
CSE 421 Winter 2025
Lecture 15: Bellman-Ford

Max Flow 
Nathan Brunelle

http://www.cs.uw.edu/421



2

Single-source shortest paths, with negative 
edge weights

Given: an (un)directed graph with each edge having a 
weight and a vertex 

Find: (length of) shortest paths from to each vertex in , or else 
indicate that there is a negative-cost cycle

Called the Bellman-Ford algorithm
(The original DP algorithm!)
(Also, the original shortest path algorithm!)



Bellman Ford– Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?
• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.
• How many subproblems (options for last choice) are there?
• What are the parameters needed to identify each?
• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.
• With this step: a “Bottom-up” (iterative) algorithm
• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?



Final Recursive Structure

4

≤ 𝑖 edges

𝑂𝑃𝑇 𝑖, 𝑡 = the weight of the shortest path from 𝑠 to 𝑡 with at most 𝑖 edges

𝑂𝑃𝑇 𝑖, 𝑡 =

0 if 𝑖 = 0 and 𝑠 = 𝑡
∞ if 𝑖 = 0 and 𝑠 ≠ 𝑡

min ൝
min
௨∈௏

𝑂𝑃𝑇 𝑖 − 1, 𝑢 + 𝑤(𝑢, 𝑡)

𝑂𝑃𝑇 𝑖 − 1, 𝑡

Where 𝑤(𝑢, 𝑡) is the weight of the edge from 𝑢 to 𝑡 if it exists and ∞ if not.

𝑖 − 1 edges

≤ 𝑖 − 1 edges



Bellman Ford– Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?
• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.
• How many subproblems (options for last choice) are there?
• What are the parameters needed to identify each?
• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.
• With this step: a “Bottom-up” (iterative) algorithm
• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

𝑖 − 1 edges

≤ 𝑖 − 1 edges

min



Identifying the Memory Structure

6

𝑂𝑃𝑇 𝑖, 𝑡 =

0 if 𝑖 = 0 and 𝑠 = 𝑡
∞ if 𝑖 = 0 and 𝑠 ≠ 𝑡

min ൝
min
௨∈௏

𝑂𝑃𝑇 𝑖 − 1, 𝑢 + 𝑤(𝑢, 𝑡)

𝑂𝑃𝑇 𝑖 − 1, 𝑡

• How many parameters?
• 2

• What does each represent?
• : the length of the path
• : a node

• How many different values?
• : (from length 0 up to if the path is simple)
• : (one value per node)

2 3 5 64 7

5

1

2

3

4

6

1

0



Top-Down Bellman-Ford
BF( ):

if OPT[ ][ ] not blank:    // Check if we’ve solved this already

return OPT[ ][ ]

if :    // Check if this is a base case

solution = 0 ? : 

OPT[ ][ ] = solution    // Always save your solution before returning 

return solution

solution = 

for each :

solution = min(solution, BF( , ) + ) // solve each subproblem, pick which to use

solution = min(solution, BF( , )) // solve each subproblem, pick which to use

OPT[ ][ ] = solution    // Always save your solution before returning

return solution 7

This algorithm correctly finds shortest paths 
when there are no negative-cost cycles
How can we check for negative cost cycles?



Checking for Negative Cycles

8

𝑂𝑃𝑇 𝑖, 𝑡 =

0 if 𝑖 = 0 and 𝑠 = 𝑡
∞ if 𝑖 = 0 and 𝑠 ≠ 𝑡

min ൝
min
௨∈௏

𝑂𝑃𝑇 𝑖 − 1, 𝑢 + 𝑤(𝑢, 𝑡)

𝑂𝑃𝑇 𝑖 − 1, 𝑡

• How many parameters?
• 2

• What does each represent?
• : the length of the path
• : a node

• How many different values?
• : +1

• a path of |𝑽| edges is not simple, so if any |𝑽|-edge path is 
shorter than one with fewer edges, there must be a negative 
cycle!

