Summary

• Ford-Fulkerson:
• “Find an augmenting path, identify a bottleneck edge, add flow to fill the bottleneck”
• Worst case running time: Θ( 𝑉 ⋅ 𝐸 ⋅ 𝐶) where 𝐶 is the maximum capacity of any 

edge

• Edmonds-Karp:
• “Do Ford Fulkerson, but use the shortest augmenting path (with BFS)”
• Worst case running time: Θ 𝐸 2 𝑉

• Observation:
• Since Edmonds-Karp is just a special case of Ford-Fulkerson the running time of 

Edmonds-Karp should be:

• Θ min 𝑉 ⋅ 𝐸 ⋅ 𝐶, 𝐸 2 𝑉
• Use the FF bound when 𝐶 > 𝐸 , otherwise use EK.



Today – Reductions and Max Flow

• Max flow is primarily useful as the destination of a reduction
• Given some problem that is not already a max flow problem

• Use that to create a flow network

• Run Edmonds Karp on that flow network

• Use the flow assignment to solve your original problem

• Proving correctness:
• Argue that the flow through your constructed network is maximal if and only

if your final answer is correct
• Valid flow assignment in the network ⇒ Valid answer to original problem

• The flow we found is guaranteed to give us a feasible solution

• Valid answer to original problem ⇒ Valid flow assignment in the network
• We must have had the best feasible solution as a better one would have allowed more flow



Recall: Bipartite Graph

Definition:  An undirected graph 𝑮 is bipartite iff we can color its 
vertices red and green so each edge has different color endpoints

Alternative:  A graph 𝑮 is bipartite iff we can find a cut 𝐿, 𝑅 such that 
every edge in the graph crosses the cut

On a cycle the two colors must alternate, so 
• green every 2nd  vertex 
• red every 2nd vertex
Can’t have either if length is not divisible by 2.



Bipartite Matching

Input: Undirected Bipartite graph 𝑮 = (𝑳 ∪ 𝑹, 𝑬) 

Goal: Find the largest subset of edges 𝑀 ⊆ 𝐸 such that ever vertex is 
adjacent to at most one edge



Maximum Bipartite Matching
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Maximum Bipartite Matching
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Maximum Bipartite Matching
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Reducing to Max Flow

• We need to create a flow network
• Add/remove any edges/nodes as needed (must be directed)

• Identify a source/sink

• Give capacities to each edge



Reducing to Max Flow

• We need to create a flow network
• Add/remove any edges/nodes as needed

• Make each edge directed from 𝐿 to 𝑅

• Add nodes 𝑠 and 𝑡

• Draw an edge from 𝑠 to each node in 𝐿

• Draw an edge from each node in 𝑅 to 𝑡

• Identify a source/sink
• Make 𝑠 the source and 𝑡 the sink

• Give capacities to each edge
• Give each edge capacity 1
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Reducing to Max Flow

• Next, run Edmonds-Karp

• Use the answer to select a Matching
• 𝑀 = the set of 𝐿-to-𝑅 edges with flow

• 𝑀 = 𝑒 ∶ 𝑒 ∈ 𝐿 × 𝑅, 𝑓 𝑒 = 1

• Running Time:
• Constructing the graph

• 𝑉 + |𝐸|

• Running Edmonds-Karp
• 𝑉 ⋅ |𝐸|

• Finding 𝑀
• 𝑉

• Overall
• Θ 𝑉 ⋅ 𝐸
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Correctness
• Valid flow ⇒ Valid answer

• Need to show: 𝑀 is a valid match
• Requirement 1: 𝑀 ⊆ 𝐸
• Requirement 2: each node is part of at most 

one match
• No node in 𝐿 is adjacent to more than one edge 

because the capacity of the edge from 𝑠 is 1
• No node in 𝑅 is adjacent to more than one edge 

because the capacity of the edge to 𝑡 is 1

• Valid answer ⇒ Valid flow
• Any matching 𝑀 enables a flow with value 

equal to 𝑀
• Idea: “reverse” the construction to derive a flow 

from the match
• For each edge in 𝑀, assign flow across that edge, 

then add flow incoming to each 𝐿 endpoint and 
outgoing form each 𝑡 endpoint

• This must be a valid flow because
• No edge exceeds its capacity (we only assign 1 unit)

• All nodes (except 𝑠 and 𝑡) have 0 net flow because 
each node is incident at most one edge in 𝑀
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Defn: Two paths in a graph are edge-disjoint iff they have no edge in common.

