
CSE 421 Winter 2025
Lecture 17:

Max Flow Running Time
Nathan Brunelle

http://www.cs.uw.edu/421

http://www.cs.uw.edu/421

Defn: An 𝒔-𝒕 flow in a flow network is a function 𝒇: 𝑬→ℝ that satisfies:
• For each 𝒆 ∈ 𝑬: 𝟎 ≤ 𝒇 𝒆 ≤ 𝒄(𝒆) [capacity constraints]

• For each 𝒗 ∈ 𝑽 − {𝒔, 𝒕} :

Defn: The value of flow 𝒇,

෍

𝒆 into 𝒗

𝒇 𝒆 = ෍

𝒆 out of 𝒗

𝒇(𝒆)

2

Flows

s

a

b

c

d

e

f

t

0/15

0/5

0/30

0/15

4/10

4/8

0/15

0/9

0/6 0/10

4/10

0/100/154/4

0/4

[flow conservation]

𝒗 𝒇 = ෍

𝒆 out of 𝒔

𝒇 𝒆

value = 4

Given: a flow network

Find: an 𝒔-𝒕 flow of maximum value

3

Maximum Flow Problem

s

a

b

c

d

e

f

t

11/15

3/5

11/30

15

10/10

8/8

15

6/9

1/6 10/10

8/10

6/10154/4

4

value = 24

4

Residual Graphs and Augmenting Paths
Residual edges of two kinds:

• Forward: 𝒆 = (𝒖, 𝒗) with capacity 𝒄𝒇 𝒆 = 𝒄 𝒆 − 𝒇 𝒆

• Amount of extra flow we can add along 𝒆

• Backward: 𝒆R = (𝒗, 𝒖) with capacity 𝒄𝒇 𝒆 = 𝒇 𝒆

• Amount we can reduce/undo flow along 𝒆

Residual graph: 𝑮𝒇 = (𝑽, 𝑬𝒇).

• Residual edges with residual capacity 𝒄𝒇 𝒆 > 𝟎.

• 𝑬𝒇 = 𝒆 ∶ 𝒇 𝒆 < 𝒄 𝒆 ∪ {𝒆R: 𝒇 𝒆 > 𝟎}.

Augmenting Path: Any 𝒔-𝒕 path 𝑷 in 𝑮𝒇. Let bottleneck(𝑷)= min
𝒆∈𝑷

 𝒄𝒇(𝒆).

Ford-Fulkerson idea: Repeat “find an augmenting path 𝑷 and increase flow by bottleneck(𝑷)” until
 none left.

4

u v6/17

u v11

residual capacity

6

residual capacity

𝑨

5

Defn: An 𝒔-𝒕 cut is a partition (𝑨, 𝑩) of 𝑽 with 𝒔 ∈ 𝑨 and 𝒕 ∈ 𝑩.
 The capacity of cut (𝑨, 𝑩) is

𝒄 𝑨, 𝑩 = ෍

𝒆 out of 𝑨

𝒄(𝒆)

Cuts

s

a

b

c

d

e

f

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

source sink

capacity 30

𝑨

6

Defn: An 𝒔-𝒕 cut is a partition (𝑨, 𝑩) of 𝑽 with 𝒔 ∈ 𝑨 and 𝒕 ∈ 𝑩.
 The capacity of cut (𝑨, 𝑩) is

𝒄 𝑨, 𝑩 = ෍

𝒆 out of 𝑨

𝒄(𝒆)

Cuts

s

a

b

c

d

e

f

t

15

5/5

4/ 30

15

4/10

1/8

4/ 15

9

6 4/10

5/10

10154

4/4

source sink

capacity 30

Defn: An 𝒔-𝒕 cut is a partition (𝑨, 𝑩) of 𝑽 with 𝒔 ∈ 𝑨 and 𝒕 ∈ 𝑩.

