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Single-source shortest paths, with negative 
edge weights

Given:  an (un)directed graph 𝑮 = (𝑽, 𝑬) with each edge 𝒆 having a 
weight 𝒘(𝒆) and a vertex 𝒔

Find: (length of) shortest paths from 𝒔 to each vertex in 𝑮, or else 
indicate that there is a negative-cost cycle

Called the Bellman-Ford algorithm

(The original DP algorithm!)

(Also, the original shortest path algorithm!)



Bellman Ford– Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?



Final Recursive Structure
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≤ 𝑖 edges

𝑂𝑃𝑇 𝑖, 𝑡 = the weight of the shortest path from 𝑠 to 𝑡 with at most 𝑖 edges

𝑂𝑃𝑇 𝑖, 𝑡 =

0 if 𝑖 = 0 and 𝑠 = 𝑡
∞ if 𝑖 = 0 and 𝑠 ≠ 𝑡

min ൝
min
𝑢∈𝑉

𝑂𝑃𝑇 𝑖 − 1, 𝑢 + 𝑤(𝑢, 𝑡)

𝑂𝑃𝑇 𝑖 − 1, 𝑡

Where 𝑤(𝑢, 𝑡) is the weight of the edge from 𝑢 to 𝑡 if it exists and ∞ if not.

𝑖 − 1 edges

≤ 𝑖 − 1 edges

= min



Bellman Ford– Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

𝑖 − 1 edges

≤ 𝑖 − 1 edges

min



Identifying the Memory Structure
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𝑂𝑃𝑇 𝑖, 𝑡 =

0 if 𝑖 = 0 and 𝑠 = 𝑡
∞ if 𝑖 = 0 and 𝑠 ≠ 𝑡

min ൝
min
𝑢∈𝑉

𝑂𝑃𝑇 𝑖 − 1, 𝑢 + 𝑤(𝑢, 𝑡)

𝑂𝑃𝑇 𝑖 − 1, 𝑡

• How many parameters?
• 2

• What does each represent?
• 𝑖: the length of the path
• 𝑡: a node

• How many different values?
• 𝑖: 𝑉  (from length 0 up to 𝑉 − 1 if the path is simple)
• 𝑡: |𝑉| (one value per node)
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Top-Down Bellman-Ford

BF(𝑖, 𝑡):

 if OPT[𝑖][𝑡] not blank:    // Check if we’ve solved this already

  return OPT[𝑖][𝑗]

 if 𝑖 == 0:    // Check if this is a base case

  solution = 0 ? 𝑡 == 𝑠 : ∞

  OPT[𝑖][𝑡] = solution    // Always save your solution before returning 

  return solution

 solution = ∞

 for each 𝑢 ∈ 𝑉:

  solution = min(solution, BF(𝑖 − 1, 𝑢) +𝑤(𝑢, 𝑡)) // solve each subproblem, pick which to use

 solution = min(solution, BF(𝑖 − 1,𝑡)) // solve each subproblem, pick which to use

 OPT[𝑖][𝑡] = solution    // Always save your solution before returning

 return solution 7

This algorithm correctly finds shortest paths 
when there are no negative-cost cycles
How can we check for negative cost cycles?



Checking for Negative Cycles
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𝑂𝑃𝑇 𝑖, 𝑡 =

0 if 𝑖 = 0 and 𝑠 = 𝑡
∞ if 𝑖 = 0 and 𝑠 ≠ 𝑡

min ൝
min
𝑢∈𝑉

𝑂𝑃𝑇 𝑖 − 1, 𝑢 + 𝑤(𝑢, 𝑡)

𝑂𝑃𝑇 𝑖 − 1, 𝑡

• How many parameters?
• 2

• What does each represent?
• 𝑖: the length of the path
• 𝑡: a node

• How many different values?
• 𝒊: 𝑽 +1 

• a path of |𝑽| edges is not simple, so if any |𝑽|-edge path is 
shorter than one with fewer edges, there must be a negative 
cycle!

