CSE 421 Winter 2025 Lecture 17: Max Flow Running Time

Nathan Brunelle

http://www.cs.uw.edu/421

Flows

Defn: An s-t flow in a flow network is a function $f: E \to \mathbb{R}$ that satisfies:

• For each $e \in E$: $0 \le f(e) \le c(e)$

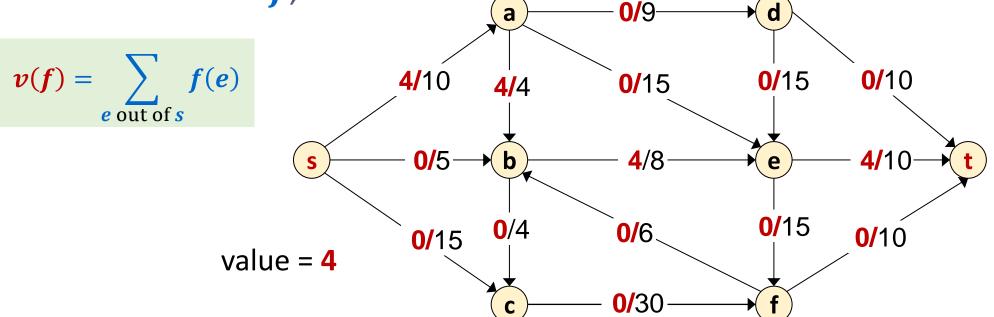
[capacity constraints]

• For each $v \in V - \{s, t\}$:

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

[flow conservation]

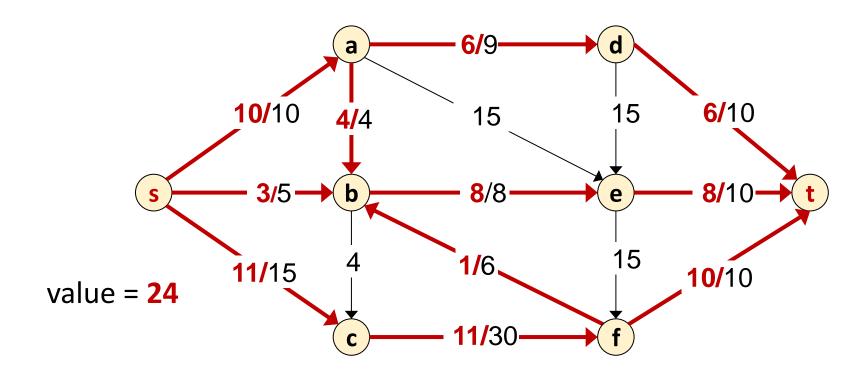
Defn: The value of flow f,



Maximum Flow Problem

Given: a flow network

Find: an *s-t* flow of maximum value



Residual Graphs and Augmenting Paths

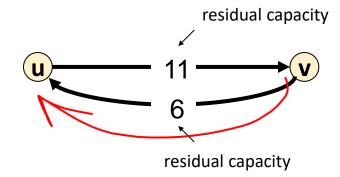
Residual edges of two kinds:

- Forward: e = (u, v) with capacity $c_f(e) = c(e) f(e)$
 - Amount of extra flow we can add along e
- Backward: $e^{R} = (v, u)$ with capacity $c_{f}(e) = f(e)$
 - Amount we can reduce/undo flow along e

Residual graph: $G_f = (V, E_f)$.

• Residual edges with residual capacity $c_f(e) > 0$.

•
$$E_f = \{e : f(e) < c(e)\} \cup \{e^R : f(e) > 0\}.$$



Augmenting Path: Any s-t path P in G_f . Let bottleneck(P)= $\min_{e \in P} c_f(e)$.

Ford-Fulkerson idea: Repeat "find an augmenting path P and increase flow by bottleneck(P)" until none left.

