CSE 421 Winter 2025 Lecture 16: Max Flow Min Cut

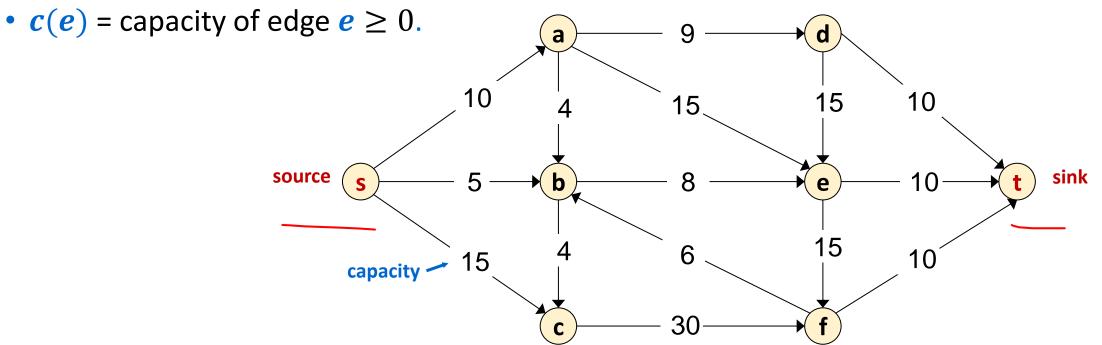
Nathan Brunelle

http://www.cs.uw.edu/421

Flow Network

Flow network:

- Abstraction for material *flowing* through the edges.
- G = (V, E) directed graph, no parallel edges.
- Two distinguished nodes: **s** = source, **t** = sink.

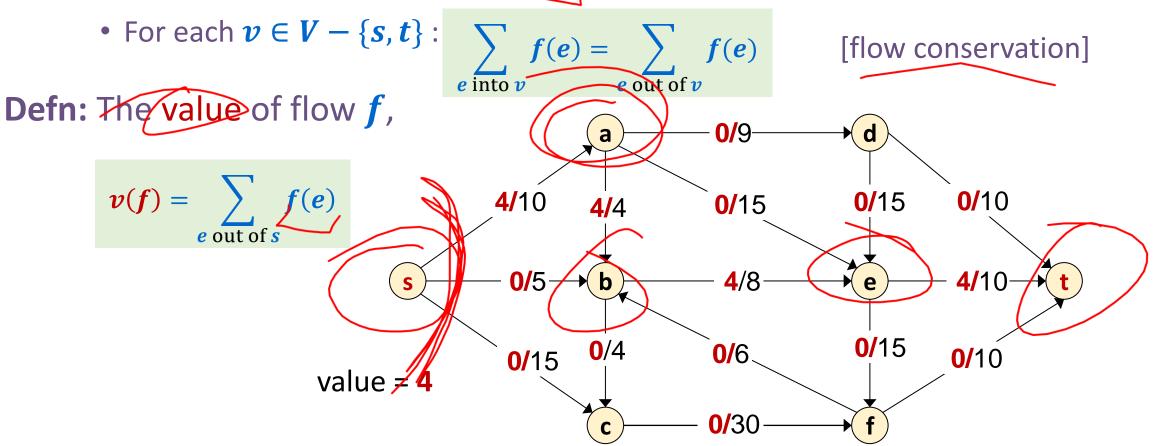


Flows

Defn: An *s*-*t* flow in a flow network is a function $f: E \to \mathbb{R}$ that satisfies:

[capacity constraints]

• For each $e \in E$: $0 \leq f(e) \leq c(e)$

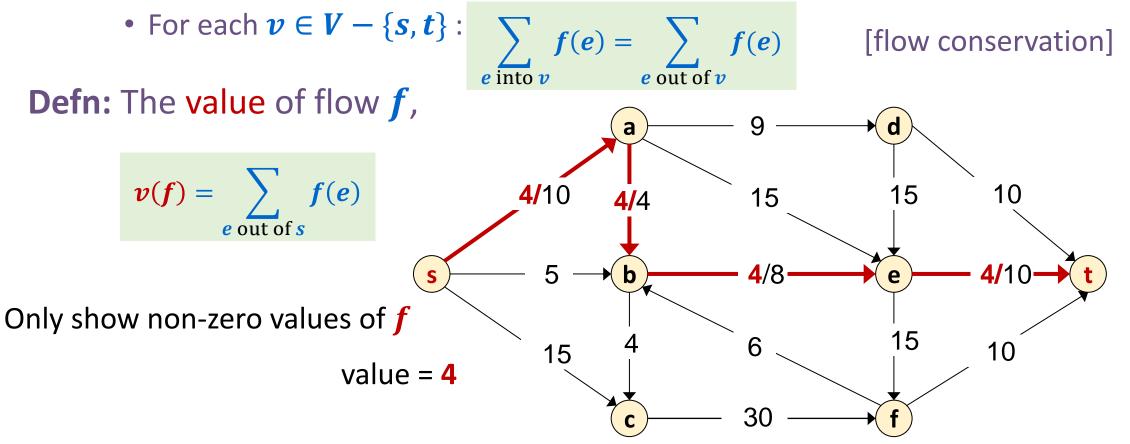


Flows

Defn: An *s*-*t* flow in a flow network is a function $f: E \to \mathbb{R}$ that satisfies:

• For each $e \in E$: $0 \leq f(e) \leq c(e)$

[capacity constraints]

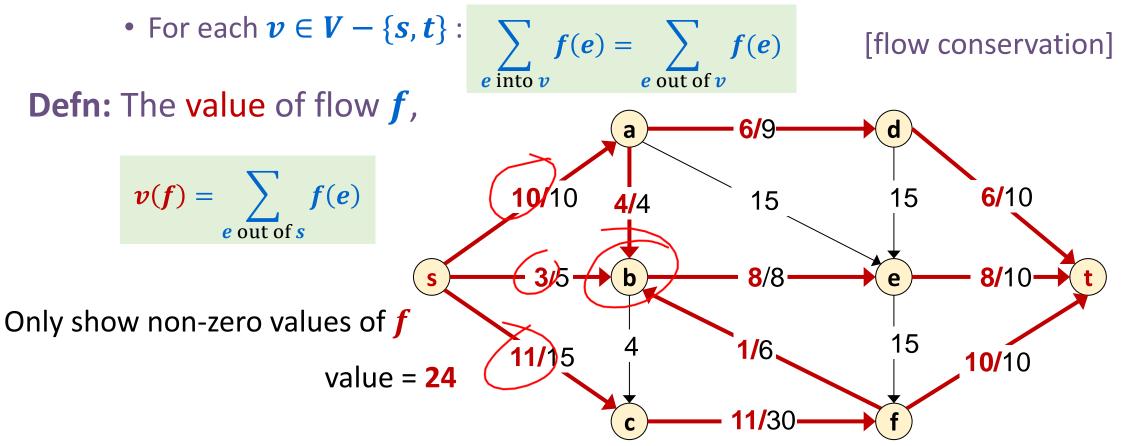


Flows

Defn: An *s*-*t* flow in a flow network is a function $f: E \to \mathbb{R}$ that satisfies:

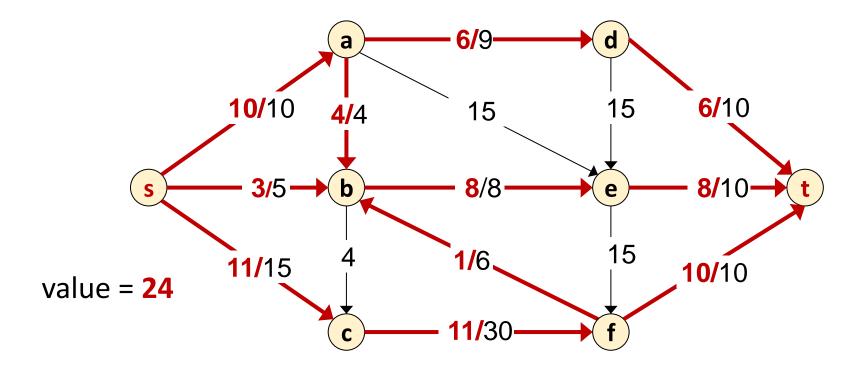
• For each $e \in E$: $0 \leq f(e) \leq c(e)$

