CSE 421 Winter 2025
Lecture 15: Bellman-Ford
Max Flow

Nathan Brunelle
http://www.cs.uw.edu/421

Single-source shortest paths, with negative
edge weights

Given: an (un)directed graph G = (V, E) with each edge e having a
weight w(e) and a vertex s

——
Find: (length of) shortest paths from/s to each vertexin G, or else
indicate that thereis a negatlve -cost cycle —

Called the Bellman @ lgorithm
(The original D_f@rithm!)

(Also, the original shortest path algorithm!)

—_—

Bellman Ford— Four Steps

1. Formulate the answer with a recursive structure
* What are the options for the last choice?
* For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
* Figure out the possible values of all parameters in the recursive calls.
* How many subproblems (options for last choice) are there?
* What are the parameters needed to identify each?
* How many different values could there be per parameter?

3. Specify an order of evaluation.

* Want to guarantee that the necessary subproblem solutions are in memory
when you need them.

* With this step: a “Bottom-up” (iterative) algorithm
* Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
* Isit possible to reuse some memory locations?

Final Recursive Structure

OPT (i, t) = the weight of the shortest path from s to t with at most i edges
(Oifi=0ands =t
coifi=0ands #t

OPT = 1 ' P
T i
\

OPT(i — 1,t)

Where w(u, t) is the weight of the edge from u to t if it exists and oo if not.

pm—

= min —
< i edges @
L€

min=

_ Bellman Ford— Four Steps

i T edges © 1. Formulate the answer with a recursive structure

m/@ * What are the options for the last choice?
- D~ * For each such option, what does the subproblem look like? How do we use it?
2. Choose a memory structure.
* Figure out the possible values of all parameters in the recursive calls.
* How many subproblems (options for last choice) are there?
* What are the parameters needed to identify each?

* How many different values could there be per parameter?

3. Specify an order of evaluation.

* Want to guarantee that the necessary subproblem solutions are in memory
when you need them.

* With this step: a “Bottom-up” (iterative) algorithm
* Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
* Isit possible to reuse some memory locations?

ldentifying the Memory Structure

‘/ (Oifi=0ands =t
_ oifi=0ands #t
OPT (i, t) = min{OPT (i — 1,u) + }
min uev
\ OPT(i — 1,t)
* How many parameters? 1
o) 0
* What does each represent? 1
»_i:the length of the path 2
* t:anode 3
 How many different values? :
@lVl (from length O up to, |V | — } if the path is simple)
« 6
* t: |V| (one value per nodel)P‘d N

—_—

TO p‘ DOW N Be | | Mman- FO rd This algorithm correctly finds shortest paths

when there are no negative-cost cycles
- ¢ .
How can we check for negative cost cycles?

BF(i, t):

yf OPT[i][t] not blank:
return OPT[{][/]

ifi ==
solution=0?t ==s:00
OPT[i][t] = solution
~——

return solution

,Ssolution =00
foreachu € V: /\/w
-
solution = min(soluti +W(¥3)
solution = min!solution, BF(i — 1,t)

OPT[i][t] = solution

return solution 7

Checking for Negatl

ve Cycles

OPT(i,t) =

min {
\

Qifi=0ands =t
wifi=0ands #t

rJlEl‘r/l{OPT(l —1,u)+wut)}
OPT(i —1,t)

* How many parameters?
i

 What does each represent?
 i:the length of the path S
e t:anode

 How many different values?
° i:

cycle!
e t: |V] (one value per node)

V|+1
* a path of |V| edges\s not simple, so if any |V|-edge path is
shorter e with fewer edges, there must be a negatlveg

\é

Il//

o U1 b N R O

min=

_ Bellman Ford— Four Steps

i T edges © 1. Formulate the answer with a recursive structure

W * What are the options for the last choice?
- D~ * For each such option, what does the subproblem look like? How do we use it?
2. Choose a memory structure.

* Figure out the possible values of all parameters in the recursive calls.

* How many subproblems (options for last choice) are there?

* What are the parameters needed to identify each?

* How many different values could there be per parameter?

3. Specify an order of evaluation.

* Want to guarantee that the necessary subproblem solutions are in memory
when you need them.

* With this step: a “Bottom-up” (iterative) algorithm
* Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
* Isit possible to reuse some memory locations?