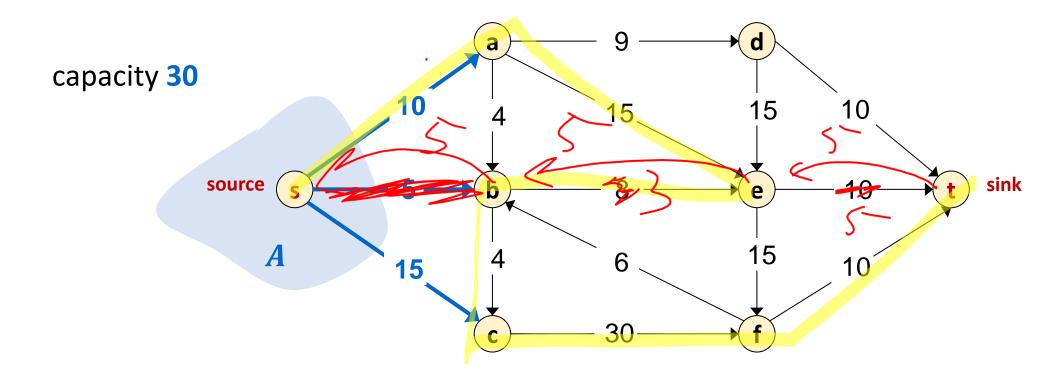
4

Cuts

Defn: An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

The capacity of cut (A, B) is

$$c(A, B) = \sum_{e \text{ out of } A} c(e)$$

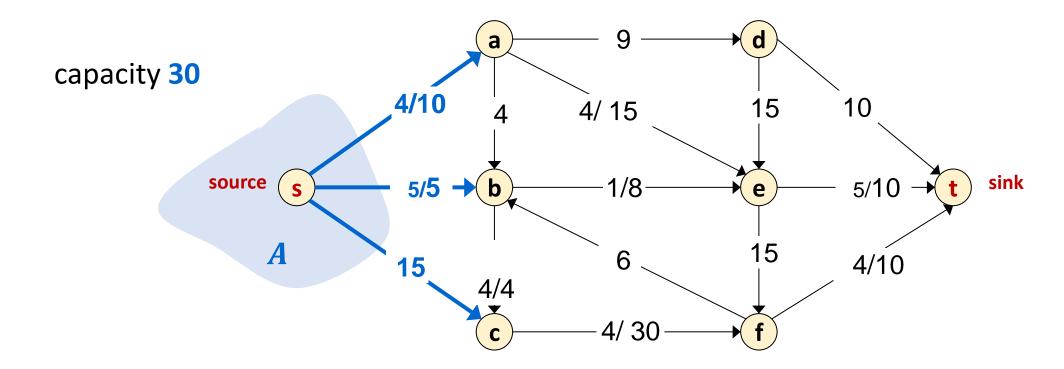


Cuts

Defn: An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

The capacity of cut (A, B) is

$$c(A, B) = \sum_{e \text{ out of } A} c(e)$$



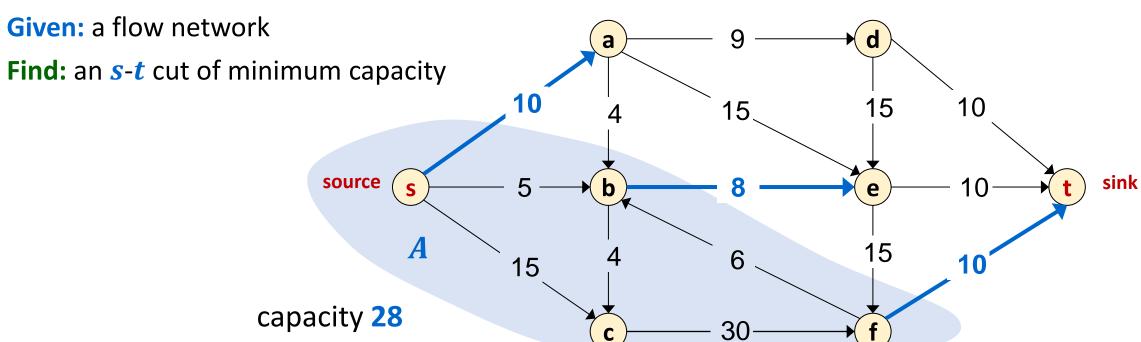
Minimum Cut Problem

Defn: An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

The capacity of cut (A, B) is

$$c(A, B) = \sum_{e \text{ out of } A} c(e)$$

Minimum s-t cut problem:



Flows and Cuts

Let f be any s-t flow and (A, B) be any s-t cut:

Flow Value Lemma: The net value of the flow sent across (A, B) equals v(f).

