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Flow Network

Flow network:
* Abstraction for material flowing through the edges.
* ¢ = (V,E) directed graph, no parallel edges.
* Two distinguished nodes: s = source, t = sink.

* c(e) = capacity of edge e = 0. /QD\ 9 ’(‘D\
10 4 15 15 10
source 5 —b@\ 8 % 10 sink
15
capacity = 15 X ° 10




Flows

Defn: An s-t flow in a flow network is a function f: E — R that satisfies:

* Foreache € E:0 < f(e) < c(e) [capacity constraints]
* Foreachv eV —{s,t}: z f(e) = Z f(e [flow conservation]
eintov eout of v
Defn: The value of flow f, } 0/
a/\
v(f) = Z f(e) 4/10 0/15 0/15  0/10
eoutofs
0/54’@< 4/8\@ 4/10
ons 04 0/6 /15 o110

value =4
\@— 0/30



Flows

Defn: An s-t flow in a flow network is a function f: E — R that satisfies:

* Foreache € E:0 < f(e) < c(e) [capacity constraints]
* Foreachv €V —{s,t}: z f(e) = Z f(e [flow conservation]
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Flows

Defn: An s-t flow in a flow network is a function f: E — R that satisfies:

* Foreache € E: 0 < f(e) < c(e) [capacity constraints]
* Foreachv eV —{s,t}: z fle) = Z f(e) [flow conservation]
eintov e out of v
Defn: The value of flow f, /p 6/ ’@D\
a/\ 9
o(f) = z f(e) 10/10  4/4 15 15 6/10
eoutofs
—’% >>‘@— 8/10
Only show non-zero values of f 15

11/15 1/6
value =24 10/10
11/30



Maximum Flow Problem

Given: a flow network
Find: an s-t flow of maximum value

AN

10/10 44 6/10

11/15 1/6
value = 24 10/10
11/30




Towards a Max Flow Algorithm
What about the following greedy algorithm?

« Start with f(e) = 0 for all edges e € E.
« While there is an s-t path P where each edge has f(e) < c(e).

* “Augment” flow along P; that is:
o Leta = mEiIr)l(c(e) — f(e))
* Add a to flow on every edge e along path P. (Adds a to v(f).)

Can get stuck...
/v@\ Has flow value 20
20/20 10/10

20/20 10

@L 20/30 3@ and no path P @L 10/30

10\@/20/20 but 30 is possible 10/10\&20/20




Another “Stuck™ Example
On every s-t path there is some edge with f(e) = c(e):

a 6/9 d
Value of flow = 24 \

10/10  4/4 15 15  6/10

—P% >@7 8/10
11/15 1/6 10/10
\@7 11,?,&@/

Next idea: Ford-Fulkerson Algorithm, which applies greedy ideas to a

“residual graph” that lets us reverse prior flow decisions from the basic
. greedy approach to get optimal results!




Greed Revisited: Residual Graph & Augmenting Paths

/v@\ The only way we could route more flow fromstot
20/20 10 would be to reduce the flow from u to v to make room
@L 20/30 :3@ for that amount of extra flow from s to v.
But to conserve flow we also would need to increase

10 20/20
\@/ the flow from u to t by that same amount.

Suppose that we took this flow f as a baseline, what /@\

207 TN\ 10
changes could each edge handle? @f 2010 }D
 We could add up to 10 units along sv or ut or uv

* We could reduce by up to 20 units from su or uv or vt 10\&20

This gives us a residual graph G of possible changes
where we draw reducing as “sending back”.



Greed Revisited: Residual Graph & Augmenting Paths

/VQD\ PON Augment flow
20/20 10 20/20 10/10 along path

Of 2030 (t) L 10/30
10 \é/ 20/20 10/10 20/20

Residual graph Pathin G
N\ Gy 20
20 10 10
7 M w6 we
\Yj
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Greed Revisited: Residual Graph & Augmenting Paths

u
20/20 10/10

ORf 10/30

New residual
@i\ graph G

No path can even leave s!

11



Residual Graphs

An alternative way to represent a flow network
* Represents the net available flow between two nodes

Original edge: e = (u,v) € E.
* Flow f(e), capacity c(e).

