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Dynamic Programming Patterns

Fibonacci pattern:
• 1-D, immediately prior
• space

Weighted interval scheduling pattern:
• 1-D, arbitrary prior
• space

Longest increasing subsequence pattern:
• 1-D, all prior
• space
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𝟐



How similar are two strings?
• ocurrance
• occurrence
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String Similarity
o c u r r a n c e

c c u r r e n c eo

-

6 mismatches, 1 gap

o c u r r a n c e

c c u r r e n c eo

-

1 mismatch, 1 gap

o c u r r n c e

c c u r r n c eo

- - a

e -

0 mismatches, 3 gaps

Clearly a better 
matching

Maybe a better matching 
• depends on cost of 

gaps vs mismatches
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Applications:
• Basis for Unix diff.
• Speech recognition.
• Computational biology.
• autocorrect

Edit distance: [Levenshtein 1966, Needleman-Wunsch 1970]
• Gap penalty 𝜹; mismatch penalty 𝜶𝒑𝒒 if symbol 𝒑 is replaced by symbol 𝒒.
• Cost =  gap penalties + mismatch penalties.

4

Edit Distance

C G A C C T A C C T

C T G A C T A C A T

T

C

𝜶TC + 𝜶GT + 𝜶AG + 𝟐𝜶CA

T G A C C T A C C T

C T G A C T A C A T

- C

C -

𝟐𝜹 + 𝜶CA
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Sequence Alignment:
Given: Two strings 𝑿 = 𝒙𝟏𝒙𝟐 … 𝒙𝒎 and 𝒀 = 𝒚𝟏𝒚𝟐 … 𝒚𝒏

Find: “Alignment” of 𝑿 and 𝒀 of minimum edit cost.

Defn: An alignment 𝑴 of 𝑿 and 𝒀 is a set of ordered pairs 𝒙𝒊-𝒚𝒋

s.t. each symbol of 𝑿 and 𝒀 occurs in at most one pair 
with no “crossing pairs”.

The pairs 𝒙𝒊-𝒚𝒋 and 𝒙𝒊ᇲ-𝒚𝒋ᇲ cross iff 𝒊 < 𝒊′ but 𝒋 > 𝒋′.

Sequence Alignment

cost 𝑴 = ෍ 𝜶𝒙𝒊𝒚𝒋

𝒙𝒊,𝒚𝒋 ∈𝑴

+ ෍ 𝜹

𝒊∶ 𝒙𝒊 ୳୬୫ୟ୲ୡ୦ୣୢ

+ ෍ 𝜹

𝒋:  𝒚𝒋 ୳୬୫ୟ୲ୡ୦ୣୢ

 mismatch gap

C T A C C -

T A C A T-

G

G

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 𝒚𝟔

𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓𝒙𝟏 𝒙𝟔

Example:
CTACCG vs TACATG

𝑴 = {𝒙𝟐−𝒚𝟏, 𝒙𝟑-𝒚𝟐, 𝒙𝟒-𝒚𝟑, 𝒙𝟓-𝒚𝟒, 𝒙𝟔-𝒚𝟔}

Note: if 𝒙𝒊 = 𝒚𝒋 then 𝜶𝒙𝒊𝒚𝒋
= 𝟎
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Edit Distance – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?
• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.
• How many subproblems (options for last choice) are there?
• What are the parameters needed to identify each?
• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.
• With this step: a “Bottom-up” (iterative) algorithm
• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?



Step 1: Identify Recursive Structure
T A C A T G

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 𝒚𝟔

C T A C C G

𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓𝒙𝟏 𝒙𝟔
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Consider the last two indices ௜ and ௝

Options for what to do with them:

Option 1: 
Match them T A C A T G

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 𝒚𝟔

C T A C C G

𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓𝒙𝟏 𝒙𝟔

We use up one index from 𝑥 and 𝑦
Accrue a mismatch penalty

𝑂𝑃𝑇 𝑖 − 1, 𝑗 − 1 + 𝛼௫೔௬ೕ

Option 2: 
Don’t match 𝑥௜

We use up one index from 𝑥 only
Accrue a gap penalty 

𝑂𝑃𝑇 𝑖 − 1, 𝑗 + 𝛿

C T A C C G

𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓𝒙𝟏 𝒙𝟔

T A C A T G

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 𝒚𝟔

-

Option 3: 
Don’t match 𝑦௜ T A C A T G

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 𝒚𝟔

C T A C C G

𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓𝒙𝟏 𝒙𝟔

- We use up one index from 𝑦 only
Accrue a gap penalty 

𝑂𝑃𝑇 𝑖, 𝑗 − 1 + 𝛿

𝑂𝑃𝑇 𝑖, 𝑗 =

𝑗 ⋅ 𝛿        if 𝑖 = 0
𝑖 ⋅ 𝛿        if 𝑗 = 0

min ൞

𝑂𝑃𝑇 𝑖 − 1, 𝑗 − 1 + 𝛼௫೔௬ೕ

𝑂𝑃𝑇 𝑖 − 1, 𝑗 + 𝛿

𝑂𝑃𝑇 𝑖, 𝑗 − 1 + 𝛿



Edit Distance – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?
• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.
• How many subproblems (options for last choice) are there?
• What are the parameters needed to identify each?
• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.
• With this step: a “Bottom-up” (iterative) algorithm
• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