Intuition: All flow coming from s must eventually reach t, and so must cross that cut

Weak Duality: The value of the flow is at most the capacity of the cut;

i.e/, $\nu(f) \leq c(A,B)$

Intuition: Since all flow must cross any cut, any cut's capacity is an upper bound on the flow

Corollary: If v(f) = c(A, B) then f is a maximum flow and (A, B) is a minimum cut.

Intuition: If we find a cut whose capacity matches the flow, we can't push more flow through that cut because it's already at capacity. We additionally can't find a smaller cut, since that flow was achievable.

Max-Flow Min-Cut Theorem

Augmenting Path Theorem: Flow f is a max flow \Leftrightarrow there are no augmenting paths wrt f

Max-Flow Min-Cut Theorem: The value of the max flow equals the value of the min cut.

[Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956]

"Maxflow = Mincut"

Proof: We prove both together by showing that all of these are equivalent:

- (i) There is a cut (A, B) such that v(f) = c(A, B).
- (ii) Flow f is a max flow.
- (iii) There is no augmenting path w.r.t. f.
- $(i) \Rightarrow (ii)$: Comes from weak duality lemma.
- $(ii) \Rightarrow (iii)$: (by contradiction)

If there is an augmenting path w.r.t. flow f then we can improve f. Therefore f is not a max flow.

(iii) \Rightarrow (i): We will use the residual graph to identify a cut whose capacity matches the flow

Flow Value Lemma – Idea

Flow Value Lemma: Let f be any s-t flow and (A, B) be any s-t cut. The net value of the flow sent across the cut equals v(f):

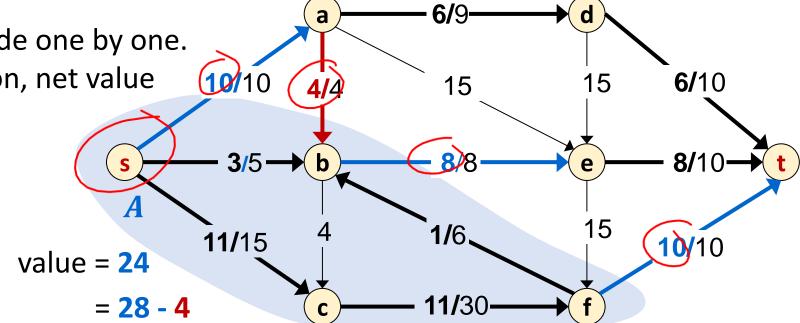
$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e) = v(f)$$

Why is it true?

Add vertices to s side one by one.

• By flow conservation, net value

doesn't change



Flow Value Lemma – Proof

Flow Value Lemma: Let f be any s-t flow and (A, B) be any s-t cut. The net value of the flow sent across the cut equals v(f):

Proof:
$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e) = v(f)$$

$$= 0. \text{ No edges into } s \text{ since it is a source}$$

$$= \sum_{e \text{ out of } s} f(e) - \sum_{e \text{ into } s} f(e) + \sum_{v \in A - \{s\}} \left[\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ into } v} f(e) \right]$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