Residual edges of two kinds:
* Forward: e = (u, v) with capacity ¢s(e) = c(e) — f(e)
 Amount of extra flow we can add along e
» Backward: e® = (v, u) with capacity c;(e) = f(e)
e Amount we can reduce/undo flow along e

Residual graph: Gy = (V, Ey).
* Residual edges with residual capacity c;(e) > 0.

* Ef= {e: f(e) <c(e)ju {e*: f(e) > 0}.

(W 6/17—>(v)

residual capacity
<
W 11 ﬂ
V\ 5
N

residual capacity
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Residual Graphs and Augmenting Paths

. ) residual capacity
Residual edges of two kinds:

* Forward: e = (u, v) with capacity cf(e) = c(e) — f(e) @\ 11ﬂ
6

 Amount of extra flow we can add along e

* Backward: e® = (v, u) with capacity cr(e) = f(e)
 Amount we can reduce/undo flow along e

residual capacity

Residual graph: Gy = (V, Ey).
* Residual edges with residual capacity cf(e) > 0.

* Ef= {e: f(e) <c(e)ju {e*: f(e) > 0}.

Augmenting Path: Any s-t path P in Gy. Let bottleneck(P)= min c¢(e).

ecP

Ford-Fulkerson idea: Repeat “find an augmenting path P and increase flow by bottleneck(P)” until
none left.

13 13



Ford-Fulkerson Algorithm

4 b
1 capacity
G: 4

10 3 6 10

2 \\\\\\\\\NY
@4 10 ——(© . 6 1o§®

(@]



Ford-Fulkerson Algorithm

0 flows not shown 4 b
1 capacity
G: 4
. T 8 \6 10 Flow value =0
@4 © : 0 1o§®

(b
/'ﬁ( 4 C\ residual capacity
Gf: /
2 8 \/6 10
@4 ; 6 103@

ﬁ



Ford-Fulkerson Algorithm

Oﬂommrmnshomil///ﬁfk::::::;\i
G:

8/10

/j>\\\\\\\ capacity

/?i“

8

g : .
Y residual capacity
/
6

2
64 O 9 \=@ 8/IO>®

2 10
/l\ \\\\\\\\Wb”\
~(© *(d 10>®

9

Flow value =0

+8=8
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Ford-Fulkerson Algorithm

2
é \‘Q— 8/103@

e
y \ I

G:
8/10 Flow value = 8




Ford-Fulkerson Algorithm

,ﬁk 4 ®\
+2=10
G:

8/10 2/2 8/8 6 10 Flow value = 8

i 1 \ \@ +2=10
10 —(©) 2/9 ~(d)— 8/10 —>

+2=10
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Ford-Fulkerson Algorithm

/Ci 4 b
G:
10/10  2/2 8/8 10 Flow value = 10
@4 10 — \{)7 10/10>®

@)




Ford-Fulkerson Algonthm

\p

8/8

6/10

10/10 2/2
v
@4 6/10 ——(c) \:()7 10/
+6 8
/C\ 4 O\
Gf:
2

oo

Flow value =10
+6=16
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Ford-Fulkerson Algonthm

10/10 2/2 8/8 6/10

Flow value = 16
4
64 6/10 —>(c) \:()7 10/1()}:@

/Cf? 4 /D\\
O'/ N 2 8\ 4 \
S 4 () 1 ’\é‘ 10&0
~ . R . -
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Ford-Fulkerson Algorithm

A

A

+2=8

6/6 6/10

G: 10/10 22 8/8
-2=0 \:07+2=8\®
/ v
6/10 —(©) 8/9 d 10/10—>

Flow value = 16
+2=18
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Ford-Fulkerson Algorithm

10/10 2 8/8 6/6 8/10

@4 8/10—>(c) 3/9\:@7 10/1()}:@

2
| \\*\
Gy 38
10 2 8\\\\\\\yé 2
A N

8

Flow value = 18
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Ford-Fulkerson Algorithm

10/10 2 8/8 6/6 8/10 Flow value = 18
= +1=9
1 +1=19
648/10—»@ 8/9 d 10/10—>
+1=9 +1=9

