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Single-source shortest paths, with negative
edge weights

Given: an (un)directed graph G = (V, E') with each edge e having a
weight w(e) and a vertex s

Find: (length of) shortest paths from s to each vertex in G, or else
indicate that there is a negative-cost cycle

Called the Bellman-Ford algorithm
(The original DP algorithm!)
(Also, the original shortest path algorithm!)



Bellman Ford— Four Steps

1.

2.

Formulate the answer with a recursive structure

* What are the options for the last choice?
* For each such option, what does the subproblem look like? How do we use it?

Choose a memory structure.

Figure out the possible values of all parameters in the recursive calls.
How many subproblems (options for last choice) are there?

What are the parameters needed to identify each?

How many different values could there be per parameter?

Specify an order of evaluation.

* Want to guarantee that the necessary subproblem solutions are in memory
when you need them.

* With this step: a “Bottom-up” (iterative) algorithm
e Without this step: a “Top-down” (recursive) algorithm

See if there’s a way to save space
* Isit possible to reuse some memory locations?



Final Recursive Structure

OPT(i,t) = the weight of the shortest path from s to t with at most i edges
( Oifi=0ands =t
oifi=0ands #t

OPT(i,t) = min{OPT (i — 1,u) + }

min uev
OPT(i —1,1)

\

Where w(u, t) is the weight of the edge from u to t if it exists and oo if not.
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|~ edges © 1. Formulate the answer with a recursive structure

m@ * What are the options for the last choice?
- D~ * For each such option, what does the subproblem look like? How do we use it?
2. Choose a memory structure.
* Figure out the possible values of all parameters in the recursive calls.
* How many subproblems (options for last choice) are there?
* What are the parameters needed to identify each?

* How many different values could there be per parameter?

3. Specify an order of evaluation.

* Want to guarantee that the necessary subproblem solutions are in memory
when you need them.

* With this step: a “Bottom-up” (iterative) algorithm
e Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
* Isit possible to reuse some memory locations?



l[dentifying the Memory Structure

( Oifi=0ands =t
| coifi=0ands #t
OPT(i,t) = 5 min{OPT(i — 1,u) + }
min uev
\ OPT(i —1,t)
* How many parameters? 1
° 2 0
 What does each represent? 1
* i: the length of the path 2
* t:anode 3
* How many different values? :
e i: |[V]| (from length O up to |[V| — 1 if the path is simple) ;

e t: |V| (one value per node)



BF(i, t):

Top-Down Bellman-Ford

if OPT[i][t] not blank:
return OPTI[i][/]
ifi ==0:
solution=0?t ==s5:00
OPTIi][t] = solution
return solution
solution = oo
foreachu € V:
solution = min(solution, BF(i — 1, u) +w(u, t))
solution = min(solution, BF(i — 1,t))
OPTIi][t] = solution

return solution

This algorithm correctly finds shortest paths
when there are no negative-cost cycles
How can we check for negative cost cycles?




OPT(i,t) = {

\

Checking for Negative Cycles

Oifi =0ands =t
wifi=0ands #t
min{OPT (i —1,u) + w(u,t)}

min uev
OPT(i —1,1)

* How many parameters?
e 2
 What does each represent?

* i:the length of the path
e t:anode

* How many different values?
o i:|V|+1

* a path of |V| edges is not simple, so if any |V|-edge path is
shorter than one with fewer edges, there must be a negative

cycle!
e t: |V| (one value per node)
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i — 1 edges

O

Formulate the answer with a recursive structure

m@ * What are the options for the last choice?
- * For each such option, what does the subproblem look like? How do we use it?

<i—1edges

2. Choose a memory structure.
* Figure out the possible values of all parameters in the recursive calls.
* How many subproblems (options for last choice) are there?
* What are the parameters needed to identify each?
* How many different values could there be per parameter?

3. Specify an order of evaluation.

* Want to guarantee that the necessary subproblem solutions are in memory
when you need them.

* With this step: a “Bottom-up” (iterative) algorithm
e Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
* Isit possible to reuse some memory locations?



