
CSE 421 Winter 2025
Lecture 15: Bellman-Ford

Max Flow
Nathan Brunelle

http://www.cs.uw.edu/421

http://www.cs.uw.edu/421

2

Single-source shortest paths, with negative
edge weights

Given: an (un)directed graph 𝑮 = (𝑽, 𝑬) with each edge 𝒆 having a
weight 𝒘(𝒆) and a vertex 𝒔

Find: (length of) shortest paths from 𝒔 to each vertex in 𝑮, or else
indicate that there is a negative-cost cycle

Called the Bellman-Ford algorithm

(The original DP algorithm!)

(Also, the original shortest path algorithm!)

Bellman Ford– Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

Final Recursive Structure

4

≤ 𝑖 edges

𝑂𝑃𝑇 𝑖, 𝑡 = the weight of the shortest path from 𝑠 to 𝑡 with at most 𝑖 edges

𝑂𝑃𝑇 𝑖, 𝑡 =

0 if 𝑖 = 0 and 𝑠 = 𝑡
∞ if 𝑖 = 0 and 𝑠 ≠ 𝑡

min ൝
min
𝑢∈𝑉

𝑂𝑃𝑇 𝑖 − 1, 𝑢 + 𝑤(𝑢, 𝑡)

𝑂𝑃𝑇 𝑖 − 1, 𝑡

Where 𝑤(𝑢, 𝑡) is the weight of the edge from 𝑢 to 𝑡 if it exists and ∞ if not.

𝑖 − 1 edges

≤ 𝑖 − 1 edges

= min

Bellman Ford– Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

𝑖 − 1 edges

≤ 𝑖 − 1 edges

min

Identifying the Memory Structure

6

𝑂𝑃𝑇 𝑖, 𝑡 =

0 if 𝑖 = 0 and 𝑠 = 𝑡
∞ if 𝑖 = 0 and 𝑠 ≠ 𝑡

min ൝
min
𝑢∈𝑉

𝑂𝑃𝑇 𝑖 − 1, 𝑢 + 𝑤(𝑢, 𝑡)

𝑂𝑃𝑇 𝑖 − 1, 𝑡

• How many parameters?
• 2

• What does each represent?
• 𝑖: the length of the path
• 𝑡: a node

• How many different values?
• 𝑖: 𝑉 (from length 0 up to 𝑉 − 1 if the path is simple)
• 𝑡: |𝑉| (one value per node)

2 3 5 64 7

5

1

2

3

4

6

1

0

Top-Down Bellman-Ford

BF(𝑖, 𝑡):

 if OPT[𝑖][𝑡] not blank: // Check if we’ve solved this already

 return OPT[𝑖][𝑗]

 if 𝑖 == 0: // Check if this is a base case

 solution = 0 ? 𝑡 == 𝑠 : ∞

 OPT[𝑖][𝑡] = solution // Always save your solution before returning

 return solution

 solution = ∞

 for each 𝑢 ∈ 𝑉:

 solution = min(solution, BF(𝑖 − 1, 𝑢) +𝑤(𝑢, 𝑡)) // solve each subproblem, pick which to use

 solution = min(solution, BF(𝑖 − 1,𝑡)) // solve each subproblem, pick which to use

 OPT[𝑖][𝑡] = solution // Always save your solution before returning

 return solution 7

This algorithm correctly finds shortest paths
when there are no negative-cost cycles
How can we check for negative cost cycles?

Checking for Negative Cycles

8

𝑂𝑃𝑇 𝑖, 𝑡 =

0 if 𝑖 = 0 and 𝑠 = 𝑡
∞ if 𝑖 = 0 and 𝑠 ≠ 𝑡

min ൝
min
𝑢∈𝑉

𝑂𝑃𝑇 𝑖 − 1, 𝑢 + 𝑤(𝑢, 𝑡)

𝑂𝑃𝑇 𝑖 − 1, 𝑡

• How many parameters?
• 2

• What does each represent?
• 𝑖: the length of the path
• 𝑡: a node

• How many different values?
• 𝒊: 𝑽 +1

• a path of |𝑽| edges is not simple, so if any |𝑽|-edge path is
shorter than one with fewer edges, there must be a negative
cycle!