• 𝑡: |𝑉| (one value per node)
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Bellman Ford– Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

𝑖 − 1 edges

≤ 𝑖 − 1 edges

min



Order of Evaluations
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𝑂𝑃𝑇 𝑖, 𝑡 =

0 if 𝑖 = 0 and 𝑠 = 𝑡
∞ if 𝑖 = 0 and 𝑠 ≠ 𝑡

min ൝
min
𝑢∈𝑉

𝑂𝑃𝑇 𝑖 − 1, 𝑢 + 𝑤(𝑢, 𝑡)

𝑂𝑃𝑇 𝑖 − 1, 𝑡

Each cell depends on every value in the 
previous row

Solve in order of 𝑖
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Bottom-Up Bellman-Ford
BF(𝑠, 𝑡):

 OPT[0][𝑠] = 0   // Solve and save base cases

 for 𝑢 ∈ 𝑉 ∖ {𝑠}:

  OPT[0][𝑢] = ∞   // Solve and save base cases

 for 𝑖 = 0 up to 𝑉 :

  for 𝑢 ∈ 𝑉:

   for 𝑣 ∈ neighbors(𝑢):

    𝑂𝑃𝑇 𝑖 𝑢 = min(𝑂𝑃𝑇 𝑖 𝑢 , 𝑂𝑃𝑇[𝑖 − 1][ 𝑣]) // solve and pick

   𝑂𝑃𝑇 𝑖 𝑢 = min 𝑂𝑃𝑇 𝑖 𝑢 , 𝑂𝑃𝑇 𝑖 − 1 [𝑢]  // solve and pick

 for 𝑢 ∈ 𝑉:

  if 𝑂𝑃𝑇 |𝑉| 𝑢 < 𝑂𝑃𝑇 𝑉 − 1 [𝑢]: // check for negative cycles

   return “negative cycle”

 return OPT[𝑠][𝑡] // return the final answer
11



Bottom-Up Bellman-Ford
BF(𝑠, 𝑡):

 OPT[0][𝑠] = 0   // Solve and save base cases

 for 𝑢 ∈ 𝑉 ∖ {𝑠}:

  OPT[0][𝑢] = ∞   // Solve and save base cases

 for 𝑖 = 0 up to 𝑉 :

  for 𝑢 ∈ 𝑉:

   for 𝑣 ∈ neighbors(𝑢):

    𝑂𝑃𝑇 𝑖 𝑢 = min(𝑂𝑃𝑇 𝑖 𝑢 , 𝑂𝑃𝑇[𝑖 − 1][ 𝑣]) // solve and pick

   𝑂𝑃𝑇 𝑖 𝑢 = min 𝑂𝑃𝑇 𝑖 𝑢 , 𝑂𝑃𝑇 𝑖 − 1 [𝑢]  // solve and pick

 for 𝑢 ∈ 𝑉:

  if 𝑂𝑃𝑇 |𝑉| 𝑢 < 𝑂𝑃𝑇 𝑉 − 1 [𝑢]: // check for negative cycles

   return “negative cycle”

 return OPT[𝑠][𝑡] // return the final answer
12
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Bellman Ford– Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

𝑖 − 1 edges

≤ 𝑖 − 1 edges

min



Order of Evaluations

14

𝑂𝑃𝑇 𝑖, 𝑡 =

0 if 𝑖 = 0 and 𝑠 = 𝑡
∞ if 𝑖 = 0 and 𝑠 ≠ 𝑡

min ൝
min
𝑢∈𝑉

𝑂𝑃𝑇 𝑖 − 1, 𝑢 + 𝑤(𝑢, 𝑡)

𝑂𝑃𝑇 𝑖 − 1, 𝑡

Each cell depends only on values in the 
previous row

We only need two rows!
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Bellman Ford– Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

𝑖 − 1 edges

≤ 𝑖 − 1 edges

min



Alignment pattern:
• 2-D, O(1) in previous row, above, left, diagonal

• 𝑂(𝒏 ⋅ 𝒎) space

Dynamic Programming Patterns
Fibonacci pattern:

• 1-D, 𝑂(𝟏) immediately prior

• 𝑂(𝟏) space

Weighted interval scheduling pattern:

• 1-D, 𝑂(𝟏) arbitrary prior

• 𝑂(𝒏) space

Longest increasing subsequence pattern:

• 1-D, all 𝒏 − 𝟏 prior

• 𝑂(𝒏) space

16

𝑂(𝒏)

𝑂(𝒏)

𝑂(𝒏𝟐)

𝑂(𝒏𝒎)

Bellman Ford pattern:
• 2-D, O(|V|) in previous row, 

• 𝑂(|𝑉|) space

𝑂(|𝑉||𝐸|)



Origins of Max Flow and Min Cut Problems

Max Flow problem formulation: 

• [Tolstoy 1930] Rail transportation 
planning for the Soviet Union

Min Cut problem formulation:

• Cold War:  US military planners 
want to find a way to cripple 
Soviet supply routes

• [Harris 1954] Secret RAND corp 
report for US Air Force

[Ford-Fulkerson 1955] Problems are 
   equivalent

Soviet Rail Network 1955

26

Reference:  On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.
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Flow network:
• Abstraction for material flowing through the edges.
• 𝑮 = (𝑽, 𝑬)  directed graph, no parallel edges.
• Two distinguished nodes:  𝒔 = source, 𝒕 = sink.
• 𝒄(𝒆) = capacity of edge 𝒆 ≥ 0.

Flow Network
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t
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9

6 10
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10154

4
capacity

source sink



Defn: An 𝒔-𝒕 flow in a flow network is a function 𝒇:  𝑬 → ℝ that satisfies:
• For each 𝒆 ∈ 𝑬: 𝟎 ≤  𝒇 𝒆 ≤  𝒄(𝒆)                                     [capacity constraints]

• For each 𝒗 ∈ 𝑽 − {𝒔, 𝒕} :

Defn: The value of flow 𝒇,

 



𝒆 into 𝒗

𝒇 𝒆 = 

𝒆 out of 𝒗

𝒇(𝒆)
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Flows

s
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0/100/154/4
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[flow conservation]

𝒗 𝒇 = 

𝒆 out of 𝒔

𝒇 𝒆

value = 4



Defn: An 𝒔-𝒕 flow in a flow network is a function 𝒇:  𝑬 → ℝ that satisfies:
• For each 𝒆 ∈ 𝑬: 𝟎 ≤  𝒇 𝒆 ≤  𝒄(𝒆)                                     [capacity constraints]

• For each 𝒗 ∈ 𝑽 − {𝒔, 𝒕} :

Defn: The value of flow 𝒇,

 



𝒆 into 𝒗

𝒇 𝒆 = 

𝒆 out of 𝒗

𝒇(𝒆)
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Flows
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[flow conservation]

𝒗 𝒇 = 

𝒆 out of 𝒔

𝒇 𝒆

value = 4

Only show non-zero values of 𝒇



Defn: An 𝒔-𝒕 flow in a flow network is a function 𝒇:  𝑬 → ℝ that satisfies:
• For each 𝒆 ∈ 𝑬: 𝟎 ≤  𝒇 𝒆 ≤  𝒄(𝒆)                                     [capacity constraints]

• For each 𝒗 ∈ 𝑽 − {𝒔, 𝒕} :

Defn: The value of flow 𝒇,

 



𝒆 into 𝒗

𝒇 𝒆 = 

𝒆 out of 𝒗

𝒇(𝒆)
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Flows
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[flow conservation]

𝒗 𝒇 = 

𝒆 out of 𝒔

𝒇 𝒆

value = 24

Only show non-zero values of 𝒇



Given: a flow network 

Find: an 𝒔-𝒕 flow of maximum value
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Maximum Flow Problem
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Towards a Max Flow Algorithm
What about the following greedy algorithm?

• Start with 𝒇(𝒆)  =  𝟎 for all edges 𝒆 ∈ 𝑬.

• While there is an 𝒔-𝒕 path 𝑷 where each edge has 𝒇 𝒆 < 𝒄(𝒆).