Order of Evaluations

OPT@ = 4

z

min {
\

Oifi =0ands =t
woifi=0ands #t
min{OPT ([— 1;u D+ w(u, t)}

uev
OPT(i — 1,t)

Each cell depends on every value in the

previous row

Solve in order of i

\IO\U'I-PcroNp—xo
(

10

Bottom-Up Bellman-Ford

BF(s, t)mﬂ _,)——

foruelV\ {s}
[y | OPT(0][u] £ (L/ /
/:_))fori =Qupto |V]:

7g |foru eV:

forv e nelghbors(u) /
£ o ()PT = min(OPTI[{]
0P7 mm(OPT[1[u], OPT[l —1][

for weV:
if OPT[|V|][u] < OPT[|V| — 1][u]:
return “negative cycle”
return OPT[s][t]

11

Bottom-Up Bellman-Ford

BF(s, t):
OPT[0][s] =0 O(1)
foruelV\ {s}
OPT[0][u] = © o(V])

foréo up to |V|:
forueV:
. for v_€ neighbors(u): (Vi

CoPT[i][u] = min(OPT[i][u], OPT[i m
N OPT[i][u] = min(OPT[i][u], OPT[i — 1][u])
foruelV:
if OPT[|V|][u] < OPT[|V| — 1][u]: o[V
return “negative cycle”
return OPT[s][t] 0(1)

12

min=

_ Bellman Ford— Four Steps

i T edges © 1. Formulate the answer with a recursive structure

W * What are the options for the last choice?
- D~ * For each such option, what does the subproblem look like? How do we use it?
2. Choose a memory structure.

* Figure out the possible values of all parameters in the recursive calls.

* How many subproblems (options for last choice) are there?

* What are the parameters needed to identify each?

* How many different values could there be per parameter?

3. Specify an order of evaluation.

* Want to guarantee that the necessary subproblem solutions are in memory
when you need them.

* With this step: a “Bottom-up” (iterative) algorithm
* Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
* Isit possible to reuse some memory locations?

Order of Evaluations

(Oifi=0ands =t
wifi=0ands #t

min uev

OPT(i — 1,1)

\

OPT(i,t) = 1 min{OPT (i — 1,u) + w(u, 1)}

Each cell depends only on values in the
previous row

We only need two rows!

No 1A wNn R, o

14

min=

_ Bellman Ford— Four Steps

i T edges © 1. Formulate the answer with a recursive structure

W * What are the options for the last choice?
- D~ * For each such option, what does the subproblem look like? How do we use it?
2. Choose a memory structure.

* Figure out the possible values of all parameters in the recursive calls.

* How many subproblems (options for last choice) are there?

* What are the parameters needed to identify each?

* How many different values could there be per parameter?

3. Specify an order of evaluation.

* Want to guarantee that the necessary subproblem solutions are in memory
when you need them.

* With this step: a “Bottom-up” (iterative) algorithm
* Without this step: a “Top-down” (recursive) algorithm

C 5 4. See if there’s a way to save space

* Isit possible to reuse some memory locations?

Dynamic Programming Patterns

Alignment pattern:
* 2-D, O(1) in previous row, above, left, diagonal
* O(n-m) space

Fibonacci pattern:
e 1-D, O(1) immediately prior
* 0(1) space

L [[[["[Y["]

Weighted interval scheduling pattern:
* 1-D, O(1) arbitrary prior +<3
* 0O(n) space O(n)
T T 17 T 1 T T°1"] Bellman Ford pattern:
e 2-D, O(|V]) in previous row,
* O(|V]) space

om)

0(nm)

Longest increasing subsequence pattern:
e 1-D, allm — 1 prior
 0(n) space 0(n?)

m oQIVIIED
A2 A A KA A A A A

< 16

Example Execution

8 @ -8
(Oifi =0ands =t
| woifi=0ands #t
OPT (i, t) = { min{OPT (i — 1,u) + w(u,)}

\

min uev
OPT(i —1,t)

N o VU1 N R O

17

Example Execution

8 @ -8
(Oifi =0ands =t
| woifi=0ands #t
OPT (i, t) = { min{OPT (i — 1,u) + w(u,)}