T A C A T G

C T A C C G

C T A C C G

T A C A T G -

T A C A T G

C T A C C G -



Step 2: Identify Memory Structure
T A C A T G

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 𝒚𝟔

C T A C C G

𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓𝒙𝟏 𝒙𝟔
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𝑂𝑃𝑇 𝑖, 𝑗 =

𝑗 ⋅ 𝛿        if 𝑖 = 0
𝑖 ⋅ 𝛿        if 𝑗 = 0

min ൞

𝑂𝑃𝑇 𝑖 − 1, 𝑗 − 1 + 𝛼௫೔௬ೕ

𝑂𝑃𝑇 𝑖 − 1, 𝑗 + 𝛿

𝑂𝑃𝑇 𝑖, 𝑗 − 1 + 𝛿

• How many parameters?
• 2

• What does each represent?
• The number of items in each sequence

• How many different values?
• Length of sequence for 
• Length of sequence for 
• overall

𝑦ଵ 𝑦ଶ 𝑦ସ 𝑦଻𝑦ହ𝑦ଷ 𝑦଼𝑦଺

𝑥ହ

𝑥ଵ

𝑥ଶ

𝑥ଷ

𝑥ସ

𝑥଺



Top-Down Sequence Alignment
align( ):

if OPT[ ][ ] not blank:    // Check if we’ve solved this already
return OPT[ ][ ]

if :    // Check if this is a base case
solution = 
OPT[ ][ ] = solution    // Always save your solution before returning 
return solution

match = align( ) // solve each subproblem
gapx = align( , ) // solve each subproblem
gapy = align( ) // solve each subproblem
solution = min(match + ௫೔௬ೕ

, gapx + , gapy+ ) // Pick the subproblem to use
OPT[ ][ ] = solution    // Always save your solution before returning
return solution
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Edit Distance – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?
• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.
• How many subproblems (options for last choice) are there?
• What are the parameters needed to identify each?
• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.
• With this step: a “Bottom-up” (iterative) algorithm
• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

T A C A T G

C T A C C G

C T A C C G

T A C A T G -

T A C A T G

C T A C C G -



Step 3: Identify Order of Evaluation
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𝑂𝑃𝑇 𝑖, 𝑗 =

𝑗 ⋅ 𝛿        if 𝑖 = 0
𝑖 ⋅ 𝛿        if 𝑗 = 0

min ൞

𝑂𝑃𝑇 𝑖 − 1, 𝑗 − 1 + 𝛼௫೔௬ೕ

𝑂𝑃𝑇 𝑖 − 1, 𝑗 + 𝛿

𝑂𝑃𝑇 𝑖, 𝑗 − 1 + 𝛿
4,6

𝑦ଵ 𝑦ଶ 𝑦ସ 𝑦଻𝑦ହ𝑦ଷ 𝑦଼𝑦଺

𝑥ହ

𝑥ଵ

𝑥ଶ

𝑥ଷ

𝑥ସ

𝑥଺

Each index depends on 3 others:
1. The one above it: 
2. The one to its left: 
3. The one to it’s upper left: 

Any of these orders will work:

• Top-to-bottom, then left-to-right

• Left-to-right, then top-to-bottom

• Diagonally



Bottom-Up Sequence Alignment
align( ):

for up to :
OPT[ ][ ] = 0 // Solve and save base cases

for up to :
OPT[0][ ] = 0 // Solve and save base cases

for up to :
for up to :

match = OPT[ ][ ] // solve each subproblem
gapx = OPT[ ][ ] // solve each subproblem
gapy = OPT[ ][ ] // solve each subproblem
solution = min(match + ௫೔௬ೕ

, gapx + , gapy+ ) // pick solution
OPT[ ][ ] = solution // save solution

return OPT[ ][ ]
13



Edit Distance – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?
• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.
• How many subproblems (options for last choice) are there?
• What are the parameters needed to identify each?
• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.
• With this step: a “Bottom-up” (iterative) algorithm
• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

T A C A T G

C T A C C G

C T A C C G

T A C A T G -

T A C A T G

C T A C C G -



6
5
4
3
2
1

870 51 3 42 6
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Example run with AGACATTG and GAGTTA: ୫୧ୱ

