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Flows

Defn: An s-t flow in a flow network is a function f: E — R that satisfies:

* Foreache € E:0 < f(e) < c(e) [capacity constraints]
* Foreachv eV —{s,t}: z f(e) = Z f(e [flow conservation]
eintov eout of v
Defn: The value of flow f, } 0/
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Maximum Flow Problem

Given: a flow network
Find: an s-t flow of maximum value
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Residual Graphs and Augmenting Paths

Residual edges of two kinds:
* Forward: e = (u, v) with capacity cf(e) = c(e) — f(e) W) 6/17—>(V)
 Amount of extra flow we can add along e
* Backward: e® = (v, u) with capacity cr(e) = f(e)
 Amount we can reduce/undo flow along e

residual capacity

Residual graph: Gy = (V, Ey).

| o . W) 11?)
* Residual ed h residual 0.
. e5|_ua e. ges with residua ca}i).auty cre) > — -
Ef= {e: f(e) <c(e)}u {e*: f(e) > 0}.

residual capacity
Augmenting Path: Any s-t path P in Gy. Let bottleneck(P)= mel}r)l cr(e).
e

Ford-Fulkerson idea: Repeat “find an augmenting path P and increase flow by bottleneck(P)” until
none left.



Cuts

Defn: An s-t cut is a partition (4, B) of V withs € Aand t € B.

The capacity of cut (4, B) is
c(4,B) = 2 c(e)

capacity 30
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Minimum Cut Problem

Defn: An s-t cut is a partition (4, B) of V withs € Aand t € B.
The capacity of cut (4, B) is
c(4,B) = z c(e)

eoutof A
Minimum s-t cut problem:

Given: a flow network a 9 d
Find: an s-t cut of minimum capacity }T\ (>\
source - 4}@9\ . \@ 10 sink
A - 4 6 15 10

capacity 28 \@ BOW



Flows and Cuts

Let f be any s-t flow and (4, B) be any s-t cut:
Flow Value Lemma: The net value of the flow sent across (A4, B) equals v(f).

Intuition: All flow coming from s must eventually reach t, and so must
cross that cut

Weak Duality: The value of the flow is at most the capacity of the cut;
i.e., v(f) < c(4, B).

Intuition: Since all flow must cross any cut, any cut’s capacity is an upper bound
on the flow

Corollary: If v(f) = c(A, B) then f is a maximum flow and (4, B) is a minimum cut.

Intuition: If we find a cut whose capacity matches the flow, we can’t push more flow
through that cut because it’s already at capacity. We additionally can’t find
a smaller cut, since that flow was achievable.



Max-Flow Min-Cut Theorem

Augmenting Path Theorem: Flow f is a max flow < there are no augmenting paths wrt f

Max-Flow Min-Cut Theorem: The value of the max flow equals the value of the min cut.
[Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] “Maxflow = Mincut”

Proof: We prove both together by showing that all of these are equivalent:
(i) Thereisa cut (A4, B) such that v(f) = c(A, B).
(ii) Flow f is @ max flow.

(iii) There is no augmenting path w.r.t. f.
(i) = (ii): Comes from weak duality lemma.
(ii) = (iii): (by contradiction)

If there is an augmenting path w.r.t. flow f then we can improve f. Therefore f is not a max flow.

(iii) = (i): We will use the residual graph to identify a cut whose capacity matches the flow
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Flow Value Lemma — Idea

Flow Value Lemma: Let f be any s-t flow and (A4, B) be any s-t cut.
The net value of the flow sent across the cut equals v(f):

> @@= ) f©=v

eoutof4 einto A

Why is it true? a 6/9 d
* Add vertices to s side one by one. /’<>\ ><>\
15

* By flow conservation, net value  10/10 44 5 6/10

1
doesn’t change
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Flow Value Lemma — Proof

Flow Value Lemma: Let f be any s-t flow and (A4, B) be any s-t cut.
The net value of the flow sent across the cut equals v(f):

> f@- ) f©=v(

eoutof A einto A
Proof:
v(f) = Z f(e) = 0. No edges into s since it is a source
eoutofs
= ) f@- ) fe+ ) l e - f(e)]
eoutofs eintos veEA—{s} Le out of v e intov
= > f@- ) f@© I
/ ¢outof/ ¢into A = 0 by flow conservation.

Contributions from internal edges of 4 cancel.
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Weak Duality - Idea
(i) = (ii)
Weak Duality: Let f be any s-t flow and (A4, B) be any s-t cut. The value
of the flow is at most the capacity of the cut; i.e., v(f) < c(4, B):

a 6/9 d
Value of flow = 24 = 28 - 4 \

10/10  4/4 15 15  6/10
Capacity of cut = 28
—}% e 8/10
A
1/6 15

11/15 10/10
11/3&6/

11



Weak Duality - Proof
(i) = (ii)
Weak Duality: Let f be any s-t flow and (A4, B) be any s-t cut. The value
of the flow is at most the capacity of the cut; i.e., v(f) < c(4, B).

oo, VD= ) f@- ) @

eoutofA einto A4

= z f(e) since f(e) = 0
eoutofA

< c(e) since f(e) < c(e)
eogg;fA
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Proof of Max-Flow Min-Cut Theorem
(iii) = (i):

Claim: If there is no augmenting path w.r.t. f, thereisacut (4, B) s.t. v(f) = c(4, B).