 The capacity of cut (𝑨, 𝑩) is

𝒄 𝑨, 𝑩 = ෍

𝒆 out of 𝑨

𝒄(𝒆)

Minimum s-t cut problem:

Given: a flow network

Find: an 𝒔-𝒕 cut of minimum capacity

𝑨

7

Minimum Cut Problem

s

a

b

c

d

e

f

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

source sink

capacity 28

Flows and Cuts
Let 𝒇 be any 𝒔-𝒕 flow and (𝑨, 𝑩) be any 𝒔-𝒕 cut:

Flow Value Lemma: The net value of the flow sent across (𝑨, 𝑩) equals 𝒗 𝒇 .

 Intuition: All flow coming from 𝑠 must eventually reach 𝑡, and so must
 cross that cut

Weak Duality: The value of the flow is at most the capacity of the cut;
 i.e., 𝒗 𝒇 ≤ 𝒄 𝑨, 𝑩 .

 Intuition: Since all flow must cross any cut, any cut’s capacity is an upper bound
 on the flow

Corollary: If 𝒗 𝒇 = 𝒄(𝑨, 𝑩) then 𝒇 is a maximum flow and (𝑨, 𝑩) is a minimum cut.

 Intuition: If we find a cut whose capacity matches the flow, we can’t push more flow
 through that cut because it’s already at capacity. We additionally can’t find
 a smaller cut, since that flow was achievable.

8

Max-Flow Min-Cut Theorem
Augmenting Path Theorem: Flow 𝒇 is a max flow ⇔ there are no augmenting paths wrt 𝒇

Max-Flow Min-Cut Theorem: The value of the max flow equals the value of the min cut.
[Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] “Maxflow = Mincut”

Proof: We prove both together by showing that all of these are equivalent:

 (i) There is a cut (𝑨, 𝑩) such that 𝒗(𝒇) = 𝒄(𝑨, 𝑩).

 (ii) Flow 𝒇 is a max flow.

 (iii) There is no augmenting path w.r.t. 𝒇.

(i) ⇒ (ii): Comes from weak duality lemma.

(ii) ⇒ (iii): (by contradiction)
 If there is an augmenting path w.r.t. flow 𝒇 then we can improve 𝒇. Therefore 𝒇 is not a max flow.

(iii) ⇒ (i): We will use the residual graph to identify a cut whose capacity matches the flow
9

Flow Value Lemma: Let 𝒇 be any 𝒔-𝒕 flow and (𝑨, 𝑩) be any 𝒔-𝒕 cut.
The net value of the flow sent across the cut equals 𝒗(𝒇):

10

Flow Value Lemma – Idea

s

a

b

c

d

e

f

t

11/15

3/5

11/30

15

10/10

8/8

15

6/9

1/6 10/10

8/10

6/10154/4

4

value = 24

𝑨

෍

𝒆 out of 𝑨

𝒇 𝒆 − ෍

𝒆 into 𝑨

𝒇 𝒆 = 𝒗(𝒇)

= 28 - 4

Why is it true?
• Add vertices to 𝒔 side one by one.
• By flow conservation, net value

doesn’t change

Flow Value Lemma: Let 𝒇 be any 𝒔-𝒕 flow and (𝑨, 𝑩) be any 𝒔-𝒕 cut.
The net value of the flow sent across the cut equals 𝒗(𝒇):

Proof:

11

Flow Value Lemma – Proof

෍

𝒆 out of 𝑨

𝒇 𝒆 − ෍

𝒆 into 𝑨

𝒇 𝒆 = 𝒗(𝒇)

𝒗 𝒇 = ෍

𝒆 out of 𝒔

𝒇 𝒆

= ෍

𝒆 out of 𝒔

𝒇 𝒆 − ෍

𝒆 into 𝒔

𝒇 𝒆 + ෍

𝒗∈𝑨− 𝒔

෍

𝒆 out of 𝑣

𝒇 𝒆 − ෍

𝒆 into 𝒗

𝒇 𝒆

= ෍

𝒆 out of 𝑨

𝒇 𝒆 − ෍

𝒆 into 𝑨

𝒇 𝒆

= 𝟎. No edges into 𝒔 since it is a source

= 𝟎 by flow conservation.

Contributions from internal edges of 𝑨 cancel.