• 𝑡: |𝑉| (one value per node)

2 3 5 64 7

5

1

2

3

4

6

1

0

7

Bellman Ford– Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

𝑖 − 1 edges

≤ 𝑖 − 1 edges

min

Order of Evaluations

10

𝑂𝑃𝑇 𝑖, 𝑡 =

0 if 𝑖 = 0 and 𝑠 = 𝑡
∞ if 𝑖 = 0 and 𝑠 ≠ 𝑡

min ൝
min
𝑢∈𝑉

𝑂𝑃𝑇 𝑖 − 1, 𝑢 + 𝑤(𝑢, 𝑡)

𝑂𝑃𝑇 𝑖 − 1, 𝑡

Each cell depends on every value in the
previous row

Solve in order of 𝑖

2 3 5 64 7

5

1

2

3

4

6

1

0

7

Bottom-Up Bellman-Ford
BF(𝑠, 𝑡):

 OPT[0][𝑠] = 0 // Solve and save base cases

 for 𝑢 ∈ 𝑉 ∖ {𝑠}:

 OPT[0][𝑢] = ∞ // Solve and save base cases

 for 𝑖 = 0 up to 𝑉 :

 for 𝑢 ∈ 𝑉:

 for 𝑣 ∈ neighbors(𝑢):

 𝑂𝑃𝑇 𝑖 𝑢 = min(𝑂𝑃𝑇 𝑖 𝑢 , 𝑂𝑃𝑇[𝑖 − 1][𝑣]) // solve and pick

 𝑂𝑃𝑇 𝑖 𝑢 = min 𝑂𝑃𝑇 𝑖 𝑢 , 𝑂𝑃𝑇 𝑖 − 1 [𝑢] // solve and pick

 for 𝑢 ∈ 𝑉:

 if 𝑂𝑃𝑇 |𝑉| 𝑢 < 𝑂𝑃𝑇 𝑉 − 1 [𝑢]: // check for negative cycles

 return “negative cycle”

 return OPT[𝑠][𝑡] // return the final answer
11

Bottom-Up Bellman-Ford
BF(𝑠, 𝑡):

 OPT[0][𝑠] = 0 // Solve and save base cases

 for 𝑢 ∈ 𝑉 ∖ {𝑠}:

 OPT[0][𝑢] = ∞ // Solve and save base cases

 for 𝑖 = 0 up to 𝑉 :

 for 𝑢 ∈ 𝑉:

 for 𝑣 ∈ neighbors(𝑢):

 𝑂𝑃𝑇 𝑖 𝑢 = min(𝑂𝑃𝑇 𝑖 𝑢 , 𝑂𝑃𝑇[𝑖 − 1][𝑣]) // solve and pick

 𝑂𝑃𝑇 𝑖 𝑢 = min 𝑂𝑃𝑇 𝑖 𝑢 , 𝑂𝑃𝑇 𝑖 − 1 [𝑢] // solve and pick

 for 𝑢 ∈ 𝑉:

 if 𝑂𝑃𝑇 |𝑉| 𝑢 < 𝑂𝑃𝑇 𝑉 − 1 [𝑢]: // check for negative cycles

 return “negative cycle”

 return OPT[𝑠][𝑡] // return the final answer
12

Θ(1)

Θ(|𝑉|)

Θ(|𝑉||𝐸|)

Θ(|𝑉|)

Θ(1)

Bellman Ford– Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

𝑖 − 1 edges

≤ 𝑖 − 1 edges

min

Order of Evaluations

14

𝑂𝑃𝑇 𝑖, 𝑡 =

0 if 𝑖 = 0 and 𝑠 = 𝑡
∞ if 𝑖 = 0 and 𝑠 ≠ 𝑡

min ൝
min
𝑢∈𝑉

𝑂𝑃𝑇 𝑖 − 1, 𝑢 + 𝑤(𝑢, 𝑡)

𝑂𝑃𝑇 𝑖 − 1, 𝑡

Each cell depends only on values in the
previous row

We only need two rows!

2 3 5 64 7

5

1

2

3

4

6

1

0

7

Bellman Ford– Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

𝑖 − 1 edges

≤ 𝑖 − 1 edges

min

Alignment pattern:
• 2-D, O(1) in previous row, above, left, diagonal

• 𝑂(𝒏 ⋅ 𝒎) space

Dynamic Programming Patterns
Fibonacci pattern:

• 1-D, 𝑂(𝟏) immediately prior

• 𝑂(𝟏) space

Weighted interval scheduling pattern:

• 1-D, 𝑂(𝟏) arbitrary prior

• 𝑂(𝒏) space

Longest increasing subsequence pattern:

• 1-D, all 𝒏 − 𝟏 prior

• 𝑂(𝒏) space

16

𝑂(𝒏)

𝑂(𝒏)

𝑂(𝒏𝟐)

𝑂(𝒏𝒎)