• : (one value per node)

2 3 5 64 7

5

1

2

3

4

6

1

0

7



Bellman Ford– Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?
• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.
• How many subproblems (options for last choice) are there?
• What are the parameters needed to identify each?
• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.
• With this step: a “Bottom-up” (iterative) algorithm
• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

𝑖 − 1 edges

≤ 𝑖 − 1 edges

min



Order of Evaluations

10

௨∈௏

Each cell depends on every value in the 
previous row

Solve in order of 

2 3 5 64 7

5

1

2

3

4

6

1

0

7



Bottom-Up Bellman-Ford
BF( ):

OPT[ ][ ] = 0 // Solve and save base cases
for :

OPT[0][ ] = // Solve and save base cases
for up to :

for :
for :

// solve and pick
// solve and pick

for :
if : // check for negative cycles

return “negative cycle”
return OPT[ ][ ] // return the final answer

11



Bottom-Up Bellman-Ford
BF( ):

OPT[ ][ ] = 0 // Solve and save base cases
for :

OPT[0][ ] = // Solve and save base cases
for up to :

for :
for :

// solve and pick
// solve and pick

for :
if : // check for negative cycles

return “negative cycle”
return OPT[ ][ ] // return the final answer

12



Bellman Ford– Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?
• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.
• How many subproblems (options for last choice) are there?
• What are the parameters needed to identify each?
• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.
• With this step: a “Bottom-up” (iterative) algorithm
• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

𝑖 − 1 edges

≤ 𝑖 − 1 edges

min



Order of Evaluations

14

௨∈௏

Each cell depends only on values in the 
previous row

We only need two rows!

2 3 5 64 7

5

1

2

3

4

6

1

0

7



Bellman Ford– Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?
• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.
• How many subproblems (options for last choice) are there?
• What are the parameters needed to identify each?
• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.
• With this step: a “Bottom-up” (iterative) algorithm
• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

𝑖 − 1 edges

≤ 𝑖 − 1 edges

min



Alignment pattern:
• 2-D, O(1) in previous row, above, left, diagonal
• 𝑂(𝒏 ⋅ 𝒎) space

Dynamic Programming Patterns
Fibonacci pattern:

• 1-D, 𝑂(𝟏) immediately prior
• 𝑂(𝟏) space

Weighted interval scheduling pattern:
• 1-D, 𝑂(𝟏) arbitrary prior
• 𝑂(𝒏) space

Longest increasing subsequence pattern:
• 1-D, all 𝒏 − 𝟏 prior
• 𝑂(𝒏) space

16

𝑂(𝒏)

𝑂(𝒏)

𝑂(𝒏𝟐)

𝑂(𝒏𝒎)

Bellman Ford pattern:
• 2-D, O(|V|) in previous row, 
• 𝑂(|𝑉|) space

𝑂(|𝑉||𝐸|)