(i) ⇒ (ii)

Weak Duality: Let 𝒇 be any 𝒔-𝒕 flow and (𝑨, 𝑩) be any 𝒔-𝒕 cut. The value
of the flow is at most the capacity of the cut; i.e., 𝒗 𝒇 ≤ 𝒄(𝑨, 𝑩):

12

Weak Duality - Idea

s

a

b

c

d

e

f

t

11/15

3/5

11/30

15

10/10

8/8

15

6/9

1/6 10/10

8/10

6/10154/4

4

Value of flow = 24 = 28 - 4

𝑨

Capacity of cut = 28

(i) ⇒ (ii)

Weak Duality: Let 𝒇 be any 𝒔-𝒕 flow and (𝑨, 𝑩) be any 𝒔-𝒕 cut. The value
of the flow is at most the capacity of the cut; i.e., 𝒗 𝒇 ≤ 𝒄 𝑨, 𝑩 .

Proof:

13

Weak Duality - Proof

𝒗 𝒇 = ෍

𝒆 out of 𝑨

𝒇 𝒆 − ෍

𝒆 into 𝑨

𝒇 𝒆

≤ ෍

𝒆 out of 𝑨

𝒇 𝒆

≤ ෍

𝒆 out of 𝑨

𝒄 𝒆

 = 𝒄 𝑨, 𝑩

since 𝒇 𝒆 ≥ 𝟎

since 𝒇 𝒆 ≤ 𝒄(𝒆)

Proof of Max-Flow Min-Cut Theorem
(iii) ⇒ (i):

Claim: If there is no augmenting path w.r.t. 𝒇, there is a cut (𝑨, 𝑩) s.t. 𝒗(𝒇) = 𝒄(𝑨, 𝑩).

Proof of Claim: Let 𝒇 be a flow with no augmenting paths.

Let 𝑨 be the set of vertices reachable from 𝒔 in residual graph 𝑮𝒇.

• By definition of 𝑨, 𝒔 ∈ 𝑨.

• Since no augmenting path (𝒔-𝒕 path in 𝑮𝒇), 𝒕 ∉ 𝑨.

residual graph

s

t

A B

original network

s

t

A B

Proof: Identifying the Min Cut
(iii) ⇒ (i):

Claim: If there is no augmenting path w.r.t. 𝒇, there is a cut (𝑨, 𝑩) s.t. 𝒗(𝒇) = 𝒄(𝑨, 𝑩).

Proof of Claim: Let 𝒇 be a flow with no augmenting paths.

Let 𝑨 be the set of vertices reachable from 𝒔 in residual graph 𝑮𝒇.

• By definition of 𝑨, 𝒔 ∈ 𝑨.

• Since no augmenting path (𝒔-𝒕 path in 𝑮𝒇), 𝒕 ∉ 𝑨.

Then
𝒗 𝒇 = ෍

𝒆 out of 𝑨

𝒇 𝒆 − ෍

𝒆 into 𝑨

𝒇 𝒆

15

residual graph

s

t

A B

original network

s

t

A B

(by Flow-Value Lemma)

16

Identifying the Min Cut: No Inflow
(iii) ⇒ (i):

Claim: If there is no augmenting path w.r.t. 𝒇, there is a cut (𝑨, 𝑩) s.t. 𝒗(𝒇) = 𝒄(𝑨, 𝑩).

Proof of Claim: Let 𝒇 be a flow with no augmenting paths.

Let 𝑨 be the set of vertices reachable from 𝒔 in residual graph 𝑮𝒇.

• By definition of 𝑨, 𝒔 ∈ 𝑨.

• Since no augmenting path (𝒔-𝒕 path in 𝑮𝒇), 𝒕 ∉ 𝑨.

Then 𝒗 𝒇 = ෍

𝒆 out of 𝑨

𝒇 𝒆 − ෍

𝒆 into 𝑨

𝒇 𝒆

 = ෍

𝒆 out of 𝑨

𝒇 𝒆 (By contradiction: If an edge going into
𝐴 had flow then the backward edge
would be in the residual graph, so the
edge should not cross the cut)

𝒇(𝒆) = 𝟎

original network

s

x
y t

A B𝒆

residual graph

s

x
y t

A B𝒆R

𝑒𝑅 can’t exist because then
𝑦 would be reachable from 𝑠

17

Identifying the Min Cut: Saturated Outflow
(iii) ⇒ (i):

Claim: If there is no augmenting path w.r.t. 𝒇, there is a cut (𝑨, 𝑩) s.t. 𝒗(𝒇) = 𝒄(𝑨, 𝑩).