\

min uev
OPT(i —1,t)

N o VU1 N R O

18

Example Execution

8 @ -8
(Oifi=0ands =t
woifi =0ands #t
OPT(i,t) =4 min{OPT (i —1,u) + w(u,t)}
min { U€V
\ OPT(i—1,t)

N U1 w N R, O

olo|lo|r

(Ol I O ol NG

W8 |8 |w

8188 |»

81818 |

|8 |

o818 |

19

Example Execution

8 @ -8
(Oifi=0ands =t
woifi =0ands #t
OPT(i,t) =4 min{OPT (i —1,u) + w(u,t)}
min { U€V
\ OPT(i—1,t)

N U1 w N R, O

(=l Bl Neo il Nen)

(Sl N I I I3 NG

wWwlw |8 18 |w

N8 I8 |8 |

818188 |w

o|o|®]|8 |

clol8 18|

20

Example Execution

8 @ -8
(Oifi=0ands =t
woifi =0ands #t
OPT(i,t) =4 min{OPT (i —1,u) + w(u,t)}
min { U€V
\ OPT(i—1,t)

N U1 w N R, O

(=l Bl Nl Nl N

(Sl NSl Ol I O NS IFNC

Wl lw|lw|8 18 |lw

N 98818 I

S8 8|88 |wn

w|ow|ow|xw|8 |

olo]lo|8 18 |

21

Example Execution

2 . :
O30
8 @ -8

(Oifi=0ands =t

| wifi=0ands #t

OPT(i,t) = < min{OPT (i — 1,u) + w(u,)}

min uev
\ OPT(i —1,t)

N o VU1 N R O

olo|lo|lol|lo|o

=9 I CN NN N T ol PN

N 99888 |

o|lo 88|88 |w,

ow|lo|ow|o|®]|8 |

olo|lo|lo|8 18|V

22

Example Execution
-/

(Oifi=0ands =t
woifi =0ands #t

OPT(i,t) = < min{OPT (i — 1,u) + w(u,)}
min Uuev
\ OPT(i —1,t)

o|lo|lo|o|lo|o|o

Rl o] 8
N|jw | lw|lw|lw |88 |w
SEESEESE RN R BN RS ES
o|lo|=o|8 8|88 |w
w|ow|ow|ow|ow]|xo|8 |
olo|lo|lo|o|8 |8 |N

N o VU1 N R O

R

Example Execution

OPT(i,t) = 4

7

\

Oifi=0ands =t
woifi =0ands #t
min{OPT (i — 1,u) + w(u,t)}

min uev
OPT(i—1,t)

No 1B N R, o

—_

=l Joll Holl Holl Nl Rl =2 K=

mlRrlRrINdINdININ]S [N

N@wwwwSSw

oleo|o|=|8|8 |88 |wn

||l |ow|w|w|®]|8 |

olojlo|lo|lolol8 18|V

D\ﬁ“‘\l\l\1\1888_p

24

Example Execution

@

2)

1 2 3 4 5 6 7
@ '8 0 0 co 0 [o'e) 00 00 ©0
1 0 2 00 o 00 8 ©o
210 2 3 co | oo 8 0
(Oifi =0ands =t 3[of2]3[Ep=]s]o0
coifi =0ands #t alol213]l7l0ls]o
OPT(i,t) = 1 _ mei‘l/l{OPT(i—l,u)+W(U,t)} slol1|3]7]o]s8]o
min |4 OPT(i — 1 clol1]lz2t=lo]s]o
\ i—1,t) :
7Zlol1|2F3]00]| s8] o

Negative Cycle Found!

/ ;

Origins offgl\/lax FIojW an in CutbProblems
,_ T it N Y

Max Flow problem formulation:

* [Tolstoy 1930] Rail transportation
planning for the Soviet Union

Min Cut problem formulation:

* Cold War: US military planners
want to find a way to cripple
Soviet supply routes

* [Harris 1954] Secret RAND corp
report for US Air Force

,-fwan*’“—.‘

@ ” F U | ke rson 1 95 5] P ro b | ems are Reference: On _tihe h_fstory of the rransp_ortation and maximum flow problems.