Bellman Ford pattern:
• 2-D, O(|V|) in previous row,

• 𝑂(|𝑉|) space

𝑂(|𝑉||𝐸|)

Origins of Max Flow and Min Cut Problems

Max Flow problem formulation:

• [Tolstoy 1930] Rail transportation
planning for the Soviet Union

Min Cut problem formulation:

• Cold War: US military planners
want to find a way to cripple
Soviet supply routes

• [Harris 1954] Secret RAND corp
report for US Air Force

[Ford-Fulkerson 1955] Problems are
 equivalent

Soviet Rail Network 1955

26

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

27

Flow network:
• Abstraction for material flowing through the edges.
• 𝑮 = (𝑽, 𝑬) directed graph, no parallel edges.
• Two distinguished nodes: 𝒔 = source, 𝒕 = sink.
• 𝒄(𝒆) = capacity of edge 𝒆 ≥ 0.

Flow Network

s

a

b

c

d

e

f

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
capacity

source sink

Defn: An 𝒔-𝒕 flow in a flow network is a function 𝒇: 𝑬 → ℝ that satisfies:
• For each 𝒆 ∈ 𝑬: 𝟎 ≤ 𝒇 𝒆 ≤ 𝒄(𝒆) [capacity constraints]

• For each 𝒗 ∈ 𝑽 − {𝒔, 𝒕} :

Defn: The value of flow 𝒇,

𝒆 into 𝒗

𝒇 𝒆 =

𝒆 out of 𝒗

𝒇(𝒆)

28

Flows

s

a

b

c

d

e

f

t

0/15

0/5

0/30

0/15

4/10

4/8

0/15

0/9

0/6 0/10

4/10

0/100/154/4

0/4

[flow conservation]

𝒗 𝒇 =

𝒆 out of 𝒔

𝒇 𝒆

value = 4

Defn: An 𝒔-𝒕 flow in a flow network is a function 𝒇: 𝑬 → ℝ that satisfies:
• For each 𝒆 ∈ 𝑬: 𝟎 ≤ 𝒇 𝒆 ≤ 𝒄(𝒆) [capacity constraints]

• For each 𝒗 ∈ 𝑽 − {𝒔, 𝒕} :

Defn: The value of flow 𝒇,

𝒆 into 𝒗

𝒇 𝒆 =

𝒆 out of 𝒗

𝒇(𝒆)

29

Flows

s

a

b

c

d

e

f

t

15

5

30

15

4/10

4/8

15

9

6 10

4/10

10154/4

4

[flow conservation]

𝒗 𝒇 =

𝒆 out of 𝒔

𝒇 𝒆

value = 4

Only show non-zero values of 𝒇

Defn: An 𝒔-𝒕 flow in a flow network is a function 𝒇: 𝑬 → ℝ that satisfies:
• For each 𝒆 ∈ 𝑬: 𝟎 ≤ 𝒇 𝒆 ≤ 𝒄(𝒆) [capacity constraints]

• For each 𝒗 ∈ 𝑽 − {𝒔, 𝒕} :

Defn: The value of flow 𝒇,

𝒆 into 𝒗

𝒇 𝒆 =

𝒆 out of 𝒗

𝒇(𝒆)

30

Flows

s

a

b

c

d

e

f

t

11/15

3/5

11/30

15

10/10

8/8

15

6/9

1/6 10/10

8/10

6/10154/4

4

[flow conservation]

𝒗 𝒇 =

𝒆 out of 𝒔

𝒇 𝒆

value = 24

Only show non-zero values of 𝒇

Given: a flow network

Find: an 𝒔-𝒕 flow of maximum value

31

Maximum Flow Problem

s

a

b

c

d

e

f

t

11/15

3/5

11/30

15

10/10

8/8

15

6/9

1/6 10/10

8/10

6/10154/4

4

value = 24

32

Towards a Max Flow Algorithm
What about the following greedy algorithm?

• Start with 𝒇(𝒆) = 𝟎 for all edges 𝒆 ∈ 𝑬.

• While there is an 𝒔-𝒕 path 𝑷 where each edge has 𝒇 𝒆 < 𝒄(𝒆).

• “Augment” flow along 𝑷; that is:
• Let 𝜶 = min

𝒆∈𝑷
(𝒄 𝒆 − 𝒇 𝒆)

• Add 𝜶 to flow on every edge 𝒆 along path 𝑷. (Adds 𝜶 to 𝒗(𝒇).)