Y S
Bz SN TN
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Ford-Fulkerson Algorithm

10/10 2 7/8 6/6 9/10

@4 9/10—>(c) 9 /9\:@7 10/1()}:@

3
a 1 Br—_

. 9

O( ] 7x6 | %

s - //‘g ? @— 10

9

Flow value = 19
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Cuts

Defn: An s-t cut is a partition (4, B) of V withs € Aand t € B.
The capacity of cut (4, B) is

c(4,B) = 2 c(e)

eoutofA
/ga“ 9 d
capacity 30 /\
10 4 15 15 10
source 5 _}@4\ 8 \@ 10 sink
A4 15 4 6 15 10
. Sy 30\@/



Cuts

Defn: An s-t cutis a partition (4, B) of V withs € Aand t € B.
The capacity of cut (4, B) is

c(4,B) = z c(e)

eoutofA
/’@ 9 d
capacity 48 \
10 4 15 15 10
source - 4}@\ . \@ 10 sink
4 15 4 6 15 10

28



Minimum Cut Problem

Minimum s-t cut problem:

Given: a flow network

Find: an s-t cut of minimum capacity

capacity 28

29

source

15 15 10
\.@ 10

sink



Flows and Cuts

Let f be any s-t flow and (4, B) be any s-t cut:
Flow Value Lemma: The net value of the flow sent across (A4, B) equals v(f).

Intuition: All flow coming from s must eventually reach t, and so must
cross that cut

Weak Duality: The value of the flow is at most the capacity of the cut;
i.e., v(f) < c(4, B).

Intuition: Since all flow must cross any cut, any cut’s capacity is an upper bound
on the flow

Corollary: If v(f) = c(A, B) then f is a maximum flow and (4, B) is a minimum cut.

Intuition: If we find a cut whose capacity matches the flow, we can’t push more flow
through that cut because it’s already at capacity. We additionally can’t find
a smaller cut, since that flow was achievable.

30



Certificate of Optimality

Let f be any s-t flow and (A4, B) be any s-t cut.
If v(f) = c(A4, B) then f is a max flow and (4, B) is a min cut.

Value of flow = 28

Capacity of cut = 28

Both are optimal!
Each “certified”
correctness of the other!

31
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Max-Flow Min-Cut Theorem

Augmenting Path Theorem: Flow f is a max flow < there are no augmenting paths wrt f

Max-Flow Min-Cut Theorem: The value of the max flow equals the value of the min cut.
[Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] “Maxflow = Mincut”

Proof: We prove both together by showing that all of these are equivalent:
(i) Thereisa cut (A4, B) such that v(f) = c(A, B).
(ii) Flow f is @ max flow.

(iii) There is no augmenting path w.r.t. f.
(i) = (ii): Comes from weak duality lemma.
(ii) = (iii): (by contradiction)

If there is an augmenting path w.r.t. flow f then we can improve f. Therefore f is not a max flow.

(iii) = (i): We will use the residual graph to identify a cut whose capacity matches the flow

32



Flow Value Lemma — Idea

Flow Value Lemma: Let f be any s-t flow and (A4, B) be any s-t cut.
The net value of the flow sent across the cut equals v(f):

> @@= ) f©=v

eoutof4 einto A

Why is it true? a 6/9 d
* Add vertices to s side one by one. /’<>\ ><>\
15

* By flow conservation, net value  10/10 44 5 6/10

1
doesn’t change
—b% e 8/10
1

A

11/15 1/6 S
value = 24 10110
=28-4 11/30
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Flow Value Lemma — Proof

Flow Value Lemma: Let f be any s-t flow and (A4, B) be any s-t cut.
The net value of the flow sent across the cut equals v(f):

> f@- ) f©=v(

eoutof A einto A
Proof:
v(f) = Z f(e) = 0. No edges into s since it is a source
eoutofs
= ) f@- ) fe+ ) l e - f(e)]
eoutofs eintos veEA—{s} Le out of v e intov
= > f@- ) f@© I
/ ¢outof/ ¢into A = 0 by flow conservation.