Example Execution

17

௨∈௏

2 3 5 64 7

5

1

2

3

4

6

1

0 ∞ ∞ ∞0 ∞ ∞ ∞

7

8 -8

2 1 3
4

-7

1



Example Execution

18

௨∈௏

2 3 5 64 7

5

1

2

3

4

6

1

0

∞ ∞ 80 2 ∞ ∞

∞ ∞ ∞0 ∞ ∞ ∞

7

8 -8

2 1 3
4

-7

1



Example Execution

19

௨∈௏

2 3 5 64 7

5

1

2

3

4

6

1

0

∞ ∞ 80 2 ∞ ∞

∞ ∞ 80 2 3 0

∞ ∞ ∞0 ∞ ∞ ∞

7

8 -8

2 1 3
4

-7

1



Example Execution

20

௨∈௏

2 3 5 64 7

5

1

2

3

4

6

1

0

∞ ∞ 80 2 ∞ ∞

∞ ∞ 80 2 3 0

∞ ∞ ∞0 ∞ ∞ ∞

7 ∞ 80 2 3 0

7

8 -8

2 1 3
4

-7

1



Example Execution

21

௨∈௏

2 3 5 64 7

5

1

2

3

4

6

1

0

∞ ∞ 80 2 ∞ ∞

∞ ∞ 80 2 3 0

∞ ∞ ∞0 ∞ ∞ ∞

7 ∞ 80 2 3 0

7 0 80 2 3 0

7

8 -8

2 1 3
4

-7

1



Example Execution

22

௨∈௏

2 3 5 64 7

5

1

2

3

4

6

1

0

∞ ∞ 80 2 ∞ ∞

∞ ∞ 80 2 3 0

∞ ∞ ∞0 ∞ ∞ ∞

7 ∞ 80 2 3 0

7 0 80 2 3 0

7 0 80 1 3 0

7

8 -8

2 1 3
4

-7

1



Example Execution

23

௨∈௏

2 3 5 64 7

5

1

2

3

4

6

1

0

∞ ∞ 80 2 ∞ ∞

∞ ∞ 80 2 3 0

∞ ∞ ∞0 ∞ ∞ ∞

7 ∞ 80 2 3 0

7 0 80 2 3 0

7 0 80 1 3 0

7 0 80 1 2 0

7

8 -8

2 1 3
4

-7

1



Example Execution

24

௨∈௏

2 3 5 64 7

5

1

2

3

4

6

1

0

∞ ∞ 80 2 ∞ ∞

∞ ∞ 80 2 3 0

∞ ∞ ∞0 ∞ ∞ ∞

7 ∞ 80 2 3 0

7 0 80 2 3 0

7 0 80 1 3 0

7 0 80 1 2 0

3 0 80 1 2 07

8 -8

2 1 3
4

-7

1



Example Execution

25

௨∈௏

2 3 5 64 7

5

1

2

3

4

6

1

0

∞ ∞ 80 2 ∞ ∞

∞ ∞ 80 2 3 0

∞ ∞ ∞0 ∞ ∞ ∞

7 ∞ 80 2 3 0

7 0 80 2 3 0

7 0 80 1 3 0

7 0 80 1 2 0

3 0 80 1 2 07

8 -8

2 1 3
4

-7

1

Negative Cycle Found!



Origins of Max Flow and Min Cut Problems

Max Flow problem formulation: 
• [Tolstoy 1930] Rail transportation 

planning for the Soviet Union

Min Cut problem formulation:
• Cold War:  US military planners 

want to find a way to cripple 
Soviet supply routes

• [Harris 1954] Secret RAND corp
report for US Air Force

[Ford-Fulkerson 1955] Problems are 
equivalent

Soviet Rail Network 1955

26

Reference:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.



27

Flow network:
• Abstraction for material flowing through the edges.
• directed graph, no parallel edges.
• Two distinguished nodes:  = source, = sink.
• = capacity of edge .

Flow Network

s

a

b

c

d

e

f

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink



Defn: An - flow in a flow network is a function  that satisfies:
• For each : [capacity constraints]

• For each :

Defn: The value of flow ,

෍ 𝒇 𝒆 = ෍ 𝒇(𝒆)

𝒆 ୭୳୲ ୭୤ 𝒗𝒆 ୧୬୲୭ 𝒗

28

Flows

s

a

b

c

d

e

f

t

0/15

0/5

0/30

0/15

4/10

4/8

0/15

0/9

0/6 0/10

4/10

0/100/154/4

0/4

[flow conservation]

𝒗 𝒇 = ෍ 𝒇 𝒆

𝒆 ୭୳୲ ୭୤ 𝒔

value = 4



Defn: An - flow in a flow network is a function  that satisfies:
• For each : [capacity constraints]

• For each :

Defn: The value of flow ,

෍ 𝒇 𝒆 = ෍ 𝒇(𝒆)

𝒆 ୭୳୲ ୭୤ 𝒗𝒆 ୧୬୲୭ 𝒗

29

Flows

s

a

b

c

d

e

f

t

15

5

30

15

4/10

4/8

15

9

6 10

4/10

10154/4

4

[flow conservation]

𝒗 𝒇 = ෍ 𝒇 𝒆

𝒆 ୭୳୲ ୭୤ 𝒔

value = 4

Only show non-zero values of 



Defn: An - flow in a flow network is a function  that satisfies:
• For each : [capacity constraints]

• For each :

