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Defn: An 𝒔-𝒕 flow in a flow network is a function 𝒇: 𝑬→ℝ that satisfies:
• For each 𝒆 ∈ 𝑬: 𝟎 ≤ 𝒇 𝒆 ≤ 𝒄(𝒆) [capacity constraints]

• For each 𝒗 ∈ 𝑽 − {𝒔, 𝒕} :

Defn: The value of flow 𝒇,

෍

𝒆 into 𝒗

𝒇 𝒆 = ෍

𝒆 out of 𝒗

𝒇(𝒆)
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Given: a flow network 

Find: an 𝒔-𝒕 flow of maximum value
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Maximum Flow Problem
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value = 24
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Residual Graphs and Augmenting Paths
Residual edges of two kinds:

• Forward:  𝒆 = (𝒖, 𝒗) with capacity 𝒄𝒇 𝒆 = 𝒄 𝒆 − 𝒇 𝒆

• Amount of extra flow we can add along 𝒆

• Backward: 𝒆R  = (𝒗, 𝒖) with capacity 𝒄𝒇 𝒆 = 𝒇 𝒆

• Amount we can reduce/undo flow along 𝒆

Residual graph:  𝑮𝒇 = (𝑽, 𝑬𝒇).

• Residual edges with residual capacity 𝒄𝒇 𝒆 > 𝟎.

• 𝑬𝒇 = 𝒆 ∶  𝒇 𝒆 < 𝒄 𝒆 ∪ {𝒆R:  𝒇 𝒆 >  𝟎}.

Augmenting Path: Any 𝒔-𝒕 path 𝑷 in 𝑮𝒇.         Let bottleneck(𝑷)= min
𝒆∈𝑷

 𝒄𝒇(𝒆).

Ford-Fulkerson idea:  Repeat “find an augmenting path 𝑷 and increase flow by bottleneck(𝑷)” until 
  none left.
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residual capacity



𝑨
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Defn:  An 𝒔-𝒕 cut is a partition (𝑨, 𝑩) of 𝑽 with 𝒔 ∈ 𝑨 and 𝒕 ∈ 𝑩.
    The capacity of cut (𝑨, 𝑩) is 

𝒄 𝑨, 𝑩 = ෍

𝒆 out of 𝑨

𝒄(𝒆)
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𝑨
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Defn:  An 𝒔-𝒕 cut is a partition (𝑨, 𝑩) of 𝑽 with 𝒔 ∈ 𝑨 and 𝒕 ∈ 𝑩.
    The capacity of cut (𝑨, 𝑩) is 

𝒄 𝑨, 𝑩 = ෍

𝒆 out of 𝑨

𝒄(𝒆)
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Defn:  An 𝒔-𝒕 cut is a partition (𝑨, 𝑩) of 𝑽 with 𝒔 ∈ 𝑨 and 𝒕 ∈ 𝑩.

    The capacity of cut (𝑨, 𝑩) is 

𝒄 𝑨, 𝑩 = ෍

𝒆 out of 𝑨

𝒄(𝒆)

Minimum s-t cut problem:

Given: a flow network 

Find: an 𝒔-𝒕 cut of minimum capacity 

𝑨
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Minimum Cut Problem
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Flows and Cuts
Let 𝒇 be any 𝒔-𝒕 flow and (𝑨, 𝑩) be any 𝒔-𝒕 cut:

Flow Value Lemma: The net value of the flow sent across (𝑨, 𝑩) equals 𝒗 𝒇 .

             Intuition: All flow coming from 𝑠 must eventually reach 𝑡, and so must 
                               cross that cut

Weak Duality: The value of the flow is at most the capacity of the cut;                        
              i.e., 𝒗 𝒇 ≤ 𝒄 𝑨, 𝑩 .

         Intuition: Since all flow must cross any cut, any cut’s capacity is an upper bound
                           on the flow

Corollary: If 𝒗 𝒇 = 𝒄(𝑨, 𝑩) then 𝒇 is a maximum flow and (𝑨, 𝑩) is a minimum cut.

 Intuition: If we find a cut whose capacity matches the flow, we can’t push more flow
                   through that cut because it’s already at capacity. We additionally can’t find
                   a smaller cut, since that flow was achievable.
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Max-Flow Min-Cut Theorem
Augmenting Path Theorem:  Flow 𝒇 is a max flow ⇔ there are no augmenting paths wrt 𝒇 

Max-Flow Min-Cut Theorem: The value of the max flow equals the value of the min cut.
[Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] “Maxflow = Mincut” 

Proof:   We prove both together by showing that all of these are equivalent:

             (i) There is a cut (𝑨, 𝑩) such that 𝒗(𝒇) = 𝒄(𝑨, 𝑩).