• “Augment” flow along 𝑷; that is:
• Let 𝜶 = min

𝒆∈𝑷
(𝒄 𝒆 − 𝒇 𝒆 )

• Add 𝜶 to flow on every edge 𝒆 along path 𝑷.  (Adds 𝜶 to 𝒗(𝒇).)

Can get stuck...
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Has flow value 20
and no path 𝑷 

but 30 is possible
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On every 𝒔-𝒕 path there is some edge with 𝒇 𝒆 = 𝒄(𝒆):
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Another “Stuck” Example
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4

Value of flow = 24

Next idea: Ford-Fulkerson Algorithm, which applies greedy ideas to a 
“residual graph” that lets us reverse prior flow decisions from the basic 
greedy approach to get optimal results!



Greed Revisited: Residual Graph & Augmenting Paths
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s

u

v

t
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s

u

v

t
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2010

Suppose that we took this flow 𝒇 as a baseline, what 
changes could each edge handle?
• We could add up to 10 units along sv or ut or uv
• We could reduce by up to 20 units from su or uv or vt
This gives us a residual graph 𝑮𝒇 of possible changes 

where we draw reducing as “sending back”.

The only way we could route more flow from s to t 
would be to reduce the flow from u to v to make room 
for that amount of extra flow from s to v.
But to conserve flow we also would need to increase 
the flow from u to t by that same amount.



s
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v

t
20 10

10 20

20 10

Greed Revisited: Residual Graph & Augmenting Paths
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s

u

v

t
20/20 10

10 20/20

20/30

s

u

v

t
20 10

10 20

20 10

Residual graph 
𝑮𝒇 

Path in 𝑮𝒇 
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Greed Revisited: Residual Graph & Augmenting Paths
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New residual 
graph 𝑮𝒇 

No path can even leave 𝒔!



Residual Graphs

An alternative way to represent a flow network

• Represents the net available flow between two nodes

Original edge:  𝒆 = 𝒖, 𝒗 ∈ 𝑬.

• Flow 𝒇(𝒆), capacity 𝒄(𝒆).

Residual edges of two kinds:

• Forward:  𝒆 = (𝒖, 𝒗) with capacity 𝒄𝒇 𝒆 = 𝒄 𝒆 − 𝒇 𝒆

• Amount of extra flow we can add along 𝒆

• Backward: 𝒆R  = (𝒗, 𝒖) with capacity 𝒄𝒇 𝒆 = 𝒇 𝒆

• Amount we can reduce/undo flow along 𝒆

Residual graph:  𝑮𝒇 = (𝑽, 𝑬𝒇).

• Residual edges with residual capacity 𝒄𝒇 𝒆 > 𝟎.

• 𝑬𝒇 = 𝒆 ∶  𝒇 𝒆 < 𝒄 𝒆 ∪ {𝒆R:  𝒇 𝒆 >  𝟎}.

u v6/17

u v11

residual capacity

6

residual capacity

37
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Residual Graphs and Augmenting Paths
Residual edges of two kinds:

• Forward:  𝒆 = (𝒖, 𝒗) with capacity 𝒄𝒇 𝒆 = 𝒄 𝒆 − 𝒇 𝒆

• Amount of extra flow we can add along 𝒆

• Backward: 𝒆R  = (𝒗, 𝒖) with capacity 𝒄𝒇 𝒆 = 𝒇 𝒆

• Amount we can reduce/undo flow along 𝒆

Residual graph:  𝑮𝒇 = (𝑽, 𝑬𝒇).

• Residual edges with residual capacity 𝒄𝒇 𝒆 > 𝟎.

• 𝑬𝒇 = 𝒆 ∶  𝒇 𝒆 < 𝒄 𝒆 ∪ {𝒆R:  𝒇 𝒆 >  𝟎}.

Augmenting Path: Any 𝒔-𝒕 path 𝑷 in 𝑮𝒇.         Let bottleneck(𝑷)= min
𝒆∈𝑷

 𝒄𝒇(𝒆).