Edge disjoint path problem: Given: a directed graph 𝑮 = (𝑽, 𝑬) and two vertices 𝒔 and 𝒕. 
      Find: the maximum # of edge-disjoint simple 𝒔-𝒕 paths in 𝑮.

Edge-Disjoint Paths
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Edge-Disjoint Paths – Example of size 2
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Defn: Two paths in a graph are edge-disjoint iff they have no edge in common.

Edge disjoint path problem: Given: a directed graph 𝑮 = (𝑽, 𝑬) and two vertices 𝒔 and 𝒕. 
      Find: the maximum # of edge-disjoint simple 𝒔-𝒕 paths in 𝑮.



Edge-Disjoint Paths
MaxFlow for edge-disjoint paths

• Assign capacity 𝟏 to every edge

• Add a source 𝒔′ and a sink 𝒕′

• Connect 𝒔′ to 𝒔 and 𝒕′ to 𝒕 with 
capacity ∞

• Compute max flow

Running Time:

Constructing the flow network: 𝑉 + |𝐸|

Computing Max Flow: 𝑉 ⋅ 𝐸 2

Overall: Θ 𝑉 ⋅ 𝐸 2
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Edge-Disjoint Paths
MaxFlow for edge-disjoint paths

• Assign capacity 𝟏 to every edge

• Add a source 𝒔′ and a sink 𝒕′

• Connect 𝒔′ to 𝒔 and 𝒕′ to 𝒕 with 
capacity ∞

• Compute max flow

Theorem: MaxFlow = # edge-disjoint paths

Valid flow ⇒ Valid answer:

Need to show: no edge is used more than once all 
paths go from 𝒔 to 𝒕

 Each edge has capacity 1, so its used once. 
To get from 𝑠′ to 𝑡′ we must go from 𝑠 to 𝑡 along the 
way

Valid answer ⇒ Valid flow:

Need to show: Any set of edge-disjoint paths could 
be used to produce flow of the same amount.

 Add 1 unit of flow along each path. Since no 
path uses the same edge twice, capacity constraint is 
satisfied. Because the indegree matches the 
outdegree for each node (except 𝑠′ and 𝑡′), the flow 
constraint is satisfied.
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Defn: Two paths in a graph are vertex-disjoint iff they have no vertices in common, except 
their end points.

Vertex disjoint path problem: Given: a directed graph 𝑮 = (𝑽, 𝑬) and two vertices 𝒔 and 𝒕.

       Find: the maximum # of vertex-disjoint simple 𝒔-𝒕 paths in 𝑮.

Vertex-Disjoint Paths
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Defn: Two paths in a graph are vertex-disjoint iff they have no vertices in common.

Vertex disjoint path problem: Given: a directed graph 𝑮 = (𝑽, 𝑬) and two vertices 𝒔 and 𝒕.

       Find: the maximum # of vertex-disjoint simple 𝒔-𝒕 paths in 𝑮.

Vertex-Disjoint Paths
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Observation: Every vertex-disjoint 
path is also edge-disjoint. 
(Two paths which share an edge 
also share that edge’s endpoints)

Idea: Modify the graph so that all 
edge-disjoint paths are also 
vertex disjoint
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Vertex-Disjoint Paths
MaxFlow for vertex-disjoint paths

• For each node 𝑣, add in 𝑣𝑜𝑢𝑡

• For every outgoing edge from 𝑣, instead 
make it an outgoing edge from 𝑣𝑜𝑢𝑡

• Add edge (𝑣, 𝑣𝑜𝑢𝑡)

• Compute edge-disjoint paths

Running Time:

Constructing the new graph: 𝑉 + |𝐸|

Computing edge disjoint paths: 𝑉 ⋅ 𝐸 2

Overall: Θ 𝑉 ⋅ 𝐸 2
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Shift Scheduling

• The manager at a bagel shop needs to staff all shifts during the day.

• We have the following constraints:
• Shift 𝑠𝑖  must have at least 𝑝𝑖 people assigned to it

• Each employee 𝑒𝑖 has a list of shifts that they are able to work

• No employee is able to work more than 𝑥 shifts

Shifts:
1. 6am, 2
2. 9am, 2
3. 12pm, 1
4. 3pm, 1

Employees:
1. 6am, 9am, 3pm
2. 6am, 9am, 12pm
3. 6am, 3pm

𝑥 = 2
Solution:
• Employee 1 assigned to 6am, 9am
• Employee 2 assigned to 9am, 12pm
• Employee 3 assigned to 6am, 3pm