            (ii) Flow 𝒇 is a max flow.

           (iii) There is no augmenting path w.r.t. 𝒇.

(i) ⇒ (ii): Comes from weak duality lemma. 

(ii) ⇒ (iii): (by contradiction) 
                   If there is an augmenting path w.r.t. flow 𝒇 then we can improve 𝒇. Therefore 𝒇 is not a max flow.

(iii) ⇒ (i): We will use the residual graph to identify a cut whose capacity matches the flow
9



Flow Value Lemma: Let 𝒇 be any 𝒔-𝒕 flow and (𝑨, 𝑩) be any 𝒔-𝒕 cut.        
The net value of the flow sent across the cut equals 𝒗(𝒇):
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Flow Value Lemma – Idea
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𝑨

෍

𝒆 out of 𝑨

𝒇 𝒆 − ෍

𝒆 into 𝑨

𝒇 𝒆 = 𝒗(𝒇)

= 28 - 4  

Why is it true?
• Add vertices to 𝒔 side one by one.   
• By flow conservation, net value 

doesn’t change



Flow Value Lemma: Let 𝒇 be any 𝒔-𝒕 flow and (𝑨, 𝑩) be any 𝒔-𝒕 cut.        
The net value of the flow sent across the cut equals 𝒗(𝒇):

Proof: 
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Flow Value Lemma – Proof 

෍

𝒆 out of 𝑨

𝒇 𝒆 − ෍

𝒆 into 𝑨

𝒇 𝒆 = 𝒗(𝒇)

𝒗 𝒇 = ෍

𝒆 out of 𝒔

𝒇 𝒆  

= ෍

𝒆 out of 𝒔

𝒇 𝒆 − ෍

𝒆 into 𝒔

𝒇 𝒆 + ෍

𝒗∈𝑨− 𝒔

෍

𝒆 out of 𝑣 

𝒇 𝒆 − ෍

𝒆 into 𝒗

𝒇 𝒆

= ෍

𝒆 out of 𝑨

𝒇 𝒆 − ෍

𝒆 into 𝑨

𝒇 𝒆  

=  𝟎.  No edges into 𝒔 since it is a source

=  𝟎 by flow conservation. 

Contributions from internal edges of 𝑨 cancel. 



(i) ⇒ (ii)

Weak Duality: Let 𝒇 be any 𝒔-𝒕 flow and (𝑨, 𝑩) be any 𝒔-𝒕 cut.  The value 
of the flow is at most the capacity of the cut;  i.e., 𝒗 𝒇 ≤ 𝒄(𝑨, 𝑩):
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Weak Duality - Idea
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Value of flow = 24 = 28 - 4
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(i) ⇒ (ii)

Weak Duality: Let 𝒇 be any 𝒔-𝒕 flow and (𝑨, 𝑩) be any 𝒔-𝒕 cut.  The value 
of the flow is at most the capacity of the cut;  i.e., 𝒗 𝒇 ≤ 𝒄 𝑨, 𝑩 .

Proof:     
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Weak Duality - Proof

𝒗 𝒇 = ෍
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𝒇 𝒆 − ෍
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𝒇 𝒆  

≤ ෍

𝒆 out of 𝑨

𝒇 𝒆  

≤ ෍

𝒆 out of 𝑨

𝒄 𝒆  

        = 𝒄 𝑨, 𝑩  

since 𝒇 𝒆 ≥ 𝟎 

since 𝒇 𝒆 ≤ 𝒄(𝒆) 



Proof of Max-Flow Min-Cut Theorem
(iii) ⇒ (i): 

Claim: If there is no augmenting path w.r.t. 𝒇, there is a cut (𝑨, 𝑩) s.t. 𝒗(𝒇) = 𝒄(𝑨, 𝑩).

Proof of Claim: Let 𝒇 be a flow with no augmenting paths.

Let 𝑨 be the set of vertices reachable from 𝒔 in residual graph 𝑮𝒇.

• By definition of 𝑨, 𝒔 ∈ 𝑨.

• Since no augmenting path (𝒔-𝒕 path in 𝑮𝒇), 𝒕 ∉ 𝑨.
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Proof: Identifying the Min Cut
(iii) ⇒ (i): 

Claim: If there is no augmenting path w.r.t. 𝒇, there is a cut (𝑨, 𝑩) s.t. 𝒗(𝒇) = 𝒄(𝑨, 𝑩).