Proof of Claim: Let 𝒇 be a flow with no augmenting paths.

Let 𝑨 be the set of vertices reachable from 𝒔 in residual graph 𝑮𝒇.

• By definition of 𝑨, 𝒔 ∈ 𝑨.

• Since no augmenting path (𝒔-𝒕 path in 𝑮𝒇), 𝒕 ∉ 𝑨.

Then
𝒗 𝒇 = ෍

𝒆 out of 𝑨

𝒇 𝒆 − ෍

𝒆 into 𝑨

𝒇 𝒆

 = ෍

𝒆 out of 𝑨

𝒇 𝒆

= ෍

𝒆 out of 𝑨

𝒄 𝒆

“𝒆 is saturated”
No unused capacity on 𝒆

𝒇 𝒆 = 𝒄(𝒆)

original network

s

t

A B

𝒆

residual graph

s

t

y

A B

𝒆

𝑒𝑅 can’t exist because then
𝑦 would be reachable from 𝑠

(By contradiction: If an edge going out of
𝐴 had unused capacity then the forward
edge would be in the residual graph, so
the edge should not cross the cut)

18

Identifying the Min Cut: Conclusion
(iii) ⇒ (i):

Claim: If there is no augmenting path w.r.t. 𝒇, there is a cut (𝑨, 𝑩) s.t. 𝒗(𝒇) = 𝒄(𝑨, 𝑩).

Proof of Claim: Let 𝒇 be a flow with no augmenting paths.

Let 𝑨 be the set of vertices reachable from 𝒔 in residual graph 𝑮𝒇.

• By definition of 𝑨, 𝒔 ∈ 𝑨.

• Since no augmenting path (𝒔-𝒕 path in 𝑮𝒇), 𝒕 ∉ 𝑨.

Then
𝒗 𝒇 = ෍

𝒆 out of 𝑨

𝒇 𝒆 − ෍

𝒆 into 𝑨

𝒇 𝒆

 = ෍

𝒆 out of 𝑨

𝒇 𝒆

= ෍

𝒆 out of 𝑨

𝒄 𝒆 = 𝒄(𝑨, 𝑩)

residual graph

s

t

A B

original network

s

t

A B

(by Definition)

Fork Fulkerson Algorithm

FordFulkerson(G, s, t, c){

 for each 𝑒 ∈ 𝐸{

 set 𝑓 𝑒 = 0

 }

 calculate residual graph 𝐺𝑓

 while 𝐺𝑓 has an 𝑠 − 𝑡 path 𝑃{

 augment(𝑓, 𝑐, 𝑃)

 update 𝐺𝑓

 }

 return 𝑓

}

augment(𝑓, 𝑐, 𝑃){

 𝑏 = bottleneck(𝑃)

 for each 𝑒 ∈ 𝑃{

 𝑓 𝑒 += 𝑏

 𝑓 𝑒𝑅 −= 𝑏

 }

 return 𝑓

}

20

MaxFlow/MinCut & Ford-Fulkerson Algorithm
Augmenting Path Theorem: Flow 𝒇 is a max flow ⇔ there are no augmenting paths wrt 𝒇

Max-Flow Min-Cut Theorem: The value of the max flow equals the value of the min cut.
[Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] “MaxFlow = MinCut”

Flow Integrality Theorem: If all capacities are integers then there is a maximum flow with
 all-integer flow values.

Ford-Fulkerson Algorithm: 𝑂(𝒎) per iteration. With integer capacities each at most 𝑪
need at most MaxFlow < 𝒏𝑪 iterations for a total of 𝑂 𝒎𝒏𝑪 time.