. Alexander Schrijver in Math Programming, 91: 3, 2002.
equivalent

26

| Flow Network |

Flow network:
* Abstraction for material flowing through the edges.
* G = (V,E) directed graph, no parallel edges.
* Two distinguished nodes: s =source, t = sink.

* c(e) = capacity of edge e = 0. /Q\ ;@\
15 10
4 15 10

capacity = 15
\é 30 f

27

Flows

Defn: An s-t flow in a flow network is a function f: E — R that satisfies:
* Foreache € E:0 < f(e) < c(e) [capacity constraints]

e Foreachv € f(e) = _\ f(e) [flow conservation]
eintov @

Defn: The value of flow f, @ 0/ %
v(f) = i f(e) w@ 0/15 0/15 0/10
ﬂ (s) 0/5—b
0115 0/4 0/6 0115 o110
value =4
\‘(g— 013&/

4/8 M e 4/10

28

Flows
Defn: An s-t flow in a flow network is a function f: E — R that satisfies:

* Foreache € E:0 < f(e) < c(e) [capacity constraints]
* Foreachv eV — {s,t}: :
f(e) = f(e) [flow conservation]
e;§;v eogiéfv
Defn: The value of flow f, o C"P\
a 4
vH=) fe 4/1 10

eoutofs

Only show non-zero values of f

value = 4 \éi &g/

29

Flows
Defn: An s-t flow in a flow network is a function f: E — R that satisfies:

* Foreache € E:0 < f(e) < c(e) [capacity constraints]
* Foreachv €V —{s,t}: z f(e) = z f(e [flow conservation]
eintov eoutofv
Defn: The value of flow f, 6/
a
v(f) = Z f(e) 10/10 4/4 6/10

eoutofs

8/10
Only show non-zero values of f

11I15
value = 24 10/10
11/30

30

Maximum Flow Problem

Given: a flow network
Find: an s-t flow of maximum value

a 6/9

10/10 4/4 6/10

\(# 8/10
11/1
value =24 10/10
11I3O

31

Towards a Max Flow Algorithm
What about the following greedy algorithm?

» Start with f(e) = O foralledgese € E.
« While there is an s-t path P where each edge has f(e) < c(e).

* “Augment” flow along P; that is:
* Leta =min(c(e) — f(e))
* Add «a to flow on every edge e along path P. (Adds a to v(f).)

Can get stuck... /ﬁ‘)\
Has flow value 20
20/20 /v@\ 10 20120 10/10

T 2030 JO andnopath P o1 10/30

10\6/20/20 but 30 is possible 10/10\6/20/20

32

Another “Stuck” Example
On every s-t path there is some edge with f(e) = c(e):

a 6/9
Value of flow = 24
10/10 4/4 6/10

—»ﬁ%\ \%ﬁ s
11/15 10/10
11,3><§/

Next idea: Ford-Fulkerson Algorithm, which applies greedy ideas to a
“residual graph” that lets us reverse prior flow decisions from the basic
. greedy approach to get optimal results!

Greed Revisited: Residual Graph & Augmenting Paths

The only way we could route more flow from s to t
20/20 10 would be to reduce the flow from u to v to make room
20/30 :z@ for that amount of extra flow from s to v.

10 20/20 But to conserve flow we also would need to increase
the flow from u to t by that same amount.

Suppose that we took this flow f as a baseline, what /%D\

207 TN\ 10
changes could each edge handle? Qf 2010 E
 We could add up to 10 units along sv or ut or uv

* We could reduce by up to 20 units from su or uv or vt 10\(‘%/20

This gives us a residual graph G of possible changes
where we draw reducing as “sending back”.

Greed Revisited: Residual Graph & Augmenting Paths

Augment flow
20/20 20/20 10/10 along path

GL 20/30 10/30

\é/zolzo 10/1 0 \é/ 20/20

Re5|dual graph Path in G
N A
2010 }@ = @f 2010

\&/ \&/

35

Greed Revisited: Residual Graph & Augmenting Paths

20/20 /vﬁa\ 10/10

Of 10/30

10/10 \é/zolzo

New residual
graph G
20 @\\ 10 !
@2\/ 1020 }D No path can even leave s!

36

Residual Graphs

An alternative way to represent a flow network
* Represents the net available flow between two nodes

Original edge: e = (u,v) € E.
* Flow f(e), capacity c(e).