Shift Scheduling problem

Given: A list of 𝑛 shifts 𝑠1, … 𝑠𝑛, the number of employees needed for 
each shift 𝑝1, … 𝑝𝑛, the availability of 𝑚 employees 𝑒1, … , 𝑒𝑚, and a 
number 𝑥

Find: whether it is possible to assign employees to their available shifts 
such that all shifts are full-staffed and no employee is assigned to more 
than 𝑥 shifts

Shifts:
1. 6am, 2
2. 9am, 2
3. 12pm, 1
4. 3pm, 1

Employees:
1. 6am, 9am, 3pm
2. 6am, 9am, 12pm
3. 6am, 3pm

𝑥 = 2
Solution:
• Employee 1 assigned to 6am, 9am
• Employee 2 assigned to 9am, 12pm
• Employee 3 assigned to 6am, 3pm



Reducing to Max Flow

• We need to create a flow network
• One node per shift

• One node per employee

• A source node and a sink node

• An edge from the source to each 
employee node with capacity 𝑥

• An edge from each employee to each 
available shift with capacity 1

• An edge from each shift node 𝑠𝑖  to 
the sink with capacity 𝑝𝑖
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Reducing to Max Flow

• We need to create a flow network
• One node per shift

• One node per employee

• A source node and a sink node

• An edge from the source to each 
employee node with capacity 𝑥

• An edge from each employee to each 
available shift with capacity 1

• An edge from each shift node 𝑠𝑖  to 
the sink with capacity 𝑝𝑖
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Running Time

• Constructing the graph
• 𝑛 ⋅ 𝑚

• Running Max Flow
• Which bound to use depends on the 

value of 𝑥 and each 𝑝𝑖, so probably 
best to just use the Edmonds-Karp 
bound

• Θ 𝑛 ⋅ 𝑚 2(𝑛 + 𝑚)
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Correctness
• Valid flow ⇒ Valid answer

• No employee is assigned to more than 𝑥 
shifts (capacity on 𝑠 to 𝑒𝑖)

• No employee is assigned to the same 
shift more than once (capacity of 𝑒𝑖 to 𝑠𝑗)

• No employee is assigned to an 
unavailable shift (by selection of edges to 
draw)

• All shifts staffed if flow value is σ 𝑝𝑖

• Valid answer ⇒ Valid flow
• Suppose we had a way of staffing the 

shifts, we will show that there must be 
flow through the graph whose value 
matches σ𝑝𝑖
• All capacity constraints will be observed
• It will only use edges we drew

• It will assign flow across σ𝑝𝑖  𝑒𝑖-to-𝑠𝑗  shifts
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Baseball Elimination

• The champion will be the one with the most wins at the end of the season

• A team is “eliminated” if it has become impossible for them to become the 
champion

• Given a current win/loss record for each team, and the remaining games in 
the season, determine whether a team has been eliminated

Input: The win/loss record for each team 𝑤𝑖 , ℓ𝑖 , the number of games 
remaining between each pair of teams 𝑟𝑖,𝑗, and the team 𝑥 that we’re 
checking

Goal: Determine whether 𝑥 can be the champion (i.e. there is a way to 
assign winners/losers to the remaining games such that 𝑥 has the most wins)



Baseball Elmination

Remaining Opponents

Team Wins Losses Games Left Huskies Ducks Bruins Wolverines

Huskies 83 71 8 -- 1 6 1

Ducks 80 79 3 1 -- 0 2

Bruins 78 78 6 6 0 -- 0

Wolverines 77 82 3 1 2 0 --

If the Huskies lose all 
of these, then the 
Ducks win them all

Idea: Can we “distribute” wins so that all are 
less than the Duck’s best possible record?



Can The Ducks Win the Season?
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Remaining Opponents

Team Wins Losses Games Left Huskies Ducks Bruins Wolverines

Huskies 83 71 8 -- 1 6 1

Ducks 80 79 3 1 -- 0 2

Bruins 78 78 6 6 0 -- 0

Wolverines 77 82 3 1 2 0 --



Constructing the flow network
• Suppose we have 𝒏 total teams

• Make a node for each team except for 𝑥
• 𝑛 − 1 nodes

• Make a node of each remaining matchup (𝑡𝑖 , 𝑡𝑗) that does not involve 𝑥
• 𝑛 − 1 2 nodes

• Add a source node 𝑠 and a sink node 𝑡
• 2 nodes

• Draw an edge from 𝑠 to each matchup node 𝑡𝑖 , 𝑡𝑗  with capacity 𝑟𝑖,𝑗
• 𝑛 − 1 2 edges