𝒎 = 𝑬
𝒏 = |𝑽|

20

Worst case runtime 𝑂 𝒎𝒏𝑪 with integer capacities ≤ 𝑪.
• 𝑂(𝒎) time per iteration.

• At most 𝒏𝑪 iterations.

• This is “pseudo-polynomial” running time.

• May take exponential time, even with integer capacities:

s
c

a

t

b

c-1

c
1

c-1

1

1

21

Ford-Fulkerson Efficiency

s
c

a

t

b

c

c
1

c

c = 𝟏𝟎𝟗, say

𝑮𝒇 = 𝑮

s
c-1

a

t

b

c-1

c-1
1

c-1

1

1
1

1

etc.

Polynomial-Time Variant of Ford-Fulkerson
Use care when selecting augmenting paths.

• Some choices lead to exponential algorithms.
• Clever choices lead to polynomial algorithms.
• If capacities are irrational, algorithm not guaranteed to terminate!

Goal: Choose augmenting paths so that:
• Can find augmenting paths efficiently.

• Few iterations.

Choose augmenting paths with fewest number of edges. [Edmonds-Karp 1972 , Dinitz 1970]

• Just run BFS to find an augmenting path!

22

23

Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Use Breadth First Search as the search algorithm to find an 𝒔-𝒕 path in 𝑮𝒇.

• Using any shortest augmenting path

Theorem: Ford-Fulkerson using BFS terminates in 𝑶(𝒎𝟐𝒏) time. [Edmonds-Karp, Dinitz]

“One of the most obvious ways to implement Ford-Fulkerson is always polynomial time”

Why might this be good intuitively?

• Longer augmenting paths involve more edges so may be more likely to hit a low
residual capacity one which would limit the amount of flow improvement.

The proof uses a completely different idea…

24

Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Analysis Focus:

For any edge 𝒆 that could be in the residual graph 𝑮𝒇, (either an edge in 𝑮 or its reverse)

count # of iterations that 𝒆 is the first bottleneck edge on the augmenting

 path chosen by the algorithm.

Claim: This can’t happen in more than 𝒏/𝟐 iterations.

Proof: Write 𝒆 = (𝒖, 𝒗).

 Show that each time it happens, the distance from 𝒔 to 𝒖 in the residual graph 𝑮𝒇

is at least 𝟐 more than it was the last time.

 This would be enough since the distance is < 𝒏

 (or infinite and hence 𝒖 isn’t reachable) so this can happen at most 𝒏/𝟐 times.

25

Distances in the Residual Graph
Key Lemma: Let 𝒇 be a flow, 𝑮𝒇 the residual graph, and 𝑷 be a shortest augmenting
path. No vertex is closer to 𝒔 in the residual graph after augmenting along 𝑷.

Proof: Augmenting along 𝑷 can only change the edges in 𝑮𝒇 by either:

1. Deleting a forward edge
• Deleting any edge can never reduce distances

2. Add a backward edge (𝒗, 𝒖) that is the reverse of an edge (𝒖, 𝒗) of 𝑷
• Since 𝑷 was a shortest path in 𝑮𝒇, the distance from 𝒔 to 𝒗 in 𝑮𝒇

is already more than the
distance from 𝒔 to 𝒖. Using the new backward edge (𝒗, 𝒖) to get to 𝒖 would be an even
longer path to 𝒖 so it is never on a shortest path to any node in the new residual graph.

26

Augmentation vs BFS

t

v

u

x

s

5/9

3/10

3/3

2/5

𝑮: 𝑮𝒇:

t

v

u

x

s

4 5

7 3

3

3

2
t

v

u

x

s

8/9

6/10

3

5/5

𝑮: 𝑮𝒇′:

t

v

u

x

s

1 8

4 6

5

3edge
deleted

27

First Bottleneck Edges in 𝐺𝒇
Shortest 𝒔-𝒕 path 𝑷 in 𝑮𝒇

vus x tw
𝒄𝑷

> 𝒄𝑷 > 𝒄𝑷 𝒄𝑷

𝒅𝒇(𝒔, 𝒗) = 𝒅𝒇(𝒔, 𝒖) + 𝟏 since 𝑷 is a shortest path.