Residual edges of two kinds:
* Forward: e = (u,v) with capacity c¢s(e) = c(e) — f(e)
* Amount of extra flow we can add along e
* Backward: e® = (v, u) with capacity cr(e) = f(e)
* Amount we can reduce/undo flow along e

Residual graph: Gy = (V, Ey).
* Residual edges with residual capacity cf(e) > 0.

* Ef={e: f(e) <c(e)}u {e*: f(e) > 0}.

(W———6/17—>(v)

residual capacity

“

(w) 11
\6
N

residual capacity

37

Residual Graphs and Augmenting Paths

residual capacity
Residual edges of two kinds: J

* Forward: e = (u,v) with capacity c¢s(e) = c(e) — f(e) @\ 11
6
AN

residual capacity

* Amount of extra flow we can add along e
* Backward: e® = (v,u) with capacity cs(e) = f(e)
* Amount we can reduce/undo flow along e

Residual graph: Gy = (V, Ey).
* Residual edges with residual capacity c¢(e) > 0.

* Ef={e: f(e) <c(e)}u {e*: f(e) > 0}.

Augmenting Path: Any s-t path P in G+. Let bottleneck(P)= min c¢(e).
! ecP !

Ford-Fulkerson idea: Repeat “find an augmenting path P and increase flow by bottleneck(P)” until
none left.

38

Ford-Fulkerson Algorithm

a 4 :\b
\ f capacity
S

G: 10 y) 8 6 10

Ford-Fulkerson Algorithm

0 flows not shown a 4 b
\ \ f capacity
/
@4 10 —@ ; 0 103@

a *(b
/ﬁ\ 4 C\ residual capacity
Gf: /
6 10
JL \\\\\SY\
@/ 10— o @ 103@

Flow value =0

Ford-Fulkerson A

0 flows not shown

N\

G: 8/10

a 4 :\b
1 capacity
v
6 10

gorithm

Flow value =0

\ +8=8
10 10 9 »(d) 8/10
a (b
/Vf\ 4 C\ residual capacity
G,
f /
6

10

41

Ford-Fulkerson Algorithm

////@l\\\\\4 <|5)\\\\\
" 0 | 8/8\:
@4 10 —(0) 9 @

%\ 4 :@\
G 3
| é;j;//z 2 8\\\\\\5?

s 10 é 9 @K

Flow value = 8

42

Ford-Fulkerson Algorithm

a 4
+2=10 \

G: 8/10 2/2

8/8

@\
6
\\\\\\2@ 3H;E:RD

ﬁ) :®\
G 8 \
! 2 2 8 6

s 10 é 9 d)

10

+2=10

10

2
8

N

I

Flow value = 8
+2=10

43

Ford-Fulkerson Algorithm

AT

Flow value =10
(:4 10 =é 2/9\:@ 10/ 1&9

Ford-Fulkerson Algorithm

/O\ 4 :®\
G:
10/10 2/2 8/8 6/6 6/10 Flow value =10
+6=16
6/10 =(§) 2/9 d) 10/10
+6=8

45

Ford-Fulkerson Algorithm

AT

G: 10/10 22 8/8 6/6 6/10

Flow value = 16
@/ 6/10 —>® 8/9\@ 10/10&:}

46

Ford-Fulkerson Algorithm

G:
10/10 2/2 8/8 6/6 6/10 Flow value =16
2=0 +2=8 +2=18
6/10 —>é 8/9 d) 10/10
+2=8

47

Ford-Fulkerson Algorithm

AN

G: 10/10 6/6 8/10

Flow value = 18
@/8/10 >(©) \ﬁ@ 10/10&:}

Ford-Fulkerson Algorithm

S

G: 10/10 5 8/8 6/6 8/10 Flow value = 18
-1=7 +1=9 +1=19
s 8/10——(c) 8/9 d) 10/10

+1=9 +1=9

. AT
Lod] N

49

Ford-Fulkerson Algorithm

AT

10/10

@/ 9/10—(c)

2 7/8 6/6 9/10

9/9\:@ 10/ 10&:}

10

3
1

9
7

9

a :\b
2 1\6 1
@< 1 /@L/ 9\@= 10

Flow value =19

50