Can get stuck...

s

u

v

t
20/20 10

10 20/20

20/30

Has flow value 20
and no path 𝑷

but 30 is possible

s

u

v

t
20/20 10/10

20/20

10/30

10/10

On every 𝒔-𝒕 path there is some edge with 𝒇 𝒆 = 𝒄(𝒆):

33

Another “Stuck” Example

s

a

b

c

d

e

f

t

11/15

3/5

11/30

15

10/10

8/8

15

6/9

1/6 10/10

8/10

6/10154/4

4

Value of flow = 24

Next idea: Ford-Fulkerson Algorithm, which applies greedy ideas to a
“residual graph” that lets us reverse prior flow decisions from the basic
greedy approach to get optimal results!

Greed Revisited: Residual Graph & Augmenting Paths

34

s

u

v

t
20/20 10

10 20/20

20/30

s

u

v

t
20 10

10 20

2010

Suppose that we took this flow 𝒇 as a baseline, what
changes could each edge handle?
• We could add up to 10 units along sv or ut or uv
• We could reduce by up to 20 units from su or uv or vt
This gives us a residual graph 𝑮𝒇 of possible changes

where we draw reducing as “sending back”.

The only way we could route more flow from s to t
would be to reduce the flow from u to v to make room
for that amount of extra flow from s to v.
But to conserve flow we also would need to increase
the flow from u to t by that same amount.

s

u

v

t
20 10

10 20

20 10

Greed Revisited: Residual Graph & Augmenting Paths

35

s

u

v

t
20/20 10

10 20/20

20/30

s

u

v

t
20 10

10 20

20 10

Residual graph
𝑮𝒇

Path in 𝑮𝒇

s

u

v

t
20/20 10/10

10/10 20/20

10/30

Augment flow
along path

s

u

v

t
20/20 10/10

10/10 20/20

10/30

Greed Revisited: Residual Graph & Augmenting Paths

36

s

u

v

t
20 10

10 20

10 20

New residual
graph 𝑮𝒇

No path can even leave 𝒔!

Residual Graphs

An alternative way to represent a flow network

• Represents the net available flow between two nodes

Original edge: 𝒆 = 𝒖, 𝒗 ∈ 𝑬.

• Flow 𝒇(𝒆), capacity 𝒄(𝒆).

Residual edges of two kinds:

• Forward: 𝒆 = (𝒖, 𝒗) with capacity 𝒄𝒇 𝒆 = 𝒄 𝒆 − 𝒇 𝒆

• Amount of extra flow we can add along 𝒆

• Backward: 𝒆R = (𝒗, 𝒖) with capacity 𝒄𝒇 𝒆 = 𝒇 𝒆

• Amount we can reduce/undo flow along 𝒆

Residual graph: 𝑮𝒇 = (𝑽, 𝑬𝒇).

• Residual edges with residual capacity 𝒄𝒇 𝒆 > 𝟎.

• 𝑬𝒇 = 𝒆 ∶ 𝒇 𝒆 < 𝒄 𝒆 ∪ {𝒆R: 𝒇 𝒆 > 𝟎}.

u v6/17

u v11

residual capacity

6

residual capacity

37

38

Residual Graphs and Augmenting Paths
Residual edges of two kinds:

• Forward: 𝒆 = (𝒖, 𝒗) with capacity 𝒄𝒇 𝒆 = 𝒄 𝒆 − 𝒇 𝒆

• Amount of extra flow we can add along 𝒆

• Backward: 𝒆R = (𝒗, 𝒖) with capacity 𝒄𝒇 𝒆 = 𝒇 𝒆

• Amount we can reduce/undo flow along 𝒆

Residual graph: 𝑮𝒇 = (𝑽, 𝑬𝒇).

• Residual edges with residual capacity 𝒄𝒇 𝒆 > 𝟎.

• 𝑬𝒇 = 𝒆 ∶ 𝒇 𝒆 < 𝒄 𝒆 ∪ {𝒆R: 𝒇 𝒆 > 𝟎}.

Augmenting Path: Any 𝒔-𝒕 path 𝑷 in 𝑮𝒇. Let bottleneck(𝑷)= min
𝒆∈𝑷

 𝒄𝒇(𝒆).

