CSE 421 Winter 2025 Lecture 17: Max Flow Running Time

Nathan Brunelle

http://www.cs.uw.edu/421

Flows

Defn: An *s*-*t* flow in a flow network is a function $f: E \to \mathbb{R}$ that satisfies:

• For each $e \in E$: $0 \leq f(e) \leq c(e)$

[capacity constraints]

Maximum Flow Problem Given: a flow network

Find: an *s*-*t* flow of maximum value

Residual Graphs and Augmenting Paths

Residual edges of two kinds:

- Forward: e = (u, v) with capacity $c_f(e) = c(e) f(e)$
 - Amount of extra flow we can add along *e*
- Backward: $e^{\mathbf{R}} = (v, u)$ with capacity $c_f(e) = f(e)$
 - Amount we can reduce/undo flow along *e*

Residual graph: $G_f = (V, E_f)$.

- Residual edges with residual capacity $c_f(e) > 0$.
- $E_f = \{e : f(e) < c(e)\} \cup \{e^{\mathbb{R}} : f(e) > 0\}.$

Augmenting Path: Any *s*-*t* path *P* in G_f . Let bottleneck(*P*) = $\min_{e \in P} c_f(e)$.

Ford-Fulkerson idea: Repeat "find an augmenting path **P** and increase flow by **bottleneck**(**P**)" until none left.

Cuts

Defn: An *s*-*t* cut is a partition (A, B) of *V* with $s \in A$ and $t \in B$. The capacity of cut (A, B) is

$$\boldsymbol{c}(\boldsymbol{A},\boldsymbol{B}) = \sum_{\boldsymbol{e} \text{ out of } \boldsymbol{A}} \boldsymbol{c}(\boldsymbol{e})$$

Minimum Cut Problem

Defn: An *s*-*t* cut is a partition (A, B) of *V* with $s \in A$ and $t \in B$. The capacity of cut (A, B) is

$$\boldsymbol{c}(\boldsymbol{A},\boldsymbol{B}) = \sum_{\boldsymbol{e} \text{ out of } \boldsymbol{A}} \boldsymbol{c}(\boldsymbol{e})$$

Minimum s-t cut problem:

Given: a flow network 9 d а Find: an *s*-*t* cut of minimum capacity 10 10 15 15 sink source 5 10 b e S A 15 6 15 10 capacity 28 30

Flows and Cuts

Let **f** be any **s**-**t** flow and (**A**, **B**) be any **s**-**t** cut:

Flow Value Lemma: The net value of the flow sent across (A, B) equals v(f).

Intuition: All flow coming from s must eventually reach t, and so must cross that cut

Weak Duality: The value of the flow is at most the capacity of the cut; i.e., $v(f) \le c(A, B)$.

Intuition: Since all flow must cross any cut, any cut's capacity is an upper bound on the flow

Corollary: If v(f) = c(A, B) then f is a maximum flow and (A, B) is a minimum cut.

Intuition: If we find a cut whose capacity matches the flow, we can't push more flow through that cut because it's already at capacity. We additionally can't find a smaller cut, since that flow was achievable.

Max-Flow Min-Cut Theorem

Augmenting Path Theorem: Flow f is a max flow \Leftrightarrow there are no augmenting paths wrt f

Max-Flow Min-Cut Theorem: The value of the max flow equals the value of the min cut. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] "Maxflow = Mincut"

Proof: We prove both together by showing that all of these are equivalent:

- (i) There is a cut (A, B) such that v(f) = c(A, B).
- (ii) Flow **f** is a max flow.

(iii) There is no augmenting path w.r.t. *f*.

(i) \Rightarrow (ii): Comes from weak duality lemma.

<u>(ii) \Rightarrow (iii)</u>: (by contradiction)

If there is an augmenting path w.r.t. flow *f* then we can improve *f*. Therefore *f* is not a max flow.

(iii) \Rightarrow (i): We will use the residual graph to identify a cut whose capacity matches the flow

Flow Value Lemma – Idea

Flow Value Lemma: Let f be any s-t flow and (A, B) be any s-t cut. The net value of the flow sent across the cut equals v(f):

Flow Value Lemma – Proof Flow Value Lemma: Let f be any s-t flow and (A, B) be any s-t cut. The net value of the flow sent across the cut equals v(f):

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e) = v(f)$$

Weak Duality - Idea (i) \Rightarrow (ii)

Weak Duality: Let f be any s-t flow and (A, B) be any s-t cut. The value of the flow is at most the capacity of the cut; i.e., $v(f) \le c(A, B)$:

Weak Duality - Proof (i) \Rightarrow (ii)

Weak Duality: Let f be any s-t flow and (A, B) be any s-t cut. The value of the flow is at most the capacity of the cut; i.e., $v(f) \le c(A, B)$.