Order of Evaluations

OPT(i,t) =«

”

\

Oifi=0ands =t
wifi=0ands # t
min{OPT (i —1,u) + w(u,t)}

min uev
OPT(i —1,t)

Each cell depends on every value in the

previous row

Solve in order of i

N oY OB o NN RO

10



Bottom-Up Bellman-Ford

BF(s, t):
OPT[0][s] =0
forueV\ {s}
OPT[O][u] = oo
fori = O upto |V|:
foruel:
for v € neighbors(u):
OPT|i]|u] = min(OPT[i][u], OPT[i — 1][ v])
OPT|i]|u] = min(OPT[i][u], OPT[i — 1][u])
foruel:
if OPT||V|]|u] < OPT[|V| — 1][u]:
return “negative cycle”
return OPT[s][t]



Bottom-Up Bellman-Ford

BF(s, t):
OPT[O0][s] =0 0(1)
forueV\ {s}
OPT[0][u] = o O(|V])
fori = O upto |V|:
foruel:
for v € neighbors(u): OCVIIED
OPT|i]|u] = min(OPT[i][u], OPT[i — 1][ v])
OPT|i]|u] = min(OPT[i][u], OPT[i — 1][u])
foruel:
if OPT||V|]|u] < OPT[|V| — 1][u]: o(|V|)

return “negative cycle”
return OPT[s][t] 0(1)
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i — 1 edges

O

Formulate the answer with a recursive structure

m@ * What are the options for the last choice?
- * For each such option, what does the subproblem look like? How do we use it?

<i—1edges

2. Choose a memory structure.
* Figure out the possible values of all parameters in the recursive calls.
* How many subproblems (options for last choice) are there?
* What are the parameters needed to identify each?
* How many different values could there be per parameter?

3. Specify an order of evaluation.

* Want to guarantee that the necessary subproblem solutions are in memory
when you need them.

* With this step: a “Bottom-up” (iterative) algorithm
e Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
* Isit possible to reuse some memory locations?



Order of Evaluations

OPT(i,t) =«

”

\

Oifi=0ands =t
wifi=0ands # t
min{OPT (i —1,u) + w(u,t)}

min uev
OPT(i —1,t)

Each cell depends only on values in the

previous row

We only need two rows!

N oY OB o NN RO
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i — 1 edges

O

Formulate the answer with a recursive structure

m@ * What are the options for the last choice?
- * For each such option, what does the subproblem look like? How do we use it?

<i—1edges

2. Choose a memory structure.
* Figure out the possible values of all parameters in the recursive calls.
* How many subproblems (options for last choice) are there?
* What are the parameters needed to identify each?
* How many different values could there be per parameter?

3. Specify an order of evaluation.

* Want to guarantee that the necessary subproblem solutions are in memory
when you need them.

* With this step: a “Bottom-up” (iterative) algorithm
e Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
* Isit possible to reuse some memory locations?



Dynamic Programming Patterns

Fibonacci pattern:
* 1-D, O(1) immediately prior
* 0(1) space

L A om

14 v \

Weighted interval scheduling pattern:
* 1-D, O(1) arbitrary prior

O(n)
* 0(n) space K ﬁ
v v}
Longest increasing subsequence pattern:
e 1-D,alln — 1 prior
* 0(n) space 0(n?)

Alignment pattern:

e 2-D, O(1) in previous row, above, left, diagonal
* O(n-m) space

0(nm)
Bellman Ford pattern:
e 2-D, O(|V]) in previous row,
* O(|V]) space
O(VIIE])
- 16




Origins of Max Flow and Min Cut Problems

Max Flow problem formulation:

 [Tolstoy 1930] Rail transportation
planning for the Soviet Union

Min Cut problem formulation:

e Cold War: US military planners
want to find a way to cripple
Soviet supply routes

e [Harris 1954] Secret RAND corp
report for US Air Force

[ FO rd - F u | ke rson 19 5 5] P ro b | ems are Reference: On the history of the transportation and maximum flow problems.
. Alexander Schrijver in Math Programming, 91: 3, 2002.
equivalent



Flow Network

Flow network:

* Abstraction for material flowing through the edges.

* ¢ = (V,E) directed graph, no parallel edges.
* Two distinguished nodes: s = source, t = sink.