Ford-Fulkerson idea: Repeat “find an augmenting path 𝑷 and increase flow by bottleneck(𝑷)” until
 none left.

u v11

residual capacity

6

residual capacity

38

Ford-Fulkerson Algorithm

𝑮:

s

a

c

b

d t10

10

9

8

4

10

1062

capacity

39

Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:

s

a

c

b

d t10

10

9

8

4

10

1062 Flow value = 0

s

a

c

b

d t10

10

9

8

4

10

1062

residual capacity

capacity
0 flows not shown

40

Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:

s

a

c

b

d t10

10

9

8

4

10

1062 Flow value = 0

s

a

c

b

d t10

10

9

8

4

10

1062

residual capacity

capacity
0 flows not shown

8/ 8/

8/

+8=8

41

Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:

s

a

c

b

d t10

8/10

9

8/8

4

8/10

1062

s

a

c

b

d t10 9

4

1062

2

82

8

8

Flow value = 8

42

Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:

s

a

c

b

d t10

8/10

9

8/8

4

8/10

1062

s

a

c

b

d t10 9

4

1062

2

82

8

8

Flow value = 8

2/

2/

+2=10

+2=10

+2=10

43

Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:

s

a

c

b

d t10

10/10

2/9

8/8

4

10/10

1062/2 Flow value = 10

s

a

c

b

d t10 7

4

1062

10

810

2

44

Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:

s

a

c

b

d t10

10/10

2/9

8/8

4

10/10

1062/2 Flow value = 10

s

a

c

b

d t10 7

4

1062

10

810

2

+6=8

+6=16

6/

6/ 6/

45

Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:

s

a

c

b

d t6/10

10/10

8/9

8/8

4

10/10

6/106/62/2 Flow value = 16

s

a

c

b

d t4 1

4

462

10

810

86

6

46

Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:

s

a

c

b

d t6/10

10/10

8/9

8/8

4

10/10

6/106/6 Flow value = 16

s

a

c

b

d t4 1

4

462

10

810

86

6

+2=18

+2=8

-2=0 +2=8
2/2

2/

47

Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:

s

a

c

b

d t8/10

10/10

8/9

8/8

2/4

10/10

8/106/62

s

a

c

b

d t2 1

2

262

10

810

8

8

2

8

Flow value = 18

48

Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:

s

a

c

b

d t8/10

10/10

8/9

8/8

2/4

10/10

8/106/62

s

a

c

b

d t2 1

2

262

10

810

8

8

2

8

Flow value = 18

+1=9 +1=9

-1=7

+1=3

+1=9 +1=19

49

Ford-Fulkerson Algorithm

𝑮:

𝑮𝒇:

s

a

c

b

d t9/10

10/10

9/9

7/8

3/4

10/10

9/106/62

s

a

c

b

d t1 9

1

162

10

710

9

9

3

1

Flow value = 19

50

	Slide 1: CSE 421 Winter 2025 Lecture 15: Bellman-Ford Max Flow
	Slide 2: Single-source shortest paths, with negative edge weights
	Slide 3: Bellman Ford– Four Steps
	Slide 4: Final Recursive Structure
	Slide 5: Bellman Ford– Four Steps
	Slide 6: Identifying the Memory Structure
	Slide 7: Top-Down Bellman-Ford
	Slide 8: Checking for Negative Cycles
	Slide 9: Bellman Ford– Four Steps
	Slide 10: Order of Evaluations
	Slide 11: Bottom-Up Bellman-Ford
	Slide 12: Bottom-Up Bellman-Ford
	Slide 13: Bellman Ford– Four Steps
	Slide 14: Order of Evaluations
	Slide 15: Bellman Ford– Four Steps
	Slide 16: Dynamic Programming Patterns
	Slide 26: Origins of Max Flow and Min Cut Problems
	Slide 27: Flow Network
	Slide 28: Flows
	Slide 29: Flows
	Slide 30: Flows
	Slide 31: Maximum Flow Problem
	Slide 32: Towards a Max Flow Algorithm
	Slide 33: Another “Stuck” Example
	Slide 34: Greed Revisited: Residual Graph & Augmenting Paths
	Slide 35: Greed Revisited: Residual Graph & Augmenting Paths
	Slide 36: Greed Revisited: Residual Graph & Augmenting Paths
	Slide 37: Residual Graphs
	Slide 38: Residual Graphs and Augmenting Paths
	Slide 39: Ford-Fulkerson Algorithm
	Slide 40: Ford-Fulkerson Algorithm
	Slide 41: Ford-Fulkerson Algorithm
	Slide 42: Ford-Fulkerson Algorithm
	Slide 43: Ford-Fulkerson Algorithm
	Slide 44: Ford-Fulkerson Algorithm
	Slide 45: Ford-Fulkerson Algorithm
	Slide 46: Ford-Fulkerson Algorithm
	Slide 47: Ford-Fulkerson Algorithm
	Slide 48: Ford-Fulkerson Algorithm
	Slide 49: Ford-Fulkerson Algorithm
	Slide 50: Ford-Fulkerson Algorithm