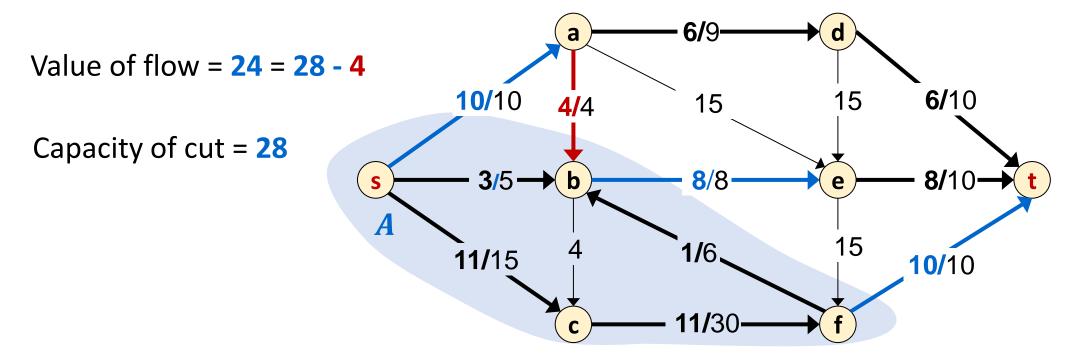
$$= \sum_{e \text{ out of } A} f(e)$$

$$=$$

Weak Duality - Idea

$$(i) \Rightarrow (ii)$$

Weak Duality: Let f be any s-t flow and (A, B) be any s-t cut. The value of the flow is at most the capacity of the cut; i.e., $v(f) \le c(A, B)$:

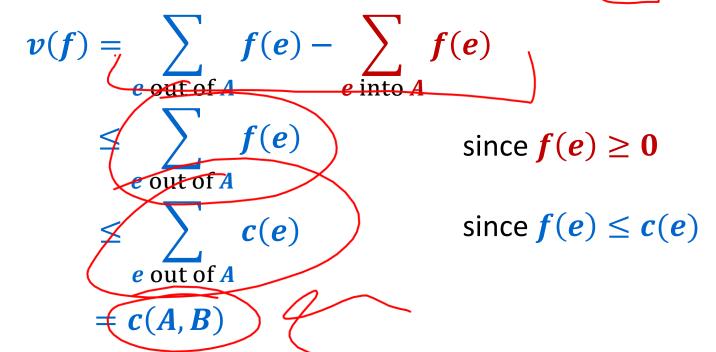


Weak Duality - Proof

$(i) \Rightarrow (ii)$

Weak Duality: Let f be any s-t flow and (A, B) be any s-t cut. The value of the flow is at most the capacity of the cut; i.e., $p(f) \le c(A, B)$.

Proof:



Proof of Max-Flow Min-Cut Theorem

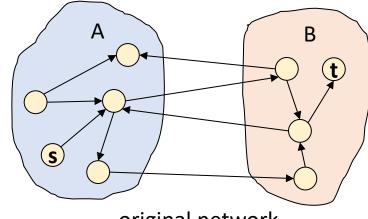
```
(iii) \Rightarrow (i)
```

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B).

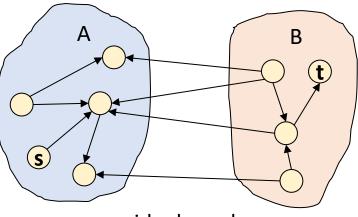
Proof of Claim: Let **f** be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f .

- By definition of A, $s \in A$.
- Since no augmenting path (s-t) path in G_f), $t \notin A$.



original network



residual graph

Proof: Identifying the Min Cut

$(iii) \Rightarrow (i)$:

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B).

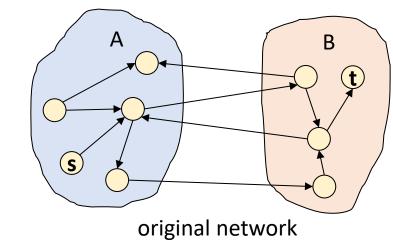
Proof of Claim: Let **f** be a flow with no augmenting paths.

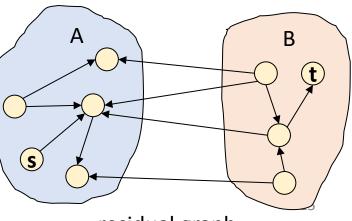
Let A be the set of vertices reachable from s in residual graph G_f .

- By definition of A, $s \in A$.
- Since no augmenting path (s-t) path in G_f), $t \notin A$.

Then

$$v(f) = \sum_{e \in \mathcal{E}} f(e) - \sum_{e \in \mathcal{E}} f(e)$$
 (by Flow-Value Lemma)





residual graph

Identifying the Min Cut: No Inflow

$(iii) \Rightarrow (i)$:

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B)

Proof of Claim: Let **f** be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f .