[capacity constraints]



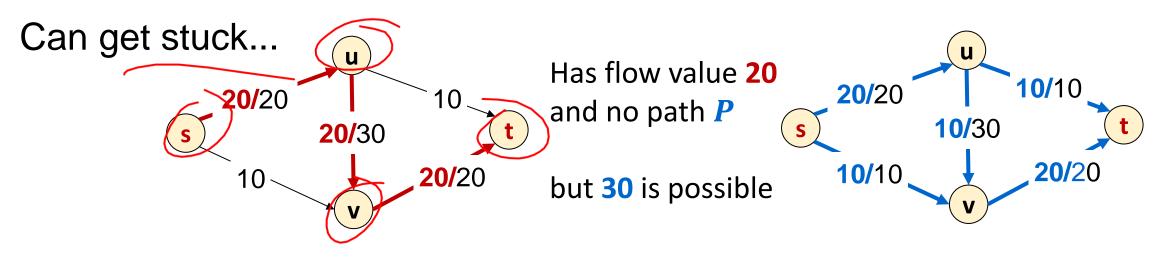
Maximum Flow Problem

Given: a flow network **Find:** an *s*-*t* flow of maximum value



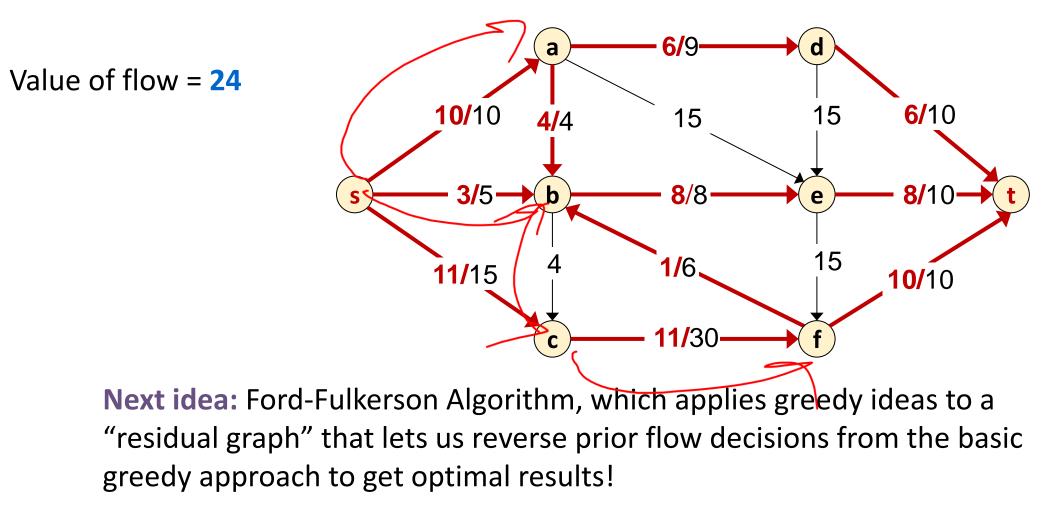
Towards a Max Flow Algorithm What about the following greedy algorithm?

- Start with $f(e) \neq 0$ for all edges $e \in E$.
- While there is $an_s t$ path P where each edge has f(e) < c(e).
 - "Augment" flow along **P**; that is:
 - Let $\alpha = \min_{e \in P} (c(e) f(e))$
 - Add α to flow on every edge e along path P. (Adds α to v(f).)

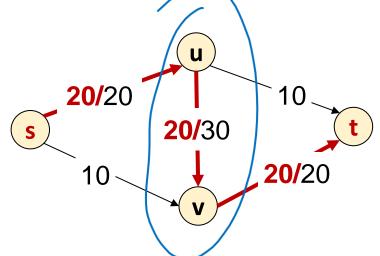


Another "Stuck" Example

On every *s*-*t* path there is some edge with f(e) = c(e):



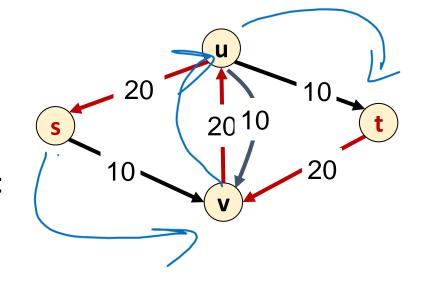
Greed Revisited: Residual Graph & Augmenting Paths



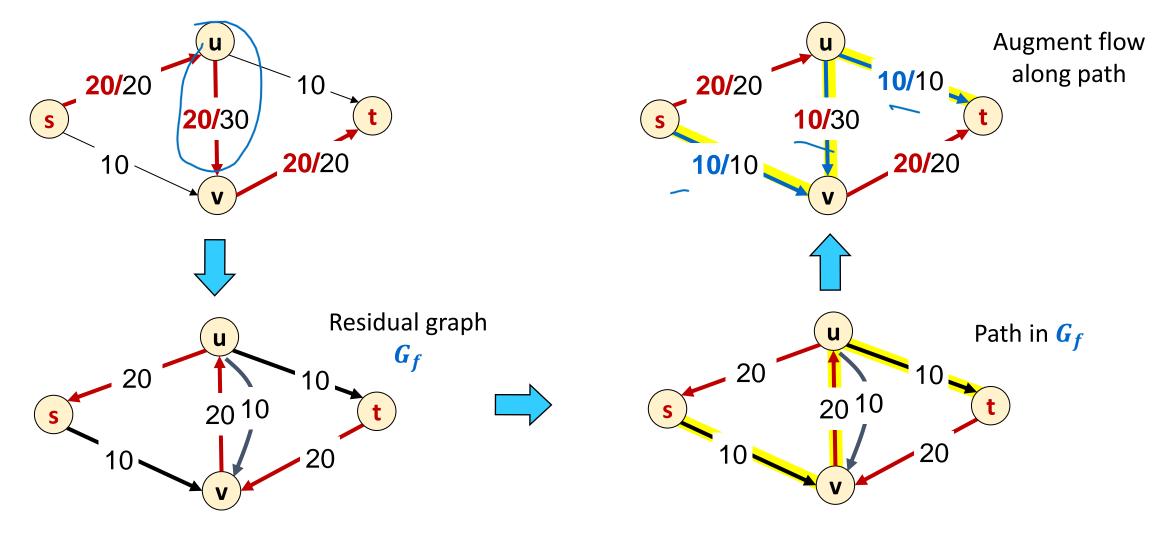
The only way we could route more flow from **s** to **t** would be to reduce the flow from **u** to **v** to make room for that amount of extra flow from **s** to **v**. But to conserve flow we also would need to increase the flow from **u** to **t** by that same amount.

Suppose that we took this flow **f** as a baseline, what changes could each edge handle?

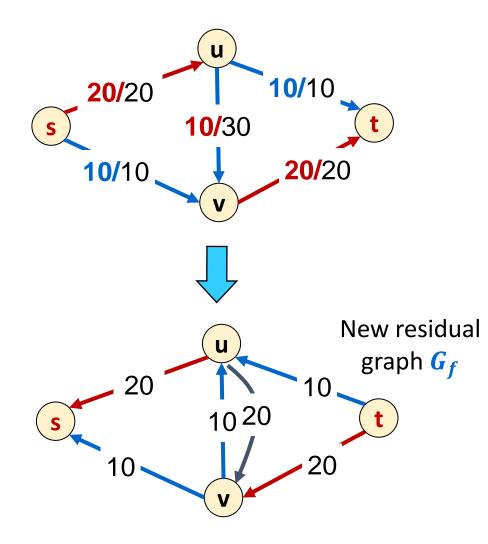
- We could add up to 10 units along **sv** or **ut** or **uv**
- We could reduce by up to 20 units from su or uv or vt
 This gives us a residual graph G_f of possible changes
 where we draw reducing as "sending back".