Proof of Max-Flow Min-Cut Theorem

$(iii) \Rightarrow (i):$

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B).

Proof of Claim: Let *f* be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f .

- By definition of $A, s \in A$.
- Since no augmenting path (s-t path in G_f), $t \notin A$.

Proof: Identifying the Min Cut

$(iii) \Rightarrow (i):$

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B).

Proof of Claim: Let *f* be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f .

- By definition of $A, s \in A$.
- Since no augmenting path $(s-t \text{ path in } G_f), t \notin A$.

Then

Identifying the Min Cut: No Inflow

$(iii) \Rightarrow (i):$

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B),

f(**e**)

into A

Proof of Claim: Let *f* be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f .

• By definition of $A, s \in A$.

v(f)

• Since no augmenting path (s-t path in G_f), $t \notin A$.

Then

$$= \sum_{e \text{ out of } A} f(e) -$$
$$= \sum_{e \text{ out of } A} f(e) \quad (B)$$

e out of A

(**By contradiction:** If an edge going into *A* had flow then the backward edge would be in the residual graph, so the edge should not cross the cut)

Identifying the Min Cut: Saturated Outflow

 $(iii) \Rightarrow (i):$

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B).

Proof of Claim: Let *f* be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f .

- By definition of $A, s \in A$.
- Since no augmenting path $(s-t \text{ path in } G_f), t \notin A$.

Then

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e)$$

$$= \sum_{e \text{ out of } A} c(e) \qquad (By \text{ contradict} A \text{ had unused} edge would be edge woul$$

tion: If an edge going out of capacity then the forward edge would be in the residual graph, so the edge should not cross the cut)

Identifying the Min Cut: Conclusion $(iii) \Rightarrow (i)$:

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B).

Proof of Claim: Let *f* be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f .

- By definition of A, $s \in A$.
- Since no augmenting path (s-t path in G_f), $t \notin A$.

Then

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e)$$

$$= \sum_{e \text{ out of } A} c(e) = c(A, B) \quad \text{(by Definition)}$$

Fork Fulkerson Algorithm

```
FordFulkerson(G, s, t, c){
  for each e \in E{
     \operatorname{set} f(e) = 0
  }
  calculate residual graph G_f
  while G_f has an s - t path P{
     augment(f, c, P)
     update G_f
  return f
```

augment(*f*, *c*, *P*){ b = bottleneck(P)for each $e \in P$ { f(e) += b $f(e^R) = b$ return f

MaxFlow/MinCut & Ford-Fulkerson Algorithm

Augmenting Path Theorem: Flow f is a max flow \Leftrightarrow there are no augmenting paths wrt f

Max-Flow Min-Cut Theorem: The value of the max flow equals the value of the min cut. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] "MaxFlow = MinCut"

Flow Integrality Theorem: If all capacities are integers then there is a maximum flow with all-integer flow values.

Ford-Fulkerson Algorithm: O(m) per iteration. With integer capacities each at most C need at most MaxFlow < nC iterations for a total of O(mnC) time.

Ford-Fulkerson Efficiency

Worst case runtime O(mnC) with integer capacities $\leq C$.

- *O*(*m*) time per iteration.
- At most *nC* iterations.
- This is "pseudo-polynomial" running time.
- May take exponential time, even with integer capacities:

Polynomial-Time Variant of Ford-Fulkerson

Use care when selecting augmenting paths.

- Some choices lead to exponential algorithms.
- Clever choices lead to polynomial algorithms.
- If capacities are irrational, algorithm not guaranteed to terminate!

Goal: Choose augmenting paths so that:

- Can find augmenting paths efficiently.
- Few iterations.

Choose augmenting paths with fewest number of edges. [Edmonds-Karp 1972, Dinitz 1970]

• Just run BFS to find an augmenting path!

Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Use Breadth First Search as the search algorithm to find an s-t path in G_f .

• Using any shortest augmenting path

Theorem: Ford-Fulkerson using BFS terminates in $O(m^2n)$ time. [Edmonds-Karp, Dinitz]

"One of the most obvious ways to implement Ford-Fulkerson is always polynomial time"

Why might this be good intuitively?

• Longer augmenting paths involve more edges so may be more likely to hit a low residual capacity one which would limit the amount of flow improvement.

The proof uses a completely different idea...

Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Analysis Focus:

For any edge e that could be in the residual graph G_f , (either an edge in G or its reverse) count # of iterations that e is the first bottleneck edge on the augmenting path chosen by the algorithm.

Claim: This can't happen in more than n/2 iterations.

Proof: Write e = (u, v).