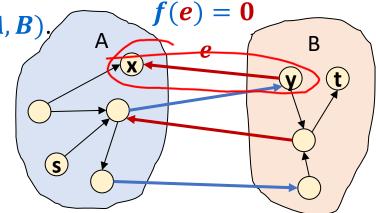
• By definition of A, $s \in A$.

• Since no augmenting path (s-t path in G_f), $t \notin A$.

Then

$$v(f) = \int_{e \text{ out of } A} f(e)$$

$$= \int_{e \text{ out of } A} f(e)$$
(By contradiction: If an edge going into A had flow then the backward edge would be in the residual graph, so the edge should not cross the cut)



original network

residual graph

Identifying the Min Cut: Saturated Outflow

 $(iii) \Rightarrow (i)$:

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B).

Proof of Claim: Let **f** be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f .

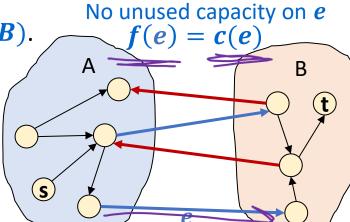
- By definition of A, $s \in A$.
- Since no augmenting path (s-t) path in G_f), $t \notin A$.

Then

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$
$$= \sum_{e \text{ out of } A} f(e)$$

$$= \sum_{e \text{ out of } A} c(e)$$

(**By contradiction:** If an edge going out of *A* had unused capacity then the forward edge would be in the residual graph, so the edge should not cross the cut)



"e is saturated"

original network

e^R can't exist because then
y would be reachable from s

B

t

residual graph

Identifying the Min Cut: Conclusion

 $(iii) \Rightarrow (i)$:

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B).

Proof of Claim: Let **f** be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f .

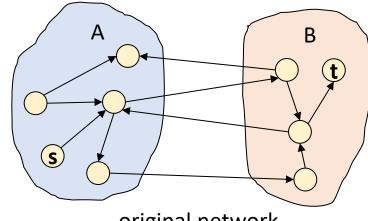
- By definition of A, $s \in A$.
- Since no augmenting path (s-t path in G_f), $t \notin A$.

Then

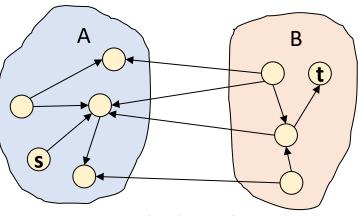
$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e)$$

$$= \sum_{e \text{ out of } A} c(e) = c(A, B) \text{ (by Definition)}$$



original network



residual graph

Fork Fulkerson Algorithm

```
FordFulkerson(G, s, t, c){
                                           augment(f, c, P){
  for each e \in E{
                                              b = bottleneck(P)
    set_{\lambda}f(e)=0
                                             for each e \in P{
  calculate residual graph G_f
  while G_f has an s - t path P\{
    augment(f, c, P)
    update G_f
                                              return f
  return f
```

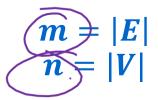
MaxFlow/MinCut & Ford-Fulkerson Algorithm

Augmenting Path Theorem: Flow f is a max flow \Leftrightarrow there are no augmenting paths wrt f

Max-Flow Min-Cut Theorem: The value of the max flow equals the value of the min cut. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] "MaxFlow = MinCut"

Flow Integrality Theorem: If all capacities are integers then there is a maximum flow with all-integer flow values.

Ford-Fulkerson Algorithm: O(m) per iteration. With integer capacities each at most C need at most C iterations for a total of O(mnC) time.



20

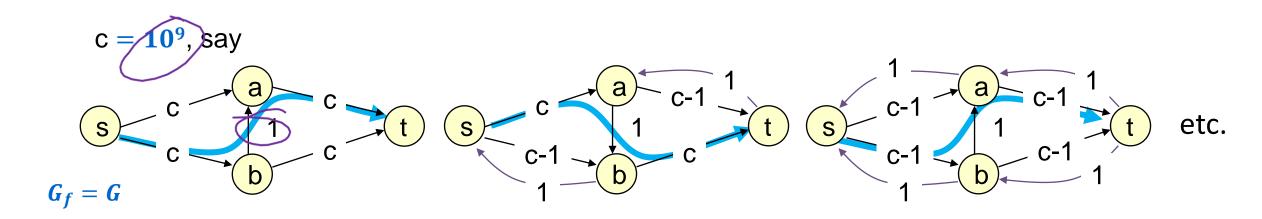
20

Ford-Fulkerson Efficiency

Worst case runtime O(mnC) with integer capacities $\leq C$.