Greed Revisited: Residual Graph & Augmenting Paths



Greed Revisited: Residual Graph & Augmenting Paths



No path can even leave *s*!

An alternative way to represent a flow network

- Represents the net available flow between two nodes
- Original edge: $e = (u, v) \in E$.
 - Flow *f*(*e*), capacity *c*(*e*).

Residual edges of two kinds:

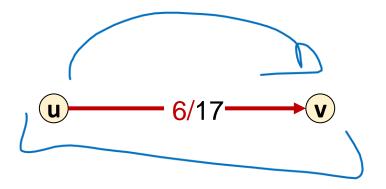
• Forward: e = (u, v) with capacity $c_f(e) = c(e) - f(e)$

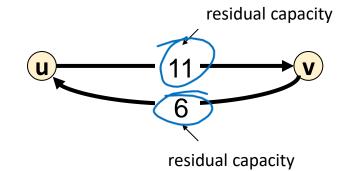
Amount of extra flow we can add along e

- Backward: $e^{\mathbb{R}} = (v, u)$ with capacity $c_f(e) = f(e)$
 - Amount we can reduce/undo flow along e

Residual graph: $G_f = (V, E_f)$.

- Residual edges with residual capacity $c_f(e) > 0$.
- $E_f = \{e : f(e) < c(e)\} \cup \{e^{\mathbb{R}} : f(e) > 0\}.$





Residual Graphs and Augmenting Paths

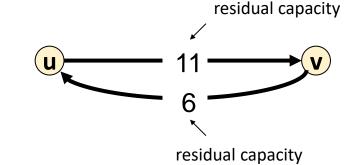
Residual edges of two kinds:

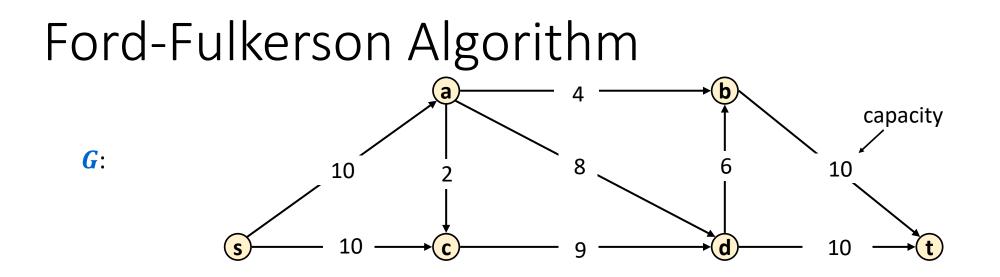
- Forward: e = (u, v) with capacity $c_f(e) = c(e) f(e)$
 - Amount of extra flow we can add along *e*
- Backward: $e^{\mathbf{R}} = (v, u)$ with capacity $c_f(e) = f(e)$
 - Amount we can reduce/undo flow along *e*

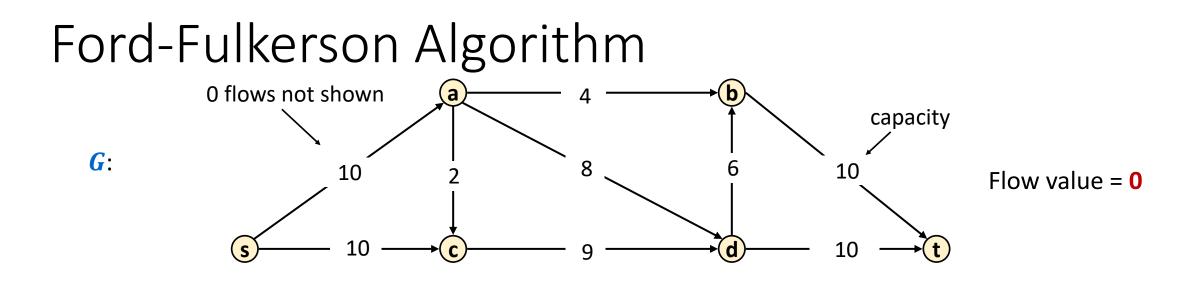
Residual graph: $G_f = (V, E_f)$.

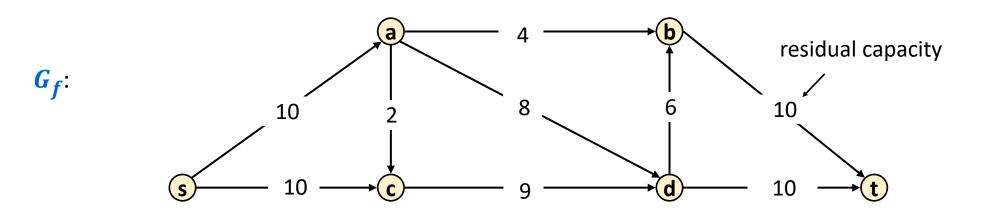
- Residual edges with residual capacity $c_f(e) > 0$.
- $E_f = \{e : f(e) < c(e)\} \cup \{e^{\mathbb{R}} : f(e) > 0\}.$

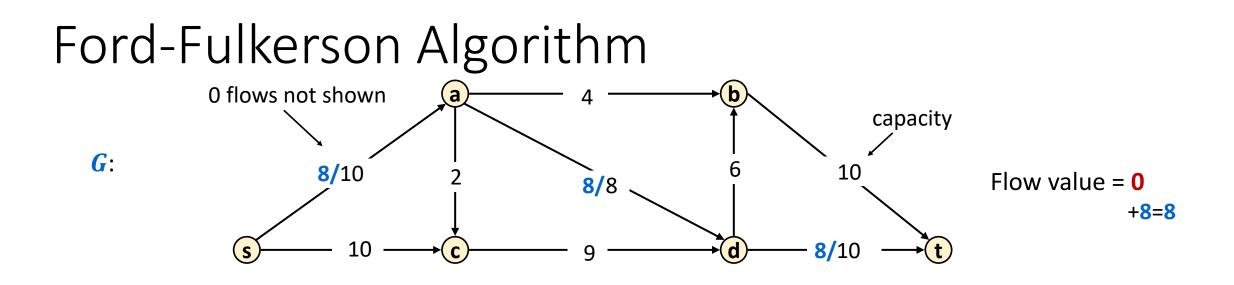
Augmenting Path: Any *s*-*t* path *P* in *G*_{*f*}. Let bottleneck(*P*) = $\min_{e \in P} c_f(e)$. Ford-Fulkerson idea: Repeat "find an augmenting path *P* and increase flow by bottleneck(*P*)" until none left.