Ford-Fulkerson idea:  Repeat “find an augmenting path 𝑷 and increase flow by bottleneck(𝑷)” until 
  none left.

u v11

residual capacity

6

residual capacity

38



Ford-Fulkerson Algorithm

𝑮:
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Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:
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0 flows not shown
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Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:
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Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:
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Flow value = 8

42



Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:
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Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:

s

a

c

b

d t10

10/10

2/9

8/8

4

10/10

1062/2 Flow value = 10

s

a

c

b

d t10 7

4

1062

10

810

2
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𝑮:

𝑮𝒇:

s

a

c

b

d t10

10/10

2/9

8/8

4

10/10

1062/2 Flow value = 10

s

a

c

b

d t10 7

4

1062

10

810

2

+6=8

+6=16

6/

6/ 6/
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𝑮:

𝑮𝒇:

s

a

c

b

d t6/10

10/10

8/9

8/8

4

10/10

6/106/62/2 Flow value = 16

s

a

c

b

d t4 1

4

462

10

810

86

6
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𝑮:

𝑮𝒇:

s

a

c

b

d t6/10

10/10

8/9

8/8

4

10/10

6/106/6 Flow value = 16

s

a

c

b

d t4 1

4

462

10

810

86

6

+2=18

+2=8

-2=0 +2=8
2/2

2/
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𝑮:

𝑮𝒇:

s

a

c

b

d t8/10

10/10

8/9

8/8

2/4

10/10

8/106/62

s

a

c

b

d t2 1

2

262

10

810

8

8

2

8

Flow value = 18
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𝑮:

𝑮𝒇:

s

a

c

b

d t8/10

10/10

8/9

8/8

2/4

10/10

8/106/62

s

a

c

b

d t2 1

2

262

10

810

8

8

2

8

Flow value = 18

+1=9 +1=9

-1=7

+1=3

+1=9 +1=19
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Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:

s

a

c

b

d t9/10

10/10

9/9

7/8

3/4

10/10

9/106/62

s

a

c

b

d t1 9

1

162

10

710

9

9

3

1

Flow value = 19

50


	Slide 1: CSE 421 Winter 2025 Lecture 15: Bellman-Ford Max Flow 
	Slide 2: Single-source shortest paths, with negative edge weights
	Slide 3:  Bellman Ford– Four Steps
	Slide 4: Final Recursive Structure
	Slide 5:  Bellman Ford– Four Steps
	Slide 6: Identifying the Memory Structure
	Slide 7: Top-Down Bellman-Ford
	Slide 8: Checking for Negative Cycles
	Slide 9:  Bellman Ford– Four Steps
	Slide 10: Order of Evaluations
	Slide 11: Bottom-Up Bellman-Ford
	Slide 12: Bottom-Up Bellman-Ford
	Slide 13:  Bellman Ford– Four Steps
	Slide 14: Order of Evaluations
	Slide 15:  Bellman Ford– Four Steps
	Slide 16: Dynamic Programming Patterns
	Slide 26: Origins of Max Flow and Min Cut Problems
	Slide 27: Flow Network
	Slide 28: Flows
	Slide 29: Flows
	Slide 30: Flows
	Slide 31: Maximum Flow Problem
	Slide 32: Towards a Max Flow Algorithm
	Slide 33: Another “Stuck” Example
	Slide 34: Greed Revisited: Residual Graph & Augmenting Paths
	Slide 35: Greed Revisited: Residual Graph & Augmenting Paths
	Slide 36: Greed Revisited: Residual Graph & Augmenting Paths
	Slide 37: Residual Graphs
	Slide 38: Residual Graphs and Augmenting Paths
	Slide 39: Ford-Fulkerson Algorithm
	Slide 40: Ford-Fulkerson Algorithm
	Slide 41: Ford-Fulkerson Algorithm
	Slide 42: Ford-Fulkerson Algorithm
	Slide 43: Ford-Fulkerson Algorithm
	Slide 44: Ford-Fulkerson Algorithm
	Slide 45: Ford-Fulkerson Algorithm
	Slide 46: Ford-Fulkerson Algorithm
	Slide 47: Ford-Fulkerson Algorithm
	Slide 48: Ford-Fulkerson Algorithm
	Slide 49: Ford-Fulkerson Algorithm
	Slide 50: Ford-Fulkerson Algorithm