- O(m) time per iteration.
- At most **nC** iterations.
- This is "pseudo polynomial" running time.

May take exponential time, even with integer capacities:



Polynomial-Time Variant of Ford-Fulkerson

Use care when selecting augmenting paths.

- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: Choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations.

Choose augmenting paths with fewest number of edges. [Edmonds-Karp 1972, Dinitz 1970]

Just run BFS to find an augmenting path!

Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Use Breadth First Search as the search algorithm to find an s-t path in G_f .

Using any shortest augmenting path

Theorem: Ford-Fulkerson using BFS terminates in $O(m^2n)$ time. [Edmonds-Karp, Dinitz]

"One of the most obvious ways to implement Ford-Fulkerson is always polynomial time"

Why might this be good intuitively?

• Longer augmenting paths involve more edges so may be more likely to hit a low residual capacity one which would limit the amount of flow improvement.

The proof uses a completely different idea...

Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Analysis Focus:

For any edge e that could be in the residual graph G_f , (either an edge in G or its reverse) count # of iterations that e is the first bottleneck edge on the augmenting path chosen by the algorithm.

Claim: This can't happen in more than n/2 iterations.

Proof: Write e = (u, v).

Show that each time it happens, the distance from s to u in the residual graph G_f is at least 2 more than it was the last time.

This would be enough since the distance is < n (or infinite and hence u isn't reachable) so this can happen at most n/2 times.

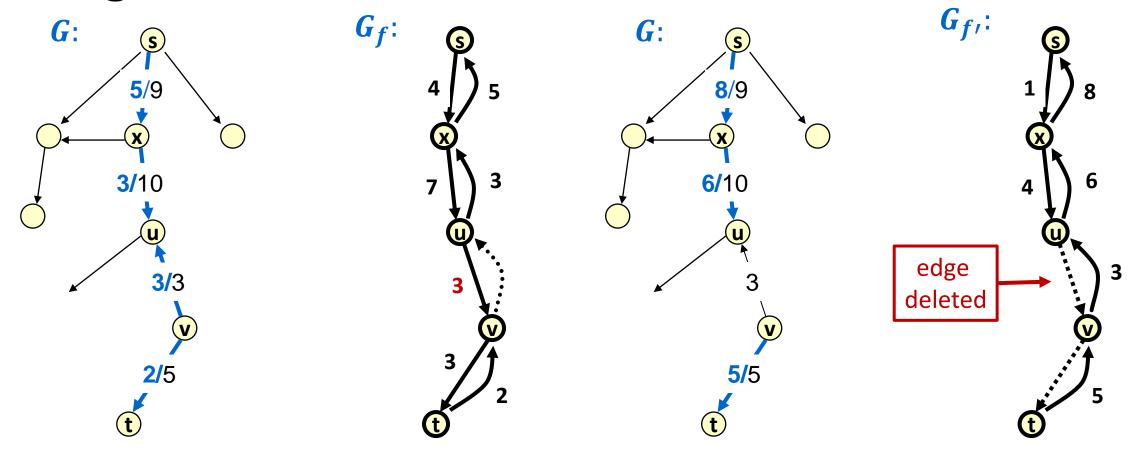
Distances in the Residual Graph

Key Lemma: Let f be a flow, G_f the residual graph, and P be a shortest augmenting path. No vertex is closer to s in the residual graph after augmenting along P.

Proof: Augmenting along P can only change the edges in G_f by either:

- 1. Deleting a forward edge
 - Deleting any edge can never reduce distances
- 2. Add a backward edge (v, u) that is the reverse of an edge (u, v) of P
 - Since P was a shortest path in G_f , the distance from s to v in G_f is already more than the distance from s to u. Using the new backward edge (v, u) to get to u would be an even longer path to u so it is never on a shortest path to any node in the new residual graph.