Defn: The value of flow ,

෍ 𝒇 𝒆 = ෍ 𝒇(𝒆)

𝒆 ୭୳୲ ୭୤ 𝒗𝒆 ୧୬୲୭ 𝒗

30

Flows

s

a

b

c

d

e

f

t

11/15

3/5

11/30

15

10/10

8/8

15

6/9

1/6 10/10

8/10

6/10154/4

4

[flow conservation]

𝒗 𝒇 = ෍ 𝒇 𝒆

𝒆 ୭୳୲ ୭୤ 𝒔

value = 24

Only show non-zero values of 



Given: a flow network 
Find: an - flow of maximum value

31

Maximum Flow Problem

s

a

b

c

d

e

f

t

11/15

3/5

11/30

15

10/10

8/8

15

6/9

1/6 10/10

8/10

6/10154/4

4
value = 24



32

Towards a Max Flow Algorithm
What about the following greedy algorithm?

• Start with for all edges .
• While there is an - path where each edge has .

• “Augment” flow along ; that is:
• Let 𝜶 = min

𝒆∈𝑷
(𝒄 𝒆 − 𝒇 𝒆 )

• Add 𝜶 to flow on every edge 𝒆 along path 𝑷.  (Adds 𝜶 to 𝒗(𝒇).)

Can get stuck...

s

u

v

t
20/20 10

10 20/20

20/30

Has flow value 20
and no path

but 30 is possible

s

u

v

t
20/20 10/10

20/20

10/30

10/10



On every - path there is some edge with :

33

Another “Stuck” Example

s

a

b

c

d

e

f

t

11/15

3/5

11/30

15

10/10

8/8

15

6/9

1/6 10/10

8/10

6/10154/4

4

Value of flow = 24

Next idea: Ford-Fulkerson Algorithm, which applies greedy ideas to a 
“residual graph” that lets us reverse prior flow decisions from the basic 
greedy approach to get optimal results!



Greed Revisited: Residual Graph & Augmenting Paths

34

s

u

v

t
20/20 10

10 20/20

20/30

s

u

v

t
20 10

10 20

2010

Suppose that we took this flow as a baseline, what 
changes could each edge handle?
• We could add up to 10 units along sv or ut or uv
• We could reduce by up to 20 units from su or uv or vt
This gives us a residual graph 𝒇 of possible changes 
where we draw reducing as “sending back”.

The only way we could route more flow from s to t
would be to reduce the flow from u to v to make room 
for that amount of extra flow from s to v.
But to conserve flow we also would need to increase 
the flow from u to t by that same amount.



s

u

v

t
20 10

10 20

20 10

Greed Revisited: Residual Graph & Augmenting Paths

35

s

u

v

t
20/20 10

10 20/20

20/30

s

u

v

t
20 10

10 20

20 10

Residual graph 
𝑮𝒇

Path in 𝑮𝒇

s

u

v

t
20/20 10/10

10/10 20/20

10/30

Augment flow 
along path 



s

u

v

t
20/20 10/10

10/10 20/20

10/30

Greed Revisited: Residual Graph & Augmenting Paths

36

s

u

v

t
20 10

10 20

10 20

New residual 
graph 𝑮𝒇

No path can even leave 𝒔!



Residual Graphs
An alternative way to represent a flow network

• Represents the net available flow between two nodes

Original edge:  𝒆 = 𝒖, 𝒗 ∈ 𝑬.
• Flow 𝒇(𝒆), capacity 𝒄(𝒆).

Residual edges of two kinds:
• Forward:  𝒆 = (𝒖, 𝒗) with capacity 𝒄𝒇 𝒆 = 𝒄 𝒆 − 𝒇 𝒆

• Amount of extra flow we can add along 𝒆

• Backward: 𝒆ୖ  = (𝒗, 𝒖) with capacity 𝒄𝒇 𝒆 = 𝒇 𝒆

• Amount we can reduce/undo flow along 𝒆

Residual graph:  𝑮𝒇 = (𝑽, 𝑬𝒇).
• Residual edges with residual capacity 𝒄𝒇 𝒆 > 𝟎.
• 𝑬𝒇 =  𝒆 ∶  𝒇 𝒆 < 𝒄 𝒆 ∪ {𝒆ୖ:  𝒇 𝒆 >  𝟎}.