Proof of Claim: Let f be a flow with no augmenting paths. A
Let A be the set of vertices reachable from s in residual graph Gy.
e By definitionof 4, s € A.
* Since no augmenting path (s-t path in Gy), t & A.

original network

l

residual graph



Proof: Identitying the Min Cut
(iii) = (i):
Claim: If there is no augmenting path w.r.t. f, thereisacut (4, B) s.t. v(f) = c(4, B).

Proof of Claim: Let f be a flow with no augmenting paths. A
Let A be the set of vertices reachable from s in residual graph Gy.
* By definition of A4, s € A.
* Since no augmenting path (s-t path in G¢), t & A.

Th
o v(f) = 2 f(e) — z f(e) (by Flow-Value Lemma)

: original network
eoutofA einto 4

l

residual graph



l[dentifying the Min Cut: No Inflow

(i) = (i):
Claim: If there is no augmenting path w.r.t. f, thereisacut (4, B) s.t. v(f) = c(4, B),

Proof of Claim: Let f be a flow with no augmenting paths.
Let A be the set of vertices reachable from s in residual graph Gy.
e By definitionof 4, s € A.
* Since no augmenting path (s-t path in G¢), t & A.

Then v(f) = 2 fle) — Z f(e) original network

e out of 4 einto A el can’t exist because then

would be reachable from s

= Z f(e) (By contradiction: If an edge going into

e out of A A had flow then the backward edge
would be in the residual graph, so the
edge should not cross the cut)

.....
"""""
.
. .
- of
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l[dentifying the Min Cut: Saturated Outflow

(iii) = (i): “e is saturated”

No unused capacity on e
Claim: If there is no augmenting path w.r.t. f, thereisacut (4, B) s.t. v(f) = c(4, B).

f(e) = c(e)
Proof of Claim: Let f be a flow with no augmenting paths.
Let A be the set of vertices reachable from s in residual graph G;.

* By definitionof 4, s € A.
* Since no augmenting path (s-t pathin G¢), t & A.

Th
- v(f) = Z f(e) — 2 f(e) original network

eoutof A einto 4 el can’t exist because then

_ z f(e) would be reachable from s

eoutofA
_ z c(e) (By contradiction: If an edge going out of
A had unused capacity then the forward
edge would be in the residual graph, so
the edge should not cross the cut)

eoutofd

...................
D .
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.
.

.
",
LN
0
L

16 residual graph



l[dentifying the Min Cut: Conclusion

(i) = (i):
Claim: If there is no augmenting path w.r.t. f, thereisacut (4, B) s.t. v(f) = c(4, B).

Proof of Claim: Let f be a flow with no augmenting paths.
Let A be the set of vertices reachable from s in residual graph G. A

* By definitionof A, s € A.
* Since no augmenting path (s-t path in G¢), t & A.

Then
v(H= ) fle- ) fe
eoutofA einto 4 o
original network
= > f@©
eout of 4 A
= Z cle) =c(4,B) (by Definition)
eoutofA

l
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Fork Fulkerson Algorithm

FordFulkerson(G, s, t, c){ augment(f, c, P){
for each e € E{
set (&) = 0 b = bottleneck(P)
) for each e € P{
calculate residual graph G¢ f(e) += 5
while G¢ has an s — t path P{

f RY _—
augment(f,c, P) fle”) b
update Gy ]

} return f
return f }



MaxFlow/MinCut & Ford-Fulkerson Algorithm

Augmenting Path Theorem: Flow f is a max flow < there are no augmenting paths wrt f

Max-Flow Min-Cut Theorem: The value of the max flow equals the value of the min cut.
[Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] “MaxFlow = MinCut”

Flow Integrality Theorem: If all capacities are integers then there is a maximum flow with
all-integer flow values.

Ford-Fulkerson Algorithm: O (m) per iteration. With integer capacities each at most C
need at most MaxFlow < nC iterations for a total of O (mncC) time.

19 19



Ford-Fulkerson Efficiency

Worst case runtime O (mnC) with integer capacities < C.
* 0(m) time per iteration.
* At most nC iterations.
* This is “pseudo-polynomial” running time.

* May take exponential time, even with integer capacities:

c = 107, say




Polynomial-Time Variant of Ford-Fulkerson

Use care when selecting augmenting paths.
* Some choices lead to exponential algorithms.
e Clever choices lead to polynomial algorithms.
* If capacities are irrational, algorithm not guaranteed to terminate!

Goal: Choose augmenting paths so that:
e Can find augmenting paths efficiently.
* Few iterations.

Choose augmenting paths with fewest number of edges. [Edmonds-Karp 1972, Dinitz 1970]
e Just run BFS to find an augmenting path!



Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Use Breadth First Search as the search algorithm to find an s-t path in G.
* Using any shortest augmenting path

Theorem: Ford-Fulkerson using BFS terminates in O(m?n) time. [Edmonds-Karp, Dinitz]

4

“One of the most obvious ways to implement Ford-Fulkerson is always polynomial time’

Why might this be good intuitively?

* Longer augmenting paths involve more edges so may be more likely to hit a low
residual capacity one which would limit the amount of flow improvement.

The proof uses a completely different idea...

22



Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Analysis Focus:

For any edge e that could be in the residual graph Gy, (either an edge in G or its reverse)

count # of iterations that e is the first bottleneck edge on the augmenting
path chosen by the algorithm.

Claim: This can’t happen in more than n/2 iterations.
Proof: Write e = (u,v).

Show that each time it happens, the distance from s to u in the residual graph G¢
is at least 2 more than it was the last time.

This would be enough since the distance is < n

(or infinite and hence u isn’t reachable) so this can happen at most n/2 timezg.



Distances in the Residual Graph

Key Lemma: Let f be a flow, G s the residual graph, and P be a shortest augmenting
path. No vertex is closer to s in the residual graph after augmenting along P.

Proof: Augmenting along P can only change the edges in G by either:

1. Deleting a forward edge
* Deleting any edge can never reduce distances

2. Add a backward edge (v, u) that is the reverse of an edge (u, v) of P

* Since P was a shortest path in G, the distance from s to v in G, is already more than the
distance from s to u. Using the new backward edge (v, u) to get to u would be an even
longer path to u so it is never on a shortest path to any node in the new residual graph.

24



Augmentation vs BFS

edge
deleted

25



First Bottleneck Edges in Gy

Shortest s-t path P in G Write cp = bottleneck(P)

O 2 P s Do —D

df(s, V) = df(s, u) + 1 since P is a shortest path.

After augmenting along P, edge (u, v) disappears; but will have edge (v, u)

distance is = 2
@-_,. _,@%_, ........ —;(f; ®—> """ _’® larger than before

For (u, v) to be a first bottleneck edge later, it must get added back to the residual
graph by augmenting along a shortest path P’ containing (v, u) in Gy, for some flow f

Since P’ is shortest de(s,u) =de(s,v) +1=2ds(s,v) + 1 =ds(s,u) + 2

The next time that (u, v) is first bottleneck edge is even later so distance is at least as large!
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Edmonds-Karp Algorithm (Ford-Fulkerson with BFS)

Analysis Focus:

For any edge e that could be in the residual graph Gy, (either an edge in G or its reverse)
count # of iterations that e is the first bottleneck edge on the augmenting
path chosen by the algorithm.

Claim: This can’t happen in more than n/2 iterations

Claim = Theorem:

Only 2m edges and O (m) time per iteration so 0 (m?n) time overall.
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History & State of the Art for MaxFlow Algorithms

21 2013 Orlin 0(mn)

22 2014 Lee & Sidford mynlog®Dnlog U

23 2016 Madry m10/7yt/7 10g?Wn

24 2021 Gao, Liu, & Peng m3/2-1/328 |550() p Jog U
25 2022 van den Brand et al. m3/2-1/58 1550 nlog U
26 2022 Chen et al. m1+oW og U

# | year | discoverer(s) bound
1 | 1951 | Dantzig O(n*mU)
== 2 | 1955 | Ford & Fulkerson O(nmU)
3 | 1970 | Dinitz O(nm?)
Edmonds & Karp
1| 1970 | Dinitz On?m)
5 | 1972 | Edmonds & Karp O(m?logl)
Dinitz
1 6 | 1973 | Dinitz O{nmlogU)
Gabow
7 | 1974 | Karzanov O(n?)
8 | 1977 | Cherkassky On 2\/—)
9 | 1980 | Galil & Naamad O(nmlog” n)
10 | 1983 | Sleator & Tarjan O(nmlogn)
= 11 | 1036 Goldberg & Tarjan O(nmlog(n*/m))
12 | 1987 | Ahuja & Orlin O(nm + n*logU)
13 | 1987 | Ahuja et al. O(nm log(n\/log U/(m + 2))
14 | 1989 | Cheriyan & Hagerup | E(nm + n?log® n)
== |15 | 1990 | Cheriyan et al. O(n® [ logn)
16 | 1990 | Alon O(nm + n¥/3logn)
17 | 1992 | King et al. O(nm + n*te)
18 | 1993 | Phillips & Westbrook | O(nm(log,, ,, n + log”™¢ n))
- 19 | 1994 | King et al. O(nm1og, /(nlogn) )
20 | 1997 | Goldberg & Rao O(m* 2 log(n?/m)log U)
O(n?*Pmlog(n?/m)logl)

Source: Goldberg & Rao, FOCS ‘97

2012 Orlin + King et al.

Tables use U instead of C for the upper bound on capacities

Methods:

Augmenting Paths — increase flow to capacity
Preflow-Push — decrease flow to get flow conservation
Linear Programming — randomized, high probability of optimality

O(nm)
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