Proof of Claim: Let 𝒇 be a flow with no augmenting paths.

Let 𝑨 be the set of vertices reachable from 𝒔 in residual graph 𝑮𝒇.

• By definition of 𝑨, 𝒔 ∈ 𝑨.

• Since no augmenting path (𝒔-𝒕 path in 𝑮𝒇), 𝒕 ∉ 𝑨.

Then
𝒗 𝒇 = ෍

𝒆 out of 𝑨

𝒇 𝒆 − ෍

𝒆 into 𝑨

𝒇 𝒆  
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Identifying the Min Cut: No Inflow 
(iii) ⇒ (i): 

Claim: If there is no augmenting path w.r.t. 𝒇, there is a cut (𝑨, 𝑩) s.t. 𝒗(𝒇) = 𝒄(𝑨, 𝑩).

Proof of Claim: Let 𝒇 be a flow with no augmenting paths.

Let 𝑨 be the set of vertices reachable from 𝒔 in residual graph 𝑮𝒇.

• By definition of 𝑨, 𝒔 ∈ 𝑨.

• Since no augmenting path (𝒔-𝒕 path in 𝑮𝒇), 𝒕 ∉ 𝑨.

Then 𝒗 𝒇 = ෍

𝒆 out of 𝑨

𝒇 𝒆 − ෍

𝒆 into 𝑨

𝒇 𝒆  

 = ෍

𝒆 out of 𝑨

𝒇 𝒆  (By contradiction: If an edge going into 
𝐴 had flow then the backward edge 
would be in the residual graph, so the 
edge should not cross the cut)

𝒇(𝒆) = 𝟎
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𝑒𝑅  can’t exist because then 
𝑦 would be reachable from 𝑠 
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Identifying the Min Cut: Saturated Outflow
(iii) ⇒ (i): 

Claim: If there is no augmenting path w.r.t. 𝒇, there is a cut (𝑨, 𝑩) s.t. 𝒗(𝒇) = 𝒄(𝑨, 𝑩).

Proof of Claim: Let 𝒇 be a flow with no augmenting paths.

Let 𝑨 be the set of vertices reachable from 𝒔 in residual graph 𝑮𝒇.

• By definition of 𝑨, 𝒔 ∈ 𝑨.

• Since no augmenting path (𝒔-𝒕 path in 𝑮𝒇), 𝒕 ∉ 𝑨.

Then
𝒗 𝒇 = ෍

𝒆 out of 𝑨

𝒇 𝒆 − ෍

𝒆 into 𝑨

𝒇 𝒆  

 = ෍

𝒆 out of 𝑨

𝒇 𝒆  

= ෍

𝒆 out of 𝑨

𝒄 𝒆  

“𝒆 is saturated”
No unused capacity on 𝒆  

𝒇 𝒆 = 𝒄(𝒆)
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𝑒𝑅  can’t exist because then 
𝑦 would be reachable from 𝑠 

(By contradiction: If an edge going out of 
𝐴 had unused capacity then the forward 
edge would be in the residual graph, so 
the edge should not cross the cut)
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Identifying the Min Cut: Conclusion
(iii) ⇒ (i): 

Claim: If there is no augmenting path w.r.t. 𝒇, there is a cut (𝑨, 𝑩) s.t. 𝒗(𝒇) = 𝒄(𝑨, 𝑩).

Proof of Claim: Let 𝒇 be a flow with no augmenting paths.

Let 𝑨 be the set of vertices reachable from 𝒔 in residual graph 𝑮𝒇.

• By definition of 𝑨, 𝒔 ∈ 𝑨.

• Since no augmenting path (𝒔-𝒕 path in 𝑮𝒇), 𝒕 ∉ 𝑨.