Show that each time it happens, the distance from s to u in the residual graph G_f is at least 2 more than it was the last time.

This would be enough since the distance is < n(or infinite and hence u isn't reachable) so this can happen at most n/2 times.

Distances in the Residual Graph

Key Lemma: Let f be a flow, G_f the residual graph, and P be a shortest augmenting path. No vertex is closer to s in the residual graph after augmenting along P.

Proof: Augmenting along P can only change the edges in G_f by either:

- 1. Deleting a forward edge
 - Deleting any edge can never reduce distances
- 2. Add a backward edge (v, u) that is the reverse of an edge (u, v) of **P**
 - Since *P* was a shortest path in *G_f*, the distance from *s* to *v* in *G_f* is already more than the distance from *s* to *u*. Using the new backward edge (*v*, *u*) to get to *u* would be an even longer path to *u* so it is never on a shortest path to any node in the new residual graph.

First Bottleneck Edges in G_f

Shortest *s*-*t* path *P* in *G*_{*f*}

Write c_P = bottleneck(P)

$$> c_P > c_P < c_P < c_P$$

 $d_f(s, v) = d_f(s, u) + 1$ since **P** is a shortest path.

After augmenting along P, edge (u, v) disappears; but will have edge (v, u)

For (u, v) to be a first bottleneck edge later, it must get added back to the residual graph by augmenting along a shortest path P' containing (v, u) in $G_{f'}$ for some flow f'

Since **P**' is shortest $d_{f'}(s, u) = d_{f'}(s, v) + 1 \ge d_f(s, v) + 1 = d_f(s, u) + 2$

The next time that (u, v) is first bottleneck edge is even later so distance is at least as large!

distance is ≥ 2

larger than before

Edmonds-Karp Algorithm (Ford-Fulkerson with BFS) Analysis Focus:

For any edge e that could be in the residual graph G_f , (either an edge in G or its reverse) count # of iterations that e is the first bottleneck edge on the augmenting path chosen by the algorithm.

Claim: This can't happen in more than n/2 iterations

Claim \Rightarrow **Theorem**:

Only 2m edges and O(m) time per iteration so $O(m^2n)$ time overall.

History & State of the Art for MaxFlow Algorithms

		#	year	discoverer(s)	bound
		1	1951	Dantzig	$O(n^2 m U)$
1		2	1955	Ford & Fulkerson	O(nmU)
		3	1970	Dinitz	$O(nm^2)$
				Edmonds & Karp	
		4	1970	Dinitz	$O(n^2m)$
		5	1972	Edmonds & Karp	$O(m^2 \log U)$
				Dinitz	
1		6	1973	Dinitz	$O(nm\log U)$
				Gabow	
		7	1974	Karzanov	$O(n^3)$
		8	1977	Cherkassky	$O(n^2\sqrt{m})$
		9	1980	Galil & Naamad	$O(nm\log^2 n)$
		10	1983	Sleator & Tarjan	$O(nm\log n)$
_		11	1986	Goldberg & Tarjan	$O(nm\log(n^2/m))$
		12	1987	Ahuja & Orlin	$O(nm + n^2 \log U)$
		13	1987	Ahuja et al.	$O(nm\log(n\sqrt{\log U}/(m+2)))$
		14	1989	Cheriyan & Hagerup	$E(nm + n^2 \log^2 n)$
		15	1990	Cheriyan et al.	$O(n^3/\log n)$
		16	1990	Alon	$O(nm + n^{8/3}\log n)$
		17	1992	King et al.	$O(nm + n^{2+\epsilon})$
		18	1993	Phillips & Westbrook	$O(nm(\log_{m/n}n + \log^{2+\epsilon}n))$
		19	1994	King et al.	$O(nm \log_{m/(n \log n)} n)$
		20	1997	Goldberg & Rao	$O(m^{3/2}\log(n^2/m)\log U)$
					$O(n^{2/3}m\log(n^2/m)\log U)$

21	2013	Orlin	0(mn)
22	2014	Lee & Sidford	$m\sqrt{n}\log^{O(1)}n\log U$
23	2016	Madry	$m^{10/7} U^{1/7} \log^{O(1)} n$
24	2021	Gao, Liu, & Peng	$m^{3/2-1/328} \log^{O(1)} n \log U$
25	2022	van den Brand et al.	$m^{3/2-1/58}\log^{O(1)}n\log U$
26	2022	Chen et al.	$m^{1+o(1)}\log U$

Tables use **U** instead of **C** for the upper bound on capacities

Methods:

Augmenting Paths – increase flow to capacity Preflow-Push – decrease flow to get flow conservation Linear Programming – randomized, high probability of optimality

Source: Goldberg & Rao, FOCS '97