AR

* c(e) = capacity of edge e = 0.

source

capacity = 15
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Flows

Defn: An s-t flow in a flow network is a function f: E — R that satisfies:

* Foreache € E:0 < f(e) < c(e) [capacity constraints]
* Foreachv eV —{s,t}: z f(e) = Z f(e [flow conservation]
eintov eout of v
Defn: The value of flow f, } 0/
a/\
v(f) = Z f(e) 4/10 0/15 0/15  0/10
eoutofs
0/54’@< 4/8\@ 4/10
ons 04 0/6 /15 o110

value =4
\@— 0/30
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Flows

Defn: An s-t flow in a flow network is a function f: E — R that satisfies:

* Foreache € E:0 < f(e) < c(e) [capacity constraints]
* Foreachv €V —{s,t}: z f(e) = Z f(e [flow conservation]
eintov eoutofv
Defn: The value of flow f,
/,@\ 9 @\
v(f) = 2 f(e) 4/10 4/ 15 15 10
eoutofs
5 4’®< 4/8>®7 4/10
Only show non-zero values of f
15 4 6 15

10
value =4
\@% 30
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Flows

Defn: An s-t flow in a flow network is a function f: E — R that satisfies:

* Foreache € E: 0 < f(e) < c(e) [capacity constraints]
* Foreachv eV —{s,t}: z fle) = Z f(e) [flow conservation]
eintov e out of v
Defn: The value of flow f, /p 6/ ’@D\
a/\ 9
o(f) = z f(e) 10/10  4/4 15 15 6/10
eoutofs
—’% >>‘@— 8/10
Only show non-zero values of f 15

11/15 1/6
value =24 10/10
11/30

30



Maximum Flow Problem

Given: a flow network
Find: an s-t flow of maximum value

/Q\ 6/9 >@\

10/10 44 15 6/10

11/15 1/6
value = 24 10/10
\‘@7 11/30

31



Towards a Max Flow Algorithm
What about the following greedy algorithm?

« Start with f(e) = 0 for all edges e € E.
« While there is an s-t path P where each edge has f(e) < c(e).

* “Augment” flow along P; that is:
o Leta = mEiIr)l(c(e) — f(e))
* Add a to flow on every edge e along path P. (Adds a to v(f).)

Can get stuck...
/v@\ Has flow value 20
20/20 10/10

20/20 10

@L 20/30 3@ and no path P GL 10/30

10\@/20/20 but 30 is possible 10/10\&20/20

32



Another “Stuck™ Example
On every s-t path there is some edge with f(e) = c(e):

a 6/9 d
Value of flow = 24 \

10/10  4/4 15 15  6/10

—P% >@7 8/10
11/15 1/6 10/10
\@7 11,?,&@/

Next idea: Ford-Fulkerson Algorithm, which applies greedy ideas to a

“residual graph” that lets us reverse prior flow decisions from the basic
. greedy approach to get optimal results!




Greed Revisited: Residual Graph & Augmenting Paths

/v@\ The only way we could route more flow fromstot
20/20 10 would be to reduce the flow from u to v to make room
@L 20/30 :3@ for that amount of extra flow from s to v.
But to conserve flow we also would need to increase

10 20/20
\@/ the flow from u to t by that same amount.

Suppose that we took this flow f as a baseline, what /@\

207 TN\ 10
changes could each edge handle? @f 2010 }D
 We could add up to 10 units along sv or ut or uv

* We could reduce by up to 20 units from su or uv or vt 10\&20

This gives us a residual graph G of possible changes
where we draw reducing as “sending back”.



Greed Revisited: Residual Graph & Augmenting Paths

/VQD\ PON Augment flow
20/20 10 20/20 10/10 along path

Of 2030 (t) L 10/30
10 \é/ 20/20 10/10 20/20

Residual graph Pathin G
N\ Gy 20
20 10 10
7 M w6 we
\Yj
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Greed Revisited: Residual Graph & Augmenting Paths

u
20/20 10/10

ORf 10/30

New residual
@i\ graph G

No path can even leave s!

36



Residual Graphs

An alternative way to represent a flow network
* Represents the net available flow between two nodes

Original edge: e = (u,v) € E.
* Flow f(e), capacity c(e).

Residual edges of two kinds:
* Forward: e = (u, v) with capacity ¢s(e) = c(e) — f(e)
 Amount of extra flow we can add along e
» Backward: e® = (v, u) with capacity c;(e) = f(e)
e Amount we can reduce/undo flow along e

Residual graph: Gy = (V, Ey).
* Residual edges with residual capacity c;(e) > 0.