Then
𝒗 𝒇 = ෍

𝒆 out of 𝑨

𝒇 𝒆 − ෍

𝒆 into 𝑨

𝒇 𝒆  

 = ෍

𝒆 out of 𝑨

𝒇 𝒆  

= ෍

𝒆 out of 𝑨

𝒄 𝒆  = 𝒄(𝑨, 𝑩) 
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(by Definition)



Fork Fulkerson Algorithm

FordFulkerson(G, s, t, c){

    for each 𝑒 ∈ 𝐸{

        set 𝑓 𝑒 = 0

    }

    calculate residual graph 𝐺𝑓

    while 𝐺𝑓 has an 𝑠 − 𝑡 path 𝑃{

        augment(𝑓, 𝑐, 𝑃)

        update 𝐺𝑓

    }

    return 𝑓

}

augment(𝑓, 𝑐, 𝑃){

    𝑏 = bottleneck(𝑃)

    for each 𝑒 ∈ 𝑃{

        𝑓 𝑒 += 𝑏

        𝑓 𝑒𝑅 −= 𝑏

    }

    return 𝑓

}
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MaxFlow/MinCut & Ford-Fulkerson Algorithm
Augmenting Path Theorem:  Flow 𝒇 is a max flow ⇔ there are no augmenting paths wrt 𝒇 

Max-Flow Min-Cut Theorem: The value of the max flow equals the value of the min cut.
[Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] “MaxFlow = MinCut”

Flow Integrality Theorem: If all capacities are integers then there is a maximum flow with 
           all-integer flow values.

Ford-Fulkerson Algorithm: 𝑂(𝒎) per iteration.  With integer capacities each at most 𝑪 
need at most MaxFlow < 𝒏𝑪 iterations for a total of 𝑂 𝒎𝒏𝑪  time.

𝒎 = 𝑬
𝒏 = |𝑽|
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Worst case runtime 𝑂 𝒎𝒏𝑪  with integer capacities ≤ 𝑪.
• 𝑂(𝒎) time per iteration.

• At most 𝒏𝑪 iterations.

• This is “pseudo-polynomial” running time.

• May take exponential time, even with integer capacities:
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Ford-Fulkerson Efficiency
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Polynomial-Time Variant of Ford-Fulkerson
Use care when selecting augmenting paths.

• Some choices lead to exponential algorithms.
• Clever choices lead to polynomial algorithms.
• If capacities are irrational, algorithm not guaranteed to terminate!

Goal:  Choose augmenting paths so that:
• Can find augmenting paths efficiently.

• Few iterations.

Choose augmenting paths with fewest number of edges.  [Edmonds-Karp 1972 , Dinitz 1970]

• Just run BFS to find an augmenting path!

22
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Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Use Breadth First Search as the search algorithm to find an 𝒔-𝒕 path in 𝑮𝒇.

• Using any shortest augmenting path 

Theorem: Ford-Fulkerson using BFS terminates in 𝑶(𝒎𝟐𝒏) time. [Edmonds-Karp, Dinitz]

“One of the most obvious ways to implement Ford-Fulkerson is always polynomial time”

Why might this be good intuitively? 

• Longer augmenting paths involve more edges so may be more likely to hit a low 
residual capacity one which would limit the amount of flow improvement.

The proof uses a completely different idea…
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Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Analysis Focus: 

For any edge 𝒆 that could be in the residual graph 𝑮𝒇, (either an edge in 𝑮 or its reverse)  

count # of iterations that 𝒆 is the first bottleneck edge on the augmenting  

 path chosen by the algorithm. 

Claim: This can’t happen in more than 𝒏/𝟐 iterations. 

Proof:   Write 𝒆 = (𝒖, 𝒗).   

            Show that each time it happens, the distance from 𝒔 to 𝒖 in the residual graph 𝑮𝒇 

is at least 𝟐 more than it was the last time. 

 This would be enough since the distance is < 𝒏    

 (or infinite and hence 𝒖 isn’t reachable) so this can happen at most 𝒏/𝟐 times.
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Distances in the Residual Graph
Key Lemma: Let 𝒇 be a flow, 𝑮𝒇 the residual graph, and 𝑷 be a shortest augmenting 
path.  No vertex is closer to 𝒔 in the residual graph after augmenting along 𝑷.

Proof: Augmenting along 𝑷 can only change the edges in 𝑮𝒇 by either:

1. Deleting a forward edge
• Deleting any edge can never reduce distances

2. Add a backward edge (𝒗, 𝒖) that is the reverse of an edge (𝒖, 𝒗) of 𝑷
• Since 𝑷 was a shortest path in 𝑮𝒇, the distance from 𝒔 to 𝒗 in 𝑮𝒇 

is already more than the 
distance from 𝒔 to 𝒖.   Using the new backward edge (𝒗, 𝒖) to get to 𝒖 would be an even 
longer path to 𝒖 so it is never on a shortest path to any node in the new residual graph.
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Augmentation vs BFS
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First Bottleneck Edges in 𝐺𝒇
Shortest 𝒔-𝒕 path 𝑷 in 𝑮𝒇

vus x tw
𝒄𝑷

> 𝒄𝑷 > 𝒄𝑷 𝒄𝑷

𝒅𝒇(𝒔, 𝒗) = 𝒅𝒇(𝒔, 𝒖) + 𝟏  since 𝑷 is a shortest path.