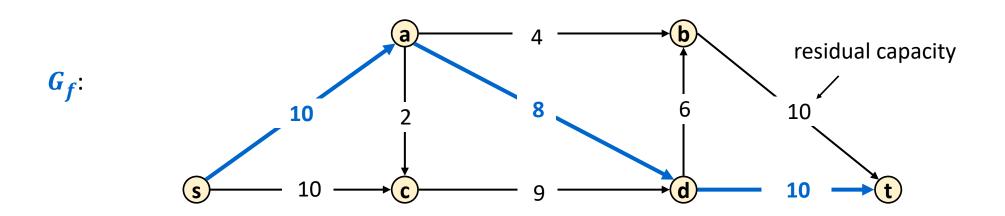


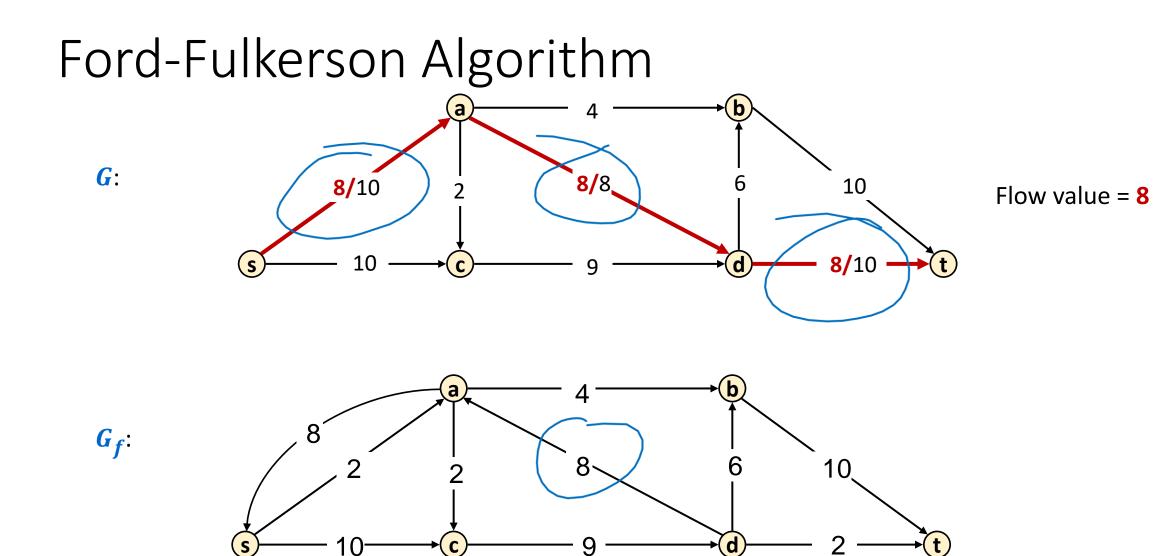


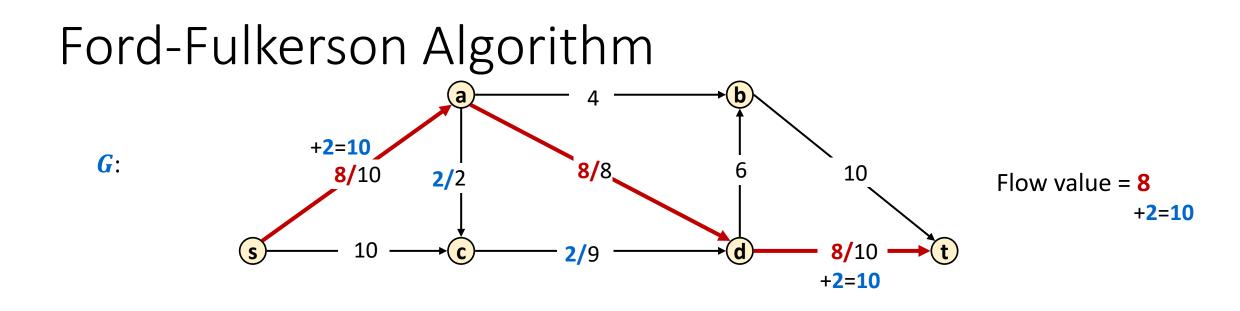


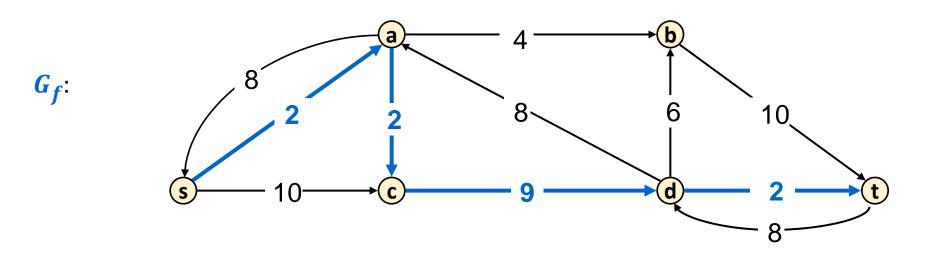


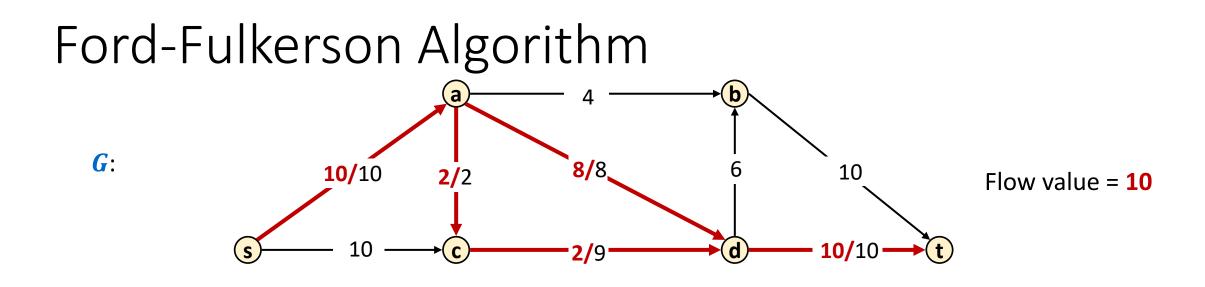


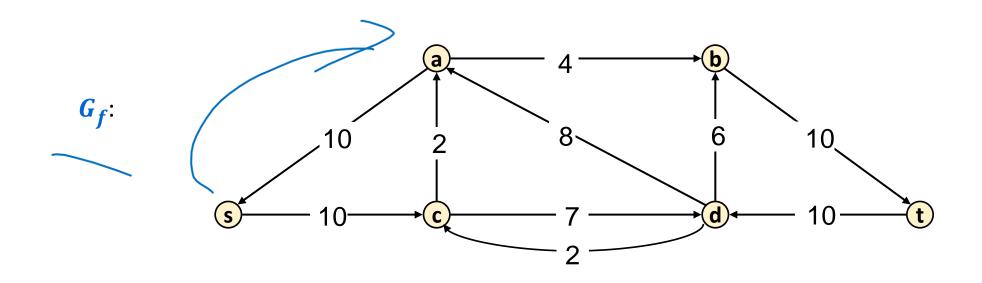


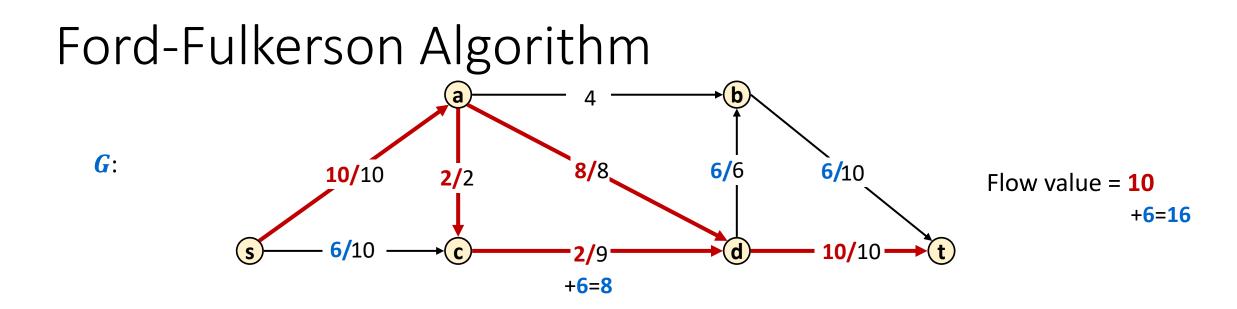


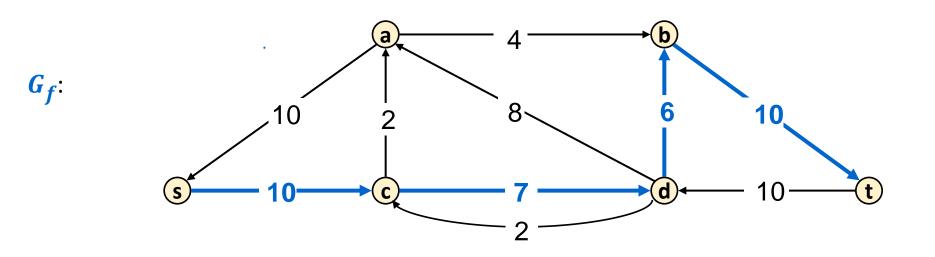


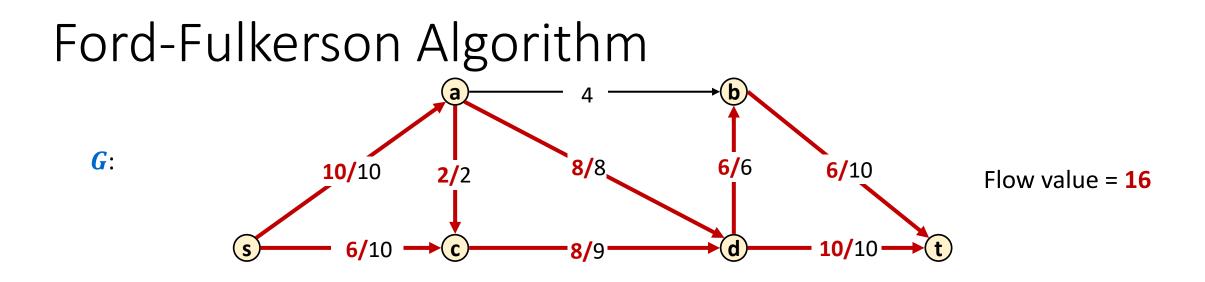


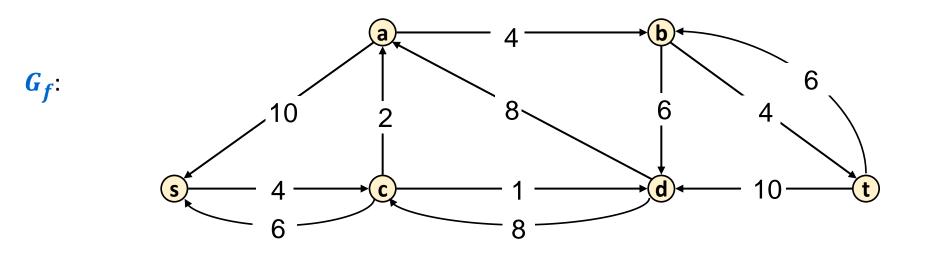


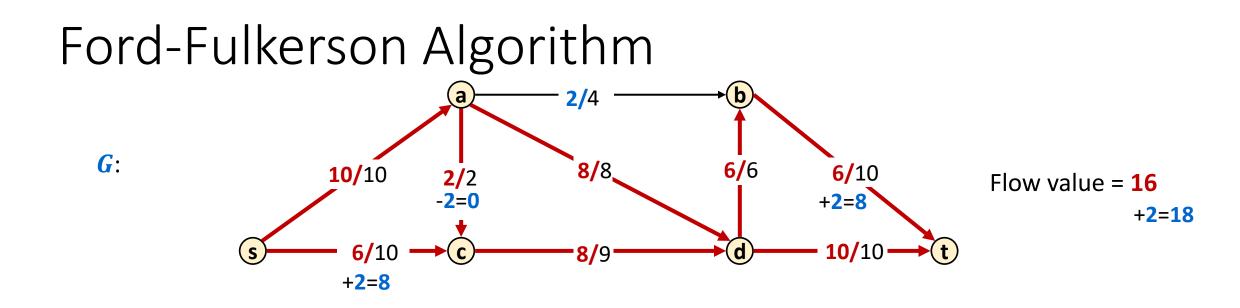


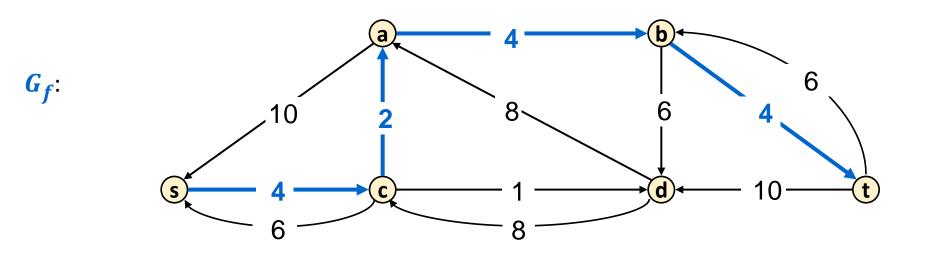


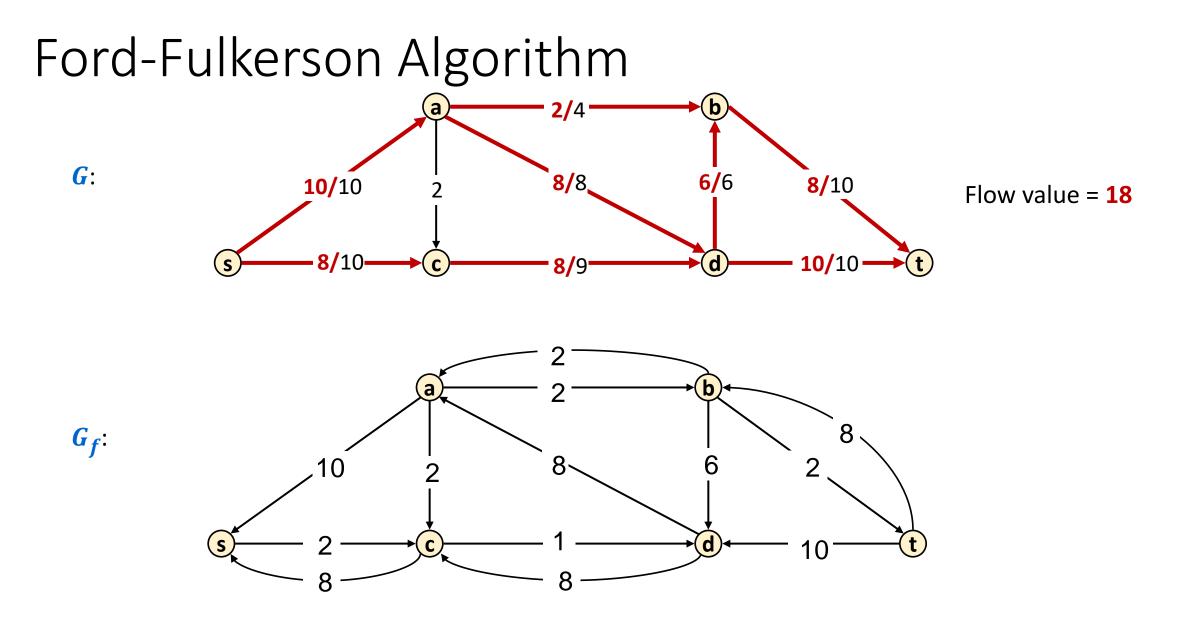


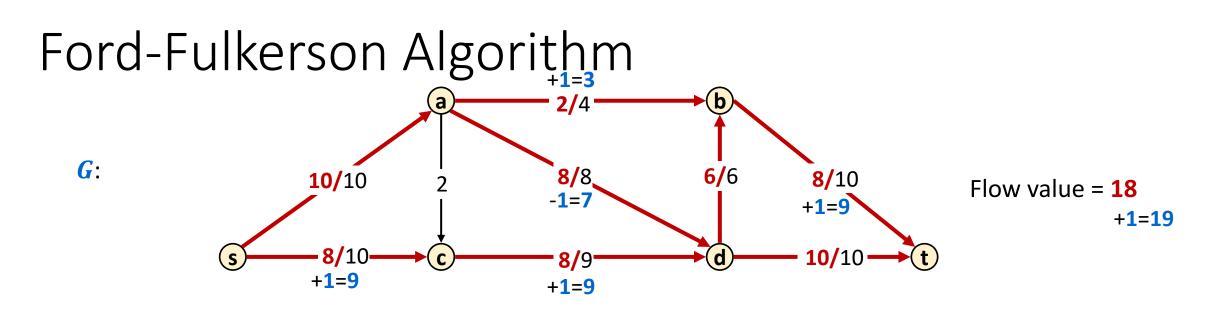


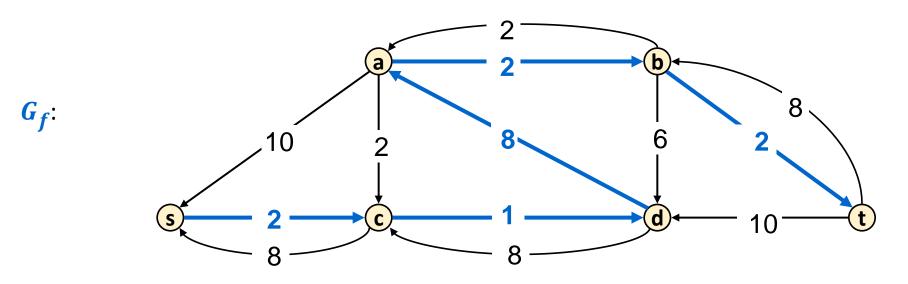


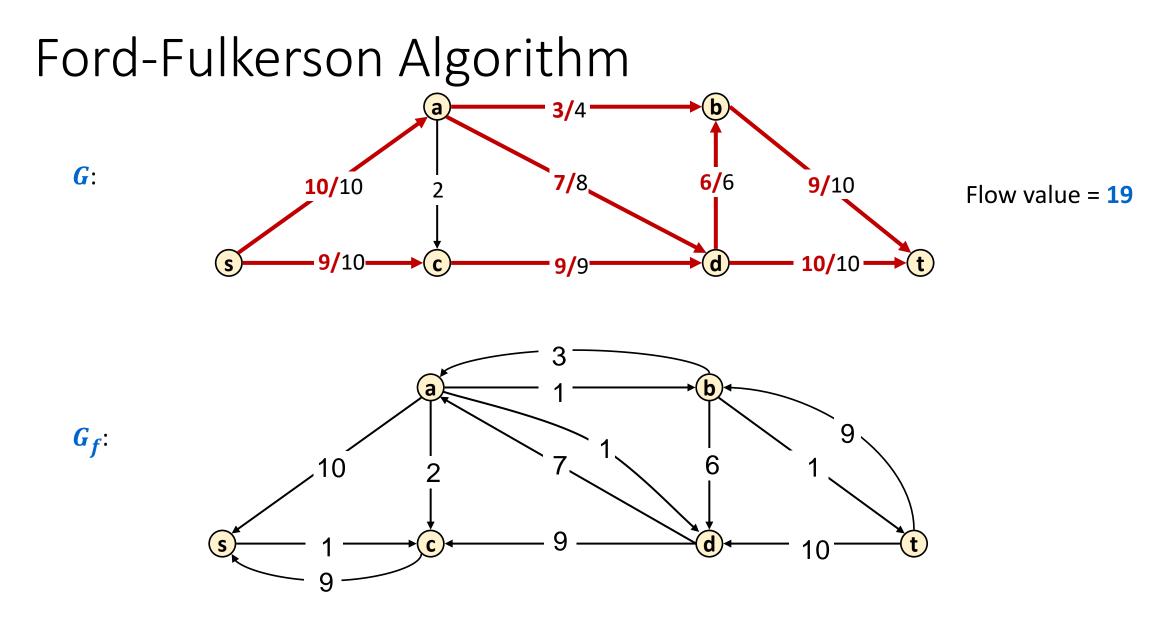




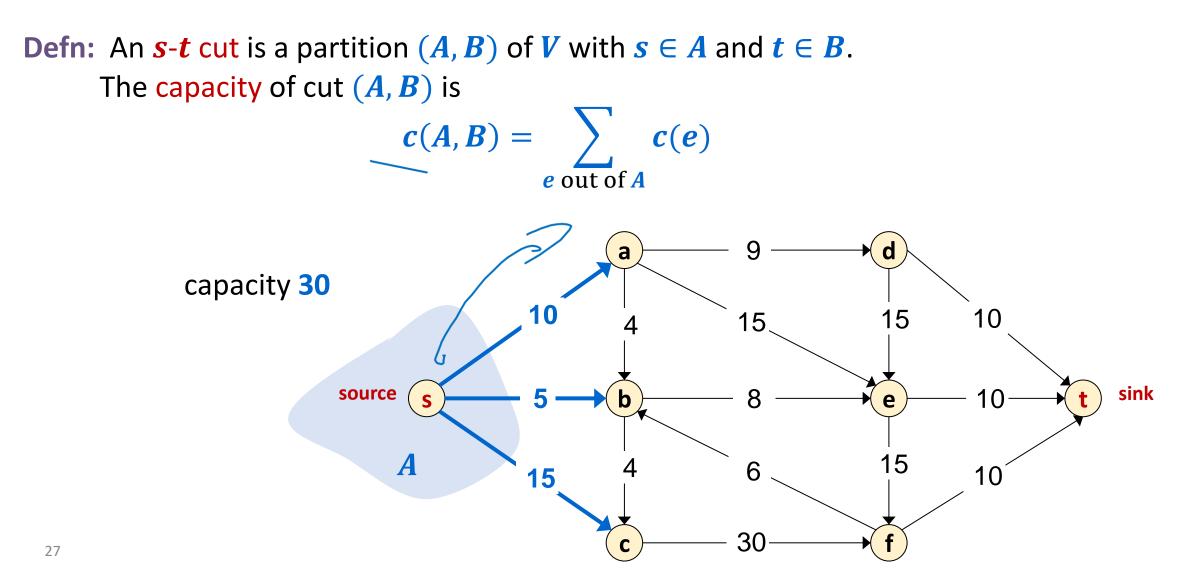








Cuts

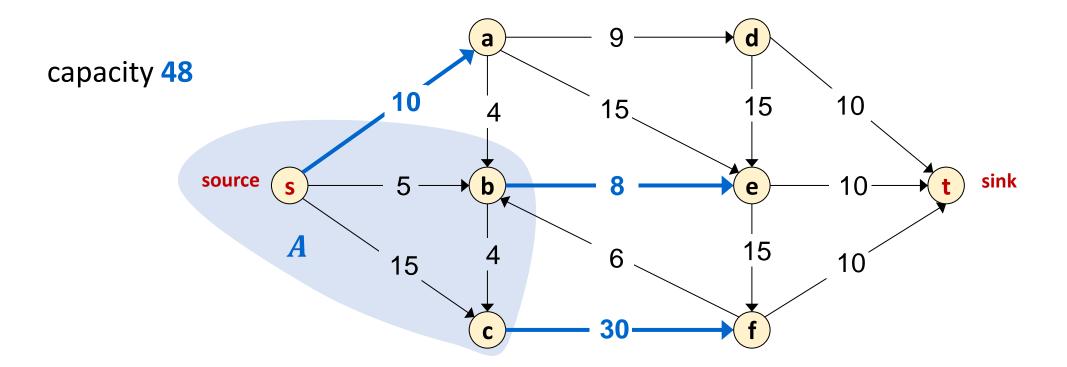