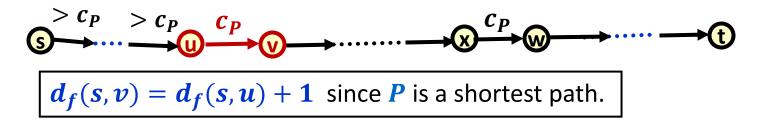
Augmentation vs BFS



First Bottleneck Edges in G_f

Shortest s-t path P in G_f

Write $c_P = bottleneck(P)$



After augmenting along P, edge (u, v) disappears; but will have edge (v, u)

distance is ≥ 2 larger than before

For (u, v) to be a first bottleneck edge later, it must get added back to the residual graph by augmenting along a shortest path P' containing (v, u) in $G_{f'}$ for some flow f'

Since
$$P'$$
 is shortest $d_{f'}(s,u)=d_{f'}(s,v)+1\geq d_f(s,v)+1=d_f(s,u)+2$

The next time that (u, v) is first bottleneck edge is even later so distance is at least as large!

Edmonds-Karp Algorithm (Ford-Fulkerson with BFS) **Analysis Focus:**

For any edge e that could be in the residual graph G_f , (either an edge in G or its reverse) count # of iterations that e is the first bottleneck edge on the augmenting path chosen by the algorithm.

Claim: This can't happen in more than n/2 iterations

Claim \Rightarrow Theorem:

Only 2m edges and O(m) time per iteration $O(m^2n)$ ime overall.

History & State of the Art for MaxFlow Algorithms

Т							
-	#	year	discoverer(s)	bound			
	1	1951	Dantzig	$O(n^2mU)$			
•	2	1955	Ford & Fulkerson	O(nmU)			
	3	1970	Dinitz	$O(nm^2)$			
			Edmonds & Karp				
	4	1970	Dinitz	$O(n^2m)$			
	5	1972	Edmonds & Karp	$O(m^2 \log U)$			
			Dinitz				
	6	1973	Dinitz	$O(nm \log U)$			
			Gabow	·			
	7	1974	Karzanov	$O(n^3)$			
	8	1977	Cherkassky	$O(n^2\sqrt{m})$			
	9	1980	Galil & Naamad	$O(nm\log^2 n)$			
_ 1	0.	1983	Sleator & Tarjan	$O(nm\log n)$			
1	.1	1986	Goldberg & Tarjan	$O(nm\log(n^2/m))$			
1	2	1987	Ahuja & Orlin	$O(nm + n^2 \log U)$			
	.3	1987	Ahuja et al.	$O(nm\log(n\sqrt{\log U}/(m+2))$			
1	4	1989	Cheriyan & Hagerup	$E(nm + n^2 \log^2 n)$			
	5	1990	Cheriyan et al.	$O(n^3/\log n)$			
1	6	1990	Alon	$O(nm + n^{8/3}\log n)$			
1	7	1992	King et al.	$O(nm + n^{2+\epsilon})$			
1	.8	1993	Phillips & Westbrook	$O(nm(\log_{m/n} n + \log^{2+\epsilon} n))$			
<u> </u>	9	1994	King et al.	$O(nm\log_{m/(n\log n)} n)$			
2	0	1997	Goldberg & Rao	$O(m^{3/2}\log(n^2/m)\log U)$			
				$O(n^{2/3}m\log(n^2/m)\log U)$			

	21	2013	Orlin	0(mn)		
	22	2014	Lee & Sidford	$m\sqrt{n}\log^{O(1)}n\log U$		
	23	2016	Madry	$m^{10/7}U^{1/7}\log^{O(1)}n$		
	24	2021	Gao, Liu, & Peng	$m^{3/2-1/328}\log^{O(1)}n\log U$		
	25	2022	van den Brand et al.	$m^{3/2-1/58}\log^{O(1)}n\log U$		
	26	2022	Chen et al.	$m^{1+o(1)}\log U$		

Tables use *U* instead of *C* for the upper bound on capacities

Methods:

Augmenting Paths – increase flow to capacity

Preflow-Push – decrease flow to get flow conservation

Linear Programming – randomized, high probability of optimality

Source: Goldberg & Rao, FOCS '97