CSE 421 Winter 2025 Lecture 16: Max Flow Min Cut

Nathan Brunelle

http://www.cs.uw.edu/421

Flow Network

Flow network:

- Abstraction for material *flowing* through the edges.
- G = (V, E) directed graph, no parallel edges.
- Two distinguished nodes: s = source, t = sink.

Flows

Defn: An s-t flow in a flow network is a function $f: E \to \mathbb{R}$ that satisfies:

• For each $e \in E$: $0 \le f(e) \le c(e)$

[capacity constraints]

• For each $v \in V - \{s, t\}$:

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

[flow conservation]

Defn: The value of flow f,

Flows

Defn: An s-t flow in a flow network is a function $f: E \to \mathbb{R}$ that satisfies:

• For each $e \in E$: $0 \le f(e) \le c(e)$

[capacity constraints]

• For each $v \in V - \{s, t\}$:

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

[flow conservation]

Defn: The value of flow f,

$$v(f) = \sum_{e \text{ out of } s} f(e)$$

Only show non-zero values of **f**

Flows

Defn: An s-t flow in a flow network is a function $f: E \to \mathbb{R}$ that satisfies:

• For each $e \in E$: $0 \le f(e) \le c(e)$

[capacity constraints]

• For each $\boldsymbol{v} \in \boldsymbol{V} - \{\boldsymbol{s}, \boldsymbol{t}\}$:

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

[flow conservation]

Defn: The value of flow f,

$$v(f) = \sum_{e \text{ out of } s} f(e)$$

Only show non-zero values of **f**

value = **24**

Maximum Flow Problem

Given: a flow network

Find: an *s-t* flow of maximum value

Towards a Max Flow Algorithm What about the following greedy algorithm?

- Start with f(e) = 0 for all edges $e \in E$.
- While there is an s-t path P where each edge has f(e) < c(e).
 - "Augment" flow along P; that is:
 - Let $\alpha = \min_{e \in P} (c(e) f(e))$
 - Add α to flow on every edge e along path P. (Adds α to v(f).)

Another "Stuck" Example

On every **s**-**t** path there is some edge with f(e) = c(e):

Value of flow = 24

Next idea: Ford-Fulkerson Algorithm, which applies greedy ideas to a "residual graph" that lets us reverse prior flow decisions from the basic greedy approach to get optimal results!

Greed Revisited: Residual Graph & Augmenting Paths

The only way we could route more flow from **s** to **t** would be to reduce the flow from **u** to **v** to make room for that amount of extra flow from **s** to **v**.

But to conserve flow we also would need to increase the flow from **u** to **t** by that same amount.

Suppose that we took this flow **f** as a baseline, what changes could each edge handle?

- We could add up to 10 units along sv or ut or uv
- We could reduce by up to 20 units from \mathbf{su} or \mathbf{uv} or \mathbf{vt} This gives us a residual graph G_f of possible changes where we draw reducing as "sending back".

Greed Revisited: Residual Graph & Augmenting Paths

Greed Revisited: Residual Graph & Augmenting Paths

No path can even leave s!

Residual Graphs

An alternative way to represent a flow network

Represents the net available flow between two nodes

Original edge: $e = (u, v) \in E$.

• Flow f(e), capacity c(e).

Residual edges of two kinds:

- Forward: e = (u, v) with capacity $c_f(e) = c(e) f(e)$
 - Amount of extra flow we can add along e
- Backward: $e^{R} = (v, u)$ with capacity $c_{f}(e) = f(e)$
 - Amount we can reduce/undo flow along e

Residual graph: $G_f = (V, E_f)$.

- Residual edges with residual capacity $c_f(e) > 0$.
- $E_f = \{e : f(e) < c(e)\} \cup \{e^R : f(e) > 0\}.$

Residual Graphs and Augmenting Paths

Residual edges of two kinds:

- Forward: e = (u, v) with capacity $c_f(e) = c(e) f(e)$
 - Amount of extra flow we can add along e
- Backward: $e^{R} = (v, u)$ with capacity $c_{f}(e) = f(e)$
 - Amount we can reduce/undo flow along e

Residual graph: $G_f = (V, E_f)$.

• Residual edges with residual capacity $c_f(e) > 0$.

•
$$E_f = \{e : f(e) < c(e)\} \cup \{e^R : f(e) > 0\}.$$

Augmenting Path: Any s-t path P in G_f . Let bottleneck(P)= $\min_{e \in P} c_f(e)$.

Ford-Fulkerson idea: Repeat "find an augmenting path P and increase flow by bottleneck(P)" until none left.

13

Cuts

Defn: An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

The capacity of cut (A, B) is

$$c(A, B) = \sum_{e \text{ out of } A} c(e)$$

Cuts

Defn: An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

The capacity of cut (A, B) is

$$c(A, B) = \sum_{e \text{ out of } A} c(e)$$

Minimum Cut Problem

Minimum s-t cut problem:

Given: a flow network

Find: an *s-t* cut of minimum capacity

Flows and Cuts

Let f be any s-t flow and (A, B) be any s-t cut:

Flow Value Lemma: The net value of the flow sent across (A, B) equals v(f).

Intuition: All flow coming from s must eventually reach t, and so must cross that cut

Weak Duality: The value of the flow is at most the capacity of the cut; i.e., $v(f) \le c(A, B)$.

Intuition: Since all flow must cross any cut, any cut's capacity is an upper bound on the flow

Corollary: If v(f) = c(A, B) then f is a maximum flow and (A, B) is a minimum cut.