Cuts

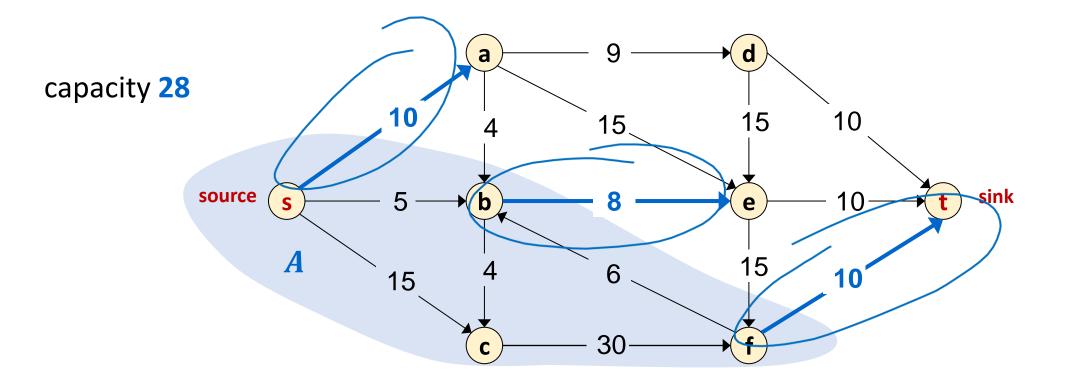
Defn: An *s*-*t* cut is a partition (A, B) of *V* with $s \in A$ and $t \in B$.

The capacity of cut (A, B) is

$$\boldsymbol{c}(\boldsymbol{A},\boldsymbol{B}) = \sum_{\boldsymbol{e} \text{ out of } \boldsymbol{A}} \boldsymbol{c}(\boldsymbol{e})$$



Minimum Cut Problem Minimum s-t cut problem: Given: a flow network Find: an *s-t* cut of minimum capacity



Flows and Cuts

Let f be any s-t flow and (A, B) be any s-t cut:

Flow Value Lemma: The net value of the flow sent across (A, B) equals v(f).

Intuition: All flow coming from s must eventually reach t, and so must cross that cut

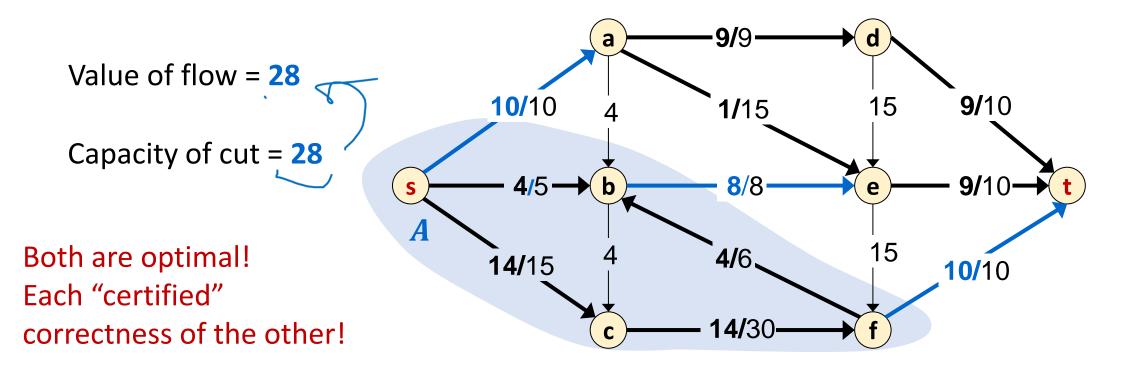
/Weak Duality: The value of the flow is at most the capacity of the cut;

 $i.e., v(f) \leq c(A, B).$