• Draw an edge from each matchup node 𝑡𝑖 , 𝑡𝑗  to each team node 𝑡𝑖 and 𝑡𝑗 with capacity ∞
• 2 𝑛 − 1 2 edges

• Draw an edge from each team node 𝑡𝑖 to the sink 𝑡 with capacity representing the number of 
wins team 𝑥 has if they win all remaining games minus the number of wins 𝑡𝑖 currently has
• 𝑛 − 1 edges

• 𝑉 = Θ 𝑛2 , 𝐸 = Θ 𝑛2

• Running time: Θ 𝑛6



Correctness
• Valid flow ⇒ Valid answer

• Claim: If we have flow matching the number of games remaining then 𝑥 can win the season
• The amount of flow going from each matchup edge to each team edge represents the number 

of times that team won in that matchup
• Max flow equaling the number of games means we could assign winners to each remaining 

game
• The capacity on the team-to-sink edges guarantees none of them won more games than 𝑥

• Valid answer ⇒ Valid flow
• Claim: If we had a way for 𝑥 to be champion, we could find flow through the graph to match the 

number of remaining games
• Consider the collection of game outcomes which would cause this.

• For each game, assign 1 unit of flow along the path 𝑠, 𝑡𝑖 , 𝑡𝑗 , 𝑤, 𝑡 where 𝑤 is the winner of the 
game

• After doing this for all games we will not have violated any capacity constraints because we 
required that 𝑥 would be the champion (and so no other team could have more wins)



Circulation with Demands
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Circulation with Demands
• Single commodity, directed graph 𝑮 = (𝑽, 𝑬)

• Each node 𝒗 has an associated demand 𝒅(𝒗)

• Needs to receive an amount of the commodity: demand 𝒅 𝒗 >  𝟎

• Supplies some amount of the commodity: “demand” 𝒅 𝒗 < 𝟎 (amount = |𝒅(𝒗)|)

• Each edge 𝒆 has a capacity 𝒄 𝒆 ≥  𝟎.

• Nothing lost:  σ𝒗 𝒅 𝒗 = 𝟎.

Defn: A circulation for (𝑮, 𝒄, 𝒅) is a flow function 𝒇: 𝑬 → ℝ meeting all the 
capacities, 𝟎 ≤ 𝒇 𝒆 ≤ 𝒄(𝒆), and demands:               

σ𝒆 into 𝒗 𝒇 𝒆 − σ𝒆 out of 𝒗 𝒇 𝒆 = 𝒅(𝒗).

Circulation with Demands:  Given (𝑮, 𝒄, 𝒅), does it have a circulation? If so, find it.
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Circulation with Demands
Defn: Total supply 𝑫 = σ𝒗: 𝒅 𝒗 <𝟎 𝒅 𝒗 = − σ𝒗: 𝒅 𝒗 <𝟎 𝒅(𝒗).

Necessary condition: σ𝒗: 𝒅 𝒗 >𝟎 𝒅 𝒗 = 𝑫    (no supply is lost)
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Circulation with Demands using Network Flow
• Add new source 𝒔 and sink 𝒕.

• Add edge (𝒔, 𝒗) for all supply nodes 𝒗 with capacity |𝒅(𝒗)|.

• Add edge (𝒗, 𝒕) for all demand nodes 𝒗 with capacity 𝒅(𝒗). 

• Compute MaxFlow.
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Circulation with Demands using Network Flow

• MaxFlow ≤ 𝑫 based on cuts out of 𝒔 or into 𝒕.

• If MaxFlow = 𝑫 then all supply/demands satisfied.

• If. 

• Compute MaxFlow. Circulation iff value = 𝑫
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Circulation with Demands using Network Flow
Circulation = flow on original edges

Circulations only need integer flows
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Circulation with Demands using Network Flow
When does a circulation not exist?   MaxFlow < 𝑫 iff MinCut < 𝑫.

• If. 
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Circulation with Demands using Network Flow
When does a circulation not exist?   MaxFlow < 𝑫 iff MinCut < 𝑫.

Equivalent to excess supply on “source” side of cut smaller than cut capacity. 

• If. 
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Some general ideas for using MaxFlow/MinCut
• If no source/sink, add them with appropriate capacity depending on application

• Sometimes can have edges with no capacity limits

• Infinite capacity (or, equivalently, very large integer capacity)

• Convert undirected graphs to directed ones

• Can remove unnecessary flow cycles in answers

• Another idea: 

• To use them for vertex capacities 𝒄𝒗

• Make two copies of each vertex 𝒗 named 𝒗𝒊𝒏, 𝒗𝒐𝒖𝒕
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