* Ef= {e: f(e) <c(e)ju {e*: f(e) > 0}.

(W 6/17—>(v)

residual capacity
<
W 11 ﬂ
V\ 5
N

residual capacity
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Residual Graphs and Augmenting Paths

. ) residual capacity
Residual edges of two kinds:

* Forward: e = (u, v) with capacity cf(e) = c(e) — f(e) @\ 11ﬂ
6

 Amount of extra flow we can add along e

* Backward: e® = (v, u) with capacity cr(e) = f(e)
 Amount we can reduce/undo flow along e

residual capacity

Residual graph: Gy = (V, Ey).
* Residual edges with residual capacity cf(e) > 0.

* Ef= {e: f(e) <c(e)ju {e*: f(e) > 0}.

Augmenting Path: Any s-t path P in Gy. Let bottleneck(P)= min c¢(e).

ecP

Ford-Fulkerson idea: Repeat “find an augmenting path P and increase flow by bottleneck(P)” until
none left.

38 38



Ford-Fulkerson Algorithm

4 b
1 capacity
G: 4

10 3 6 10

2 \\\\\\\\\NY
@4 10 ——(© . 6 1o§®

(@]



Ford-Fulkerson Algorithm

0 flows not shown 4 b
1 capacity
G: 4
. T 8 \6 10 Flow value =0
@4 © : 0 1o§®

(b
/'ﬁ( 4 C\ residual capacity
Gf: /
2 8 \/6 10
@4 ; 6 103@

ﬁ



Ford-Fulkerson Algorithm

Oﬂommrmnshomil///ﬁfk::::::;\i
G:

8/10

/j>\\\\\\\ capacity

/?i“

8

g : .
Y residual capacity
/
6

2
64 O 9 \=@ 8/IO>®

2 10
/l\ \\\\\\\\Wb”\
~(© *(d 10>®

9

Flow value =0

+8=8
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Ford-Fulkerson Algorithm

2
é \‘Q— 8/103@

e
y \ I

G:
8/10 Flow value = 8




Ford-Fulkerson Algorithm

,ﬁk 4 ®\
+2=10
G:

8/10 2/2 8/8 6 10 Flow value = 8

i 1 \ \@ +2=10
10 —(©) 2/9 ~(d)— 8/10 —>

+2=10
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Ford-Fulkerson Algorithm

/Ci 4 b
G:
10/10  2/2 8/8 10 Flow value = 10
@4 10 — \{)7 10/10>®

@)




Ford-Fulkerson Algonthm

\p

8/8

6/10

10/10 2/2
v
@4 6/10 ——(c) \:()7 10/
+6 8
/C\ 4 O\
Gf:
2

oo

Flow value =10
+6=16
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Ford-Fulkerson Algonthm

10/10 2/2 8/8 6/10

Flow value = 16
4
64 6/10 —>(c) \:()7 10/1()}:@

/Cf? 4 /D\\
O'/ N 2 8\ 4 \
S 4 () 1 ’\é‘ 10&0
~ . R . -

U'




Ford-Fulkerson Algorithm

A

A

+2=8

6/6 6/10

G: 10/10 22 8/8
-2=0 \:07+2=8\®
/ v
6/10 —(©) 8/9 d 10/10—>

Flow value = 16
+2=18
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Ford-Fulkerson Algorithm

10/10 2 8/8 6/6 8/10

@4 8/10—>(c) 3/9\:@7 10/1()}:@

2
| \\*\
Gy 38
10 2 8\\\\\\\yé 2
A N

8

Flow value = 18
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Ford-Fulkerson Algorithm

10/10 2 8/8 6/6 8/10 Flow value = 18
= +1=9
1 +1=19
648/10—»@ 8/9 d 10/10—>
+1=9 +1=9

Y S
Bz SN TN
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Ford-Fulkerson Algorithm

10/10 2 7/8 6/6 9/10

@4 9/10—>(c) 9 /9\:@7 10/1()}:@

3
a 1 Br—_

. 9

O( ] 7x6 | %

s - //‘g ? @— 10

9

Flow value = 19
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