Intuition: If we find a cut whose capacity matches the flow, we can't push more flow through that cut because it's already at capacity. We additionally can't find a smaller cut, since that flow was achievable.

Certificate of Optimality

Let f be any s-t flow and (A, B) be any s-t cut.

If v(f) = c(A, B) then f is a max flow and (A, B) is a min cut.

Value of flow = 28

Capacity of cut = 28

Both are optimal! Each "certified" correctness of the other!

31

31

Max-Flow Min-Cut Theorem

Augmenting Path Theorem: Flow f is a max flow \Leftrightarrow there are no augmenting paths wrt f

Max-Flow Min-Cut Theorem: The value of the max flow equals the value of the min cut.

[Elias-Feinstein-Shannon 1956, Ford-Fulkerson 1956] "Maxflow = Mincut"

Proof: We prove both together by showing that all of these are equivalent:

- (i) There is a cut (A, B) such that v(f) = c(A, B).
- (ii) Flow f is a max flow.
- (iii) There is no augmenting path w.r.t. f.
- $(i) \Rightarrow (ii)$: Comes from weak duality lemma.
- $(ii) \Rightarrow (iii)$: (by contradiction)
 If there is an augmenting path w.r.t. flow f then we can improve f. Therefore f is not a max flow.
- (iii) \Rightarrow (i): We will use the residual graph to identify a cut whose capacity matches the flow

Flow Value Lemma – Idea

Flow Value Lemma: Let f be any s-t flow and (A, B) be any s-t cut. The net value of the flow sent across the cut equals v(f):

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e) = v(f)$$

Why is it true?

Add vertices to s side one by one.

 By flow conservation, net value doesn't change

Flow Value Lemma – Proof

Flow Value Lemma: Let f be any s-t flow and (A, B) be any s-t cut. The net value of the flow sent across the cut equals v(f):

$$\sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e) = v(f)$$

Proof:

$$v(f) = \sum_{e \text{ out of } s} f(e)$$

$$= \sum_{e \text{ out of } s} f(e) - \sum_{e \text{ into } s} f(e) + \sum_{v \in A - \{s\}} \left[\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ into } v} f(e) \right]$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= 0 \text{ by flow conservation.}$$
Contributions from internal edges of A cancel.

Weak Duality - Idea

Weak Duality: Let f be any s-t flow and (A, B) be any s-t cut. The value of the flow is at most the capacity of the cut; i.e., $v(f) \le c(A, B)$:

Weak Duality - Proof

Weak Duality: Let f be any s-t flow and (A, B) be any s-t cut. The value of the flow is at most the capacity of the cut; i.e., $v(f) \le c(A, B)$.

Proof:

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} f(e) \qquad \text{since } f(e) \geq 0$$

$$\leq \sum_{e \text{ out of } A} c(e) \qquad \text{since } f(e) \leq c(e)$$

$$= c(A, B)$$

Proof of Max-Flow Min-Cut Theorem

$(iii) \Rightarrow (i)$:

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B).

Proof of Claim: Let **f** be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f .

- By definition of A, $s \in A$.
- Since no augmenting path (s-t) path in G_f), $t \notin A$.

original network

residual graph

Proof: Identifying the Min Cut

$(iii) \Rightarrow (i)$:

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B).

Proof of Claim: Let **f** be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f .

- By definition of A, $s \in A$.
- Since no augmenting path (s-t) path in G_f), $t \notin A$.

Then

$$v(f) = \sum_{e \in \mathcal{E}} f(e) - \sum_{e \in \mathcal{E}} f(e)$$
 (by Flow-Value Lemma)

residual graph

Identifying the Min Cut: No Inflow

$(iii) \Rightarrow (i)$:

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B)

Proof of Claim: Let **f** be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f .

- By definition of A, $s \in A$.
- Since no augmenting path (s-t) path in G_f), $t \notin A$.

Then

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e) \quad \text{(By contradict)}$$

e out of A

f(e) (By contradiction: If an edge going into A had flow then the backward edge would be in the residual graph, so the edge should not cross the cut)

original network

e^R can't exist because then \underline{v} would be reachable from s

residual graph

Identifying the Min Cut: Saturated Outflow

 $(iii) \Rightarrow (i)$:

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B).

Proof of Claim: Let **f** be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f .

- By definition of A, $s \in A$.
- Since no augmenting path (s-t path in G_f), $t \notin A$.

Then

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$
$$= \sum_{e \text{ out of } A} f(e)$$

e out of A

(By contradiction: If an edge going out of A had unused capacity then the forward edge would be in the residual graph, so the edge should not cross the cut)

"e is saturated" No unused capacity on *e* f(e) = c(e)

original network

e^R can't exist because then $\boldsymbol{\mathcal{L}}$ would be reachable from s

residual graph

Identifying the Min Cut: Conclusion

 $(iii) \Rightarrow (i)$:

Claim: If there is no augmenting path w.r.t. f, there is a cut (A, B) s.t. v(f) = c(A, B).

Proof of Claim: Let **f** be a flow with no augmenting paths.

Let A be the set of vertices reachable from s in residual graph G_f .

- By definition of A, $s \in A$.
- Since no augmenting path (s-t path in G_f), $t \notin A$.

Then

$$v(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e)$$

$$= \sum_{e \text{ out of } A} f(e)$$

$$= \sum_{e \text{ out of } A} c(e) = c(A, B) \text{ (by Definition)}$$

original network

residual graph