Intuition: Since all flow must cross any cut, any cut's capacity is an upper bound on the flow

Corollary: If v(f) = c(A, B) then f is a maximum flow and (A, B) is a minimum cut. **Intuition**: If we find a cut whose capacity matches the flow, we can't push more flow through that cut because it's already at capacity. We additionally can't find a smaller cut, since that flow was achievable. Certificate of Optimality Let f be any s-t flow and (A, B) be any s-t cut.

If v(f) = c(A, B) then f is a max flow and (A, B) is a min cut.



Max-Flow Min-Cut Theorem

Augmenting Path Theorem: Flow f is a max flow \Leftrightarrow there are no augmenting paths wrt f

Max-Flow Min-Cut Theorem: The value of the max flow equals the value of the min cut. [Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] **"Maxflow = Mincut"**

Proof: We prove both together by showing that all of these are equivalent:

(i) There is a cut (A, B) such that v(f) = c(A, B).

(ii) Flow **f** is a max flow.

(iii) There is no augmenting path w.r.t. *f*.

(i) \Rightarrow (ii): Comes from weak duality lemma.

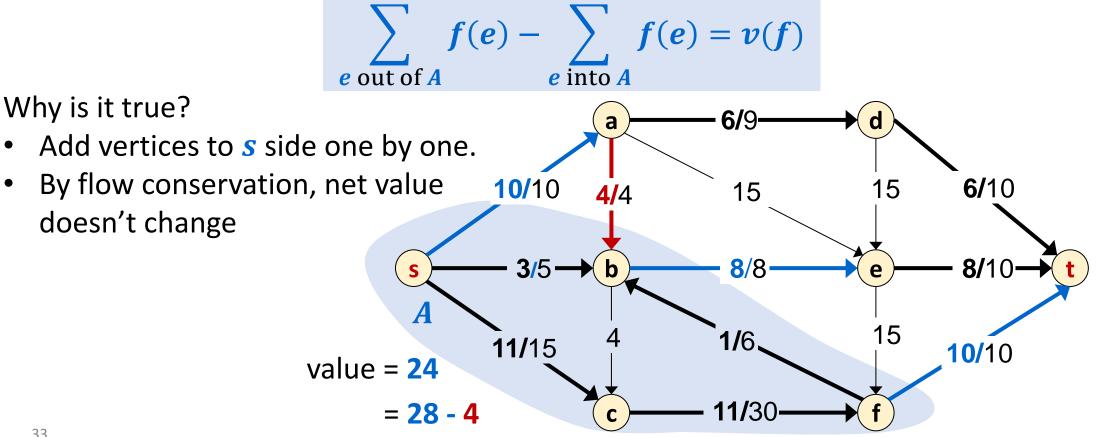
 $(ii) \Rightarrow (iii)$: (by contradiction)

If there is an augmenting path w.r.t. flow f then we can improve f. Therefore f is not a max flow.

 $(iii) \Rightarrow (i)$: We will use the residual graph to identify a cut whose capacity matches the flow

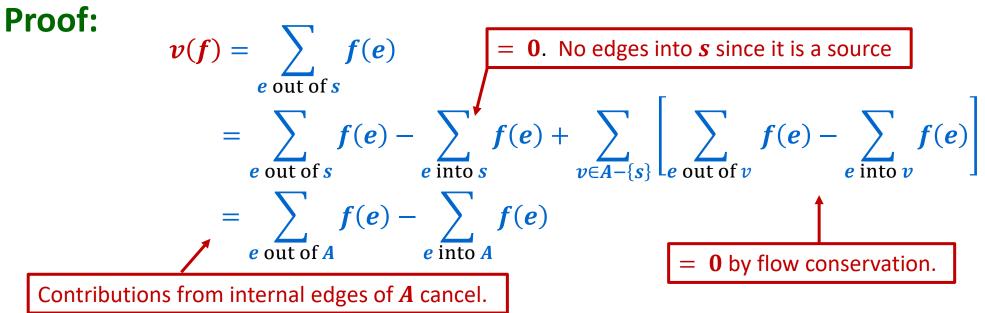
Flow Value Lemma – Idea

Flow Value Lemma: Let f be any s-t flow and (A, B) be any s-t cut. The net value of the flow sent across the cut equals v(f):