u v6/17

u v11

residual capacity

6

residual capacity

37



38

Residual Graphs and Augmenting Paths
Residual edges of two kinds:

• Forward:  𝒆 = (𝒖, 𝒗) with capacity 𝒄𝒇 𝒆 = 𝒄 𝒆 − 𝒇 𝒆

• Amount of extra flow we can add along 𝒆

• Backward: 𝒆ୖ  = (𝒗, 𝒖) with capacity 𝒄𝒇 𝒆 = 𝒇 𝒆

• Amount we can reduce/undo flow along 𝒆

Residual graph:  𝑮𝒇 = (𝑽, 𝑬𝒇).
• Residual edges with residual capacity 𝒄𝒇 𝒆 > 𝟎.
• 𝑬𝒇 =  𝒆 ∶  𝒇 𝒆 < 𝒄 𝒆 ∪ {𝒆ୖ:  𝒇 𝒆 >  𝟎}.

Augmenting Path: Any 𝒔-𝒕 path 𝑷 in 𝑮𝒇.         Let bottleneck(𝑷)= min
𝒆∈𝑷

 𝒄𝒇(𝒆).

Ford-Fulkerson idea: Repeat “find an augmenting path 𝑷 and increase flow by bottleneck(𝑷)” until 
none left.

u v11

residual capacity

6

residual capacity

38



Ford-Fulkerson Algorithm

𝑮:

s

a

c

b

d t10

10

9

8

4

10

1062

capacity

39



Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:

s

a

c

b

d t10

10

9

8

4

10

1062 Flow value = 0

s

a

c

b

d t10

10

9

8

4

10

1062

residual capacity

capacity
0 flows not shown

40



Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:

s

a

c

b

d t10

10

9

8

4

10

1062 Flow value = 0

s

a

c

b

d t10

10

9

8

4

10

1062

residual capacity

capacity
0 flows not shown

8/ 8/

8/

+8=8

41



Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:

s

a

c

b

d t10

8/10

9

8/8

4

8/10

1062

s

a

c

b

d t10 9

4

1062

2

82

8

8  

Flow value = 8

42



Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:

s

a

c

b

d t10

8/10

9

8/8

4

8/10

1062

s

a

c

b

d t10 9

4

1062

2

82

8

8  

Flow value = 8

2/

2/
+2=10

+2=10

+2=10

43



Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:

s

a

c

b

d t10

10/10

2/9

8/8

4

10/10

1062/2 Flow value = 10

s

a

c

b

d t10 7

4

1062

10

810

2

44



Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:

s

a

c

b

d t10

10/10

2/9

8/8

4

10/10

1062/2 Flow value = 10

s

a

c

b

d t10 7

4

1062

10

810

2

+6=8

+6=16
6/

6/ 6/

45



Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:

s

a

c

b

d t6/10

10/10

8/9

8/8

4

10/10

6/106/62/2 Flow value = 16

s

a

c

b

d t4 1

4

462

10

810

86

6

46



Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:

s

a

c

b

d t6/10

10/10

8/9

8/8

4

10/10

6/106/6 Flow value = 16

s

a

c

b

d t4 1

4

462

10

810

86

6

+2=18

+2=8

-2=0 +2=8
2/2

2/

47



Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:

s

a

c

b

d t8/10

10/10

8/9

8/8

2/4

10/10

8/106/62

s

a

c

b

d t2 1

2

262

10

810

8

8

2

8

Flow value = 18

48



Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:

s

a

c

b

d t8/10

10/10

8/9

8/8

2/4

10/10

8/106/62

s

a

c

b

d t2 1

2

262

10

810

8

8

2

8

Flow value = 18

+1=9 +1=9

-1=7

+1=3

+1=9 +1=19

49



Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:

s

a

c

b

d t9/10

10/10

9/9

7/8

3/4

10/10

9/106/62

s

a

c

b

d t1 9

1

162

10

710

9

9

3

1

Flow value = 19

50