After augmenting along 𝑷, edge (𝒖, 𝒗) disappears; but will have edge (𝒗, 𝒖)

For (𝒖, 𝒗) to be a first bottleneck edge later, it must get added back to the residual
graph by augmenting along a shortest path 𝑷′ containing (𝒗, 𝒖) in 𝑮𝒇′ for some flow 𝒇’

Since 𝑷′ is shortest 𝒅𝒇′ 𝒔, 𝒖 = 𝒅𝒇′ 𝒔, 𝒗 + 𝟏 ≥ 𝒅𝒇 𝒔, 𝒗 + 𝟏 = 𝒅𝒇(𝒔, 𝒖) + 𝟐

Write 𝒄𝑷 = bottleneck(𝑷)

vus x tw

The next time that (𝒖, 𝒗) is first bottleneck edge is even later so distance is at least as large!

distance is ≥ 𝟐
larger than before

28

Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)
Analysis Focus:

For any edge 𝒆 that could be in the residual graph 𝑮𝒇, (either an edge in 𝑮 or its reverse)

count # of iterations that 𝒆 is the first bottleneck edge on the augmenting

 path chosen by the algorithm.

Claim: This can’t happen in more than 𝒏/𝟐 iterations

Claim ⇒ Theorem:

Only 𝟐𝒎 edges and 𝑂(𝒎) time per iteration so 𝑂(𝒎𝟐𝒏) time overall.

bound

29

History & State of the Art for MaxFlow Algorithms

Source: Goldberg & Rao, FOCS ‘97

2012 Orlin + King et al. O(nm)

21 2013 Orlin 𝑂 𝒎𝒏

22 2014 Lee & Sidford 𝒎 𝒏 log𝑂 1 𝒏 log 𝑼

23 2016 Madry 𝒎𝟏𝟎/𝟕𝑼𝟏/𝟕 log𝑂 1 𝒏

24 2021 Gao, Liu, & Peng 𝒎𝟑/𝟐−𝟏/𝟑𝟐𝟖 log𝑂 1 𝒏 log 𝑼

25 2022 van den Brand et al. 𝒎𝟑/𝟐−𝟏/𝟓𝟖 log𝑂 1 𝒏 log 𝑼

26 2022 Chen et al. 𝒎𝟏+𝒐 𝟏 log 𝑼

Tables use 𝑼 instead of 𝑪 for the upper bound on capacities

Methods:
Augmenting Paths – increase flow to capacity
Preflow-Push – decrease flow to get flow conservation
Linear Programming – randomized, high probability of optimality

	Slide 1: CSE 421 Winter 2025 Lecture 17: Max Flow Running Time
	Slide 2: Flows
	Slide 3: Maximum Flow Problem
	Slide 4: Residual Graphs and Augmenting Paths
	Slide 5: Cuts
	Slide 6: Cuts
	Slide 7: Minimum Cut Problem
	Slide 8: Flows and Cuts
	Slide 9: Max-Flow Min-Cut Theorem
	Slide 10: Flow Value Lemma – Idea
	Slide 11: Flow Value Lemma – Proof
	Slide 12: Weak Duality - Idea
	Slide 13: Weak Duality - Proof
	Slide 14: Proof of Max-Flow Min-Cut Theorem
	Slide 15: Proof: Identifying the Min Cut
	Slide 16: Identifying the Min Cut: No Inflow
	Slide 17: Identifying the Min Cut: Saturated Outflow
	Slide 18: Identifying the Min Cut: Conclusion
	Slide 19: Fork Fulkerson Algorithm
	Slide 20: MaxFlow/MinCut & Ford-Fulkerson Algorithm
	Slide 21: Ford-Fulkerson Efficiency
	Slide 22: Polynomial-Time Variant of Ford-Fulkerson
	Slide 23: Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)
	Slide 24: Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)
	Slide 25: Distances in the Residual Graph
	Slide 26: Augmentation vs BFS
	Slide 27: First Bottleneck Edges in cap G sub bold italic f
	Slide 28: Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)
	Slide 29: History & State of the Art for MaxFlow Algorithms