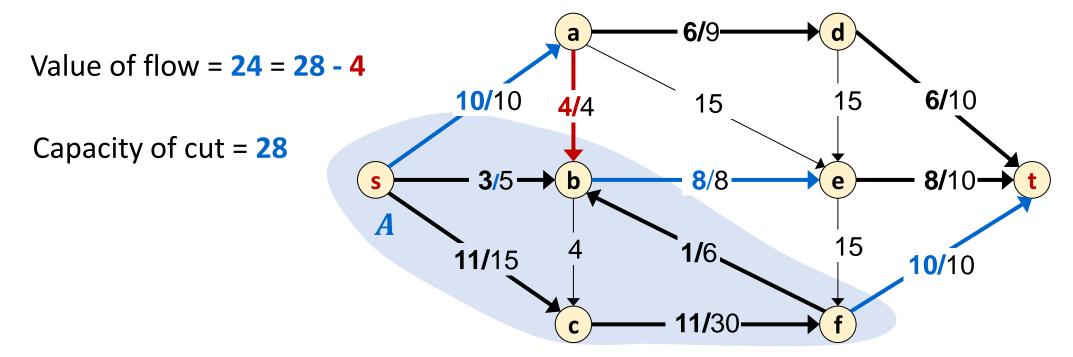


Flow Value Lemma – Proof Flow Value Lemma: Let f be any s-t flow and (A, B) be any s-t cut. The net value of the flow sent across the cut equals v(f):

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e) = v(f)$$

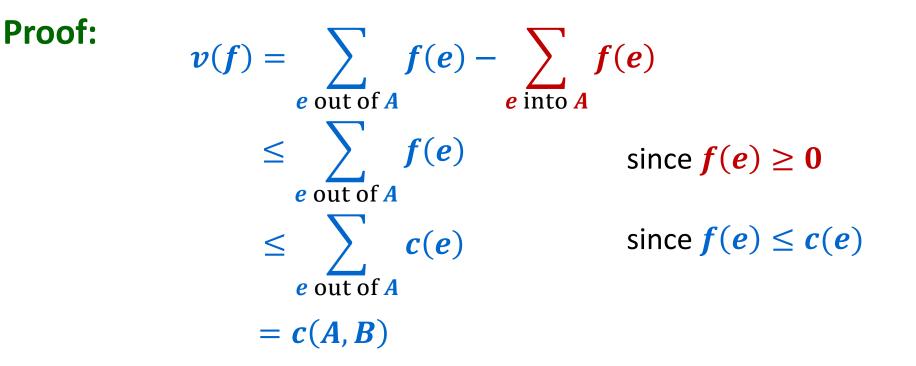


Weak Duality - Idea Weak Duality: Let f be any s-t flow and (A, B) be any s-t cut. The value of the flow is at most the capacity of the cut; i.e., $v(f) \leq c(A, B)$:



Weak Duality - Proof

Weak Duality: Let f be any s-t flow and (A, B) be any s-t cut. The value of the flow is at most the capacity of the cut; i.e., $v(f) \le c(A, B)$.



Proof of Max-Flow Min-Cut Theorem

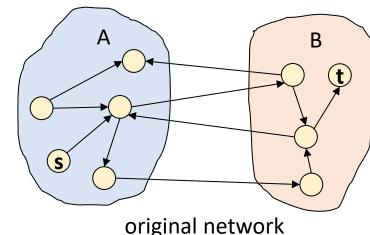
$(iii) \Rightarrow (i):$

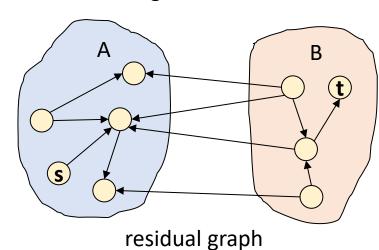
Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B).

Proof of Claim: Let *f* be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f .

- By definition of $A, s \in A$.
- Since no augmenting path (s-t path in G_f), $t \notin A$.





Proof: Identifying the Min Cut

$(iii) \Rightarrow (i):$

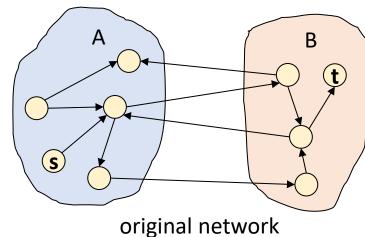
Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B).

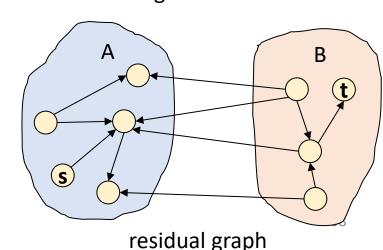
Proof of Claim: Let *f* be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f .

- By definition of $A, s \in A$.
- Since no augmenting path $(s-t \text{ path in } G_f), t \notin A$.

Then





Identifying the Min Cut: No Inflow

$(iii) \Rightarrow (i):$

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B),

f(**e**)

into A

Proof of Claim: Let *f* be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f .

• By definition of $A, s \in A$.

v(f)

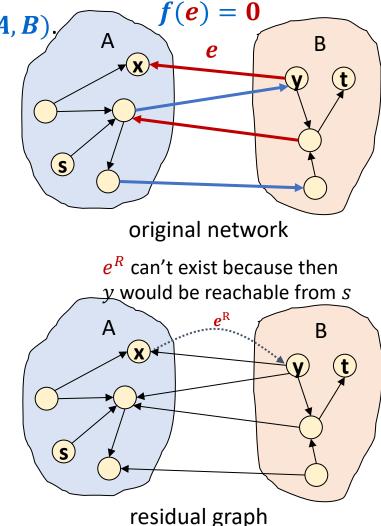
• Since no augmenting path (s-t path in G_f), $t \notin A$.

Then

$$= \sum_{e \text{ out of } A} f(e) -$$
$$= \sum_{e \text{ out of } A} f(e) \quad (E)$$

e out of A

(**By contradiction:** If an edge going into *A* had flow then the backward edge would be in the residual graph, so the edge should not cross the cut)



Identifying the Min Cut: Saturated Outflow

 $\underline{(iii)} \Rightarrow (i):$

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B).

Proof of Claim: Let *f* be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f .

- By definition of A, $s \in A$.
- Since no augmenting path (s-t path in G_f), $t \notin A$.

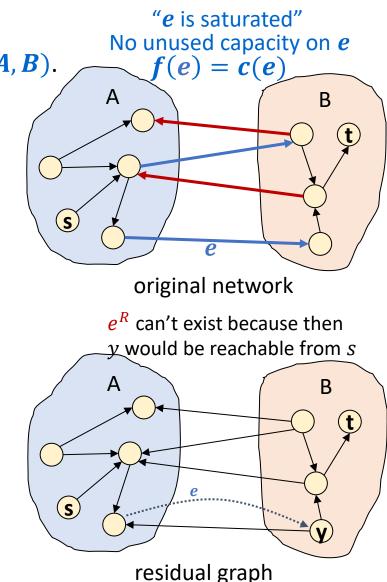
Then

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e)$$

$$= \sum_{e \text{ out of } A} c(e) \qquad (By \text{ contradict} A \text{ had unused} edge would be edge woul$$

(**By contradiction:** If an edge going out of *A* had unused capacity then the forward edge would be in the residual graph, so the edge should not cross the cut)



40

Identifying the Min Cut: Conclusion $(iii) \Rightarrow (i)$:

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B).

Proof of Claim: Let *f* be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f .

- By definition of A, $s \in A$.
- Since no augmenting path (s-t path in G_f), $t \notin A$.

Then

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e)$$

$$= \sum_{e \text{ out of } A} c(e) = c(A, B) \quad \text{(by Definition)}$$