Contributions from internal edges of 4 cancel.

34



Weak Duality - Idea

Weak Duality: Let f be any s-t flow and (A, B) be any s-t cut. The value
of the flow is at most the capacity of the cut; i.e., v(f) < c(4, B):

a 6/9 d
Value of flow = 24 = 28 - 4 \

10/10  4/4 15 15  6/10
Capacity of cut = 28
—}% e 8/10
A
15

11/15 1/6 10/10
11/3&6/
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Weak Duality - Proof

Weak Duality: Let f be any s-t flow and (A4, B) be any s-t cut. The value
of the flow is at most the capacity of the cut; i.e., v(f) < c(A4, B).

Proof: (f) = Z f(e) — z f(e)

eoutofd einto 4

< z f(e) since f(e) = 0
eoutof4

< z c(e) since f(e) < c(e)
eoutofd

36



Proof of Max-Flow Min-Cut Theorem
(iii) = (i):

Claim: If there is no augmenting path w.r.t. f, thereisacut (4, B) s.t. v(f) = c(4, B).

Proof of Claim: Let f be a flow with no augmenting paths. A
Let A be the set of vertices reachable from s in residual graph Gy.
e By definitionof 4, s € A.
* Since no augmenting path (s-t path in Gy), t & A.

original network

l

residual graph



Proof: Identitying the Min Cut
(iii) = (i):
Claim: If there is no augmenting path w.r.t. f, thereisacut (4, B) s.t. v(f) = c(4, B).

Proof of Claim: Let f be a flow with no augmenting paths. A
Let A be the set of vertices reachable from s in residual graph Gy.
* By definition of A4, s € A.
* Since no augmenting path (s-t path in G¢), t & A.

Th
o v(f) = 2 f(e) — z f(e) (by Flow-Value Lemma)

: original network
eoutofA einto 4

l

residual graph



l[dentifying the Min Cut: No Inflow

(i) = (i):
Claim: If there is no augmenting path w.r.t. f, thereisacut (4, B) s.t. v(f) = c(4, B),

Proof of Claim: Let f be a flow with no augmenting paths.
Let A be the set of vertices reachable from s in residual graph Gy.
e By definitionof 4, s € A.
* Since no augmenting path (s-t path in G¢), t & A.

Then v(f) = 2 fle) — Z f(e) original network

e out of 4 einto A el can’t exist because then

would be reachable from s

= Z f(e) (By contradiction: If an edge going into

e out of A A had flow then the backward edge
would be in the residual graph, so the
edge should not cross the cut)

.....
"""""
.
. .
- of

39

residual graph



l[dentifying the Min Cut: Saturated Outflow

(iii) = (i): “e is saturated”

No unused capacity on e
Claim: If there is no augmenting path w.r.t. f, thereisacut (4, B) s.t. v(f) = c(4, B).

f(e) = c(e)
Proof of Claim: Let f be a flow with no augmenting paths.
Let A be the set of vertices reachable from s in residual graph G;.

* By definitionof 4, s € A.
* Since no augmenting path (s-t pathin G¢), t & A.

Th
- v(f) = Z f(e) — 2 f(e) original network

eoutof A einto 4 el can’t exist because then

_ z f(e) would be reachable from s

eoutofA
_ z c(e) (By contradiction: If an edge going out of
A had unused capacity then the forward
edge would be in the residual graph, so
the edge should not cross the cut)

eoutofd

...................
D .
--------
.
.

.
",
LN
0
L

40 residual graph



l[dentifying the Min Cut: Conclusion

(i) = (i):
Claim: If there is no augmenting path w.r.t. f, thereisacut (4, B) s.t. v(f) = c(4, B).

Proof of Claim: Let f be a flow with no augmenting paths.
Let A be the set of vertices reachable from s in residual graph G. A

* By definitionof A, s € A.
* Since no augmenting path (s-t path in G¢), t & A.

Then
v(H= ) fle- ) fe
eoutofA einto 4 o
original network
= > f@©
eout of 4 A
= Z cle) =c(4,B) (by Definition)
eoutofA

l

41
residual graph
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