After augmenting along 𝑷, edge (𝒖, 𝒗) disappears; but will have edge (𝒗, 𝒖)

For (𝒖, 𝒗) to be a first bottleneck edge later, it must get added back to the residual 
graph by augmenting along a shortest path 𝑷′ containing (𝒗, 𝒖) in 𝑮𝒇′ for some flow 𝒇’

Since 𝑷′ is shortest 𝒅𝒇′ 𝒔, 𝒖 = 𝒅𝒇′ 𝒔, 𝒗 + 𝟏 ≥ 𝒅𝒇 𝒔, 𝒗 + 𝟏 = 𝒅𝒇(𝒔, 𝒖) + 𝟐

Write 𝒄𝑷 = bottleneck(𝑷)

vus x tw

The next time that (𝒖, 𝒗) is first bottleneck edge is even later so distance is at least as large!

distance is ≥ 𝟐 
larger than before
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Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)
Analysis Focus: 

For any edge 𝒆 that could be in the residual graph 𝑮𝒇, (either an edge in 𝑮 or its reverse)  

count # of iterations that 𝒆 is the first bottleneck edge on the augmenting  

 path chosen by the algorithm. 

Claim: This can’t happen in more than 𝒏/𝟐 iterations 

Claim ⇒ Theorem:

Only 𝟐𝒎 edges and 𝑂(𝒎) time per iteration so 𝑂(𝒎𝟐𝒏) time overall.



bound
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History & State of the Art for MaxFlow Algorithms

Source: Goldberg & Rao, FOCS ‘97

2012     Orlin + King et al.           O(nm)

21 2013 Orlin 𝑂 𝒎𝒏  

22 2014 Lee & Sidford 𝒎 𝒏 log𝑂 1 𝒏 log 𝑼 

23 2016 Madry 𝒎𝟏𝟎/𝟕𝑼𝟏/𝟕 log𝑂 1 𝒏 

24 2021 Gao, Liu, & Peng 𝒎𝟑/𝟐−𝟏/𝟑𝟐𝟖 log𝑂 1 𝒏 log 𝑼

25 2022 van den Brand et al. 𝒎𝟑/𝟐−𝟏/𝟓𝟖 log𝑂 1 𝒏 log 𝑼

26 2022 Chen et al. 𝒎𝟏+𝒐 𝟏 log 𝑼

Tables use 𝑼 instead of 𝑪 for the upper bound on capacities

Methods: 
Augmenting Paths – increase flow to capacity
Preflow-Push – decrease flow to get flow conservation
Linear Programming – randomized, high probability of optimality


	Slide 1: CSE 421 Winter 2025 Lecture 17: Max Flow Running Time
	Slide 2: Flows
	Slide 3: Maximum Flow Problem
	Slide 4: Residual Graphs and Augmenting Paths
	Slide 5: Cuts
	Slide 6: Cuts
	Slide 7: Minimum Cut Problem
	Slide 8: Flows and Cuts
	Slide 9: Max-Flow Min-Cut Theorem
	Slide 10: Flow Value Lemma – Idea
	Slide 11: Flow Value Lemma – Proof 
	Slide 12: Weak Duality - Idea
	Slide 13: Weak Duality - Proof
	Slide 14: Proof of Max-Flow Min-Cut Theorem
	Slide 15: Proof: Identifying the Min Cut
	Slide 16: Identifying the Min Cut: No Inflow 
	Slide 17: Identifying the Min Cut: Saturated Outflow
	Slide 18: Identifying the Min Cut: Conclusion
	Slide 19: Fork Fulkerson Algorithm
	Slide 20: MaxFlow/MinCut & Ford-Fulkerson Algorithm
	Slide 21: Ford-Fulkerson Efficiency
	Slide 22: Polynomial-Time Variant of Ford-Fulkerson
	Slide 23: Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)
	Slide 24: Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)
	Slide 25: Distances in the Residual Graph
	Slide 26: Augmentation vs BFS
	Slide 27: First Bottleneck Edges in cap G sub bold italic f 
	Slide 28: Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)
	Slide 29: History & State of the Art for MaxFlow Algorithms