A G C TAA GT

T

G
A
G
T

A



A G C TAA GT

111 2 3 4 5 6 7

6
5
4
3
2

80 51 3 42 6 7
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T

G
A
G
T

A

Example run with AGACATTG and GAGTTA: ୫୧ୱ



6
5
4
3

1 122
111 2 3 4 5 6 7

870 51 3 42 6
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Example run with AGACATTG and GAGTTA: ୫୧ୱ

A G C TAA GT

T

G
A
G
T

A



6
5
4

1 222 3 4 53 5
1 1 222 3 4 5 6

111 2 3 4 5 6 7
870 51 3 42 6
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Example run with AGACATTG and GAGTTA: ୫୧ୱ

A G C TAA GT

T

G
A
G
T

A



4 435 3 4 46 4
3 334 4 3 35 4
2 323 3 3 44 5
1 222 3 4 53 5

1 1 222 3 4 5 6
111 2 3 4 5 6 7

870 51 3 42 6
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Example run with AGACATTG and GAGTTA: ୫୧ୱ

A G C TAA GT

T

G
A
G
T

A
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Example run with AGACATTG and GAGTTA: ୫୧ୱ

A G C TAA GT

T

G
A
G
T

A

870 51 3 42 6
111 2 3 4 5 6 7

1 1 222 3 4 5 6
1 222 3 4 53 5

4 435 3 4 46 4

2 323 3 3 44 5
3 334 4 3 35 4
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Example run with AGACATTG and GAGTTA: ୫୧ୱ

A G C TAA GT

T

G
A
G
T

A

870 51 3 42 6
111 2 3 4 5 6 7

1 1 222 3 4 5 6
1 222 3 4 53 5

4 435 3 4 46 4

2 323 3 3 44 5
3 334 4 3 35 4

Optimal Alignment

A G A C A T T G
_ G A G _ T T A



Alignment pattern:
• 2-D, O(1) in previous row, above and 

arbitrary prior
• 𝑂(𝒏 ⋅ 𝒎) space

Dynamic Programming Patterns
Fibonacci pattern:

• 1-D, 𝑂(𝟏) immediately prior
• 𝑂(𝟏) space

Weighted interval scheduling pattern:
• 1-D, 𝑂(𝟏) arbitrary prior
• 𝑂(𝒏) space

Longest increasing subsequence pattern:
• 1-D, all 𝒏 − 𝟏 prior
• 𝑂(𝒏) space
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𝑂(𝒏)

𝑂(𝒏)

𝑂(𝒏𝟐)

𝑂(𝒏𝒎)
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Single-source shortest paths (332)

Given: an (un)directed graph with each edge having a 
non-negative weight and a vertex 

Find: (length of) shortest paths from to each vertex in 



24

Single-source shortest paths (Today)

Given: an (un)directed graph with each edge having a 
non-negative weight and a vertex 

Find: (length of) shortest paths from to each vertex in 



Dijkstra’s Algorithm
• Maintain a set of vertices whose shortest paths are known

• initially 
• Maintaining current best lengths of paths that only go through to 

each of the vertices in 
• path-lengths to elements of will be right,  to they might 

not be right
• Repeatedly add vertex to that has the shortest path-length of 

any vertex in 
• update path lengths based on new paths through 



Directed Graph with Negative Weights

26

2

4

2

-4
1

8

5

1
3

5
10

6

9
4

-9
79

-8 2

1
Dijkstra’s algorithm would not find the 
shortest path from 1 to 5 

Shortest path is 1,3,5 which has cost 4

The path 1,2,4,5 has cost 7

Dijkstra’s will “lock in” that path before 
processing node 3



Negative Cycles
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2

4

2

-4
1

8

5

1
3

5
10

6

9
4

-9
79

-8 2

1

There’s an issue when a graph has 
negative cost cycles 

The shortest simple path to node 11 is
1,3,5,10,6,7,11 which has cost 13

The cycle 3,5,8,10,6,7,3 has cost -4

The (non-simple) path 
1,3,5,8,10,6,7,3,5,10,6,7,11 has cost 9

Taking the cycle twice gives cost 5

No shortest path exists!



Observations

Claim: A simple path has at most edges
Justication: Pigeon-hole principle. If we have edges then we have used at 
least one node at least twice

Claim: If a graph has no negative weight cycles then any shortest path must be 
simple
Justication: If some shortest path was not simple then there is a repeated node. 
The cycle involving that repeated node must have weight . Removing that cycle 
from the path can’t make it worse

Cost must be ≥ 0
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Single-source shortest paths, with negative 
edge weights

Given: an (un)directed graph with each edge having a 
weight and a vertex 

Find: (length of) shortest paths from to each vertex in , or else 
indicate that there is a negative-cost cycle

Called the Bellman-Ford algorithm
(The original DP algorithm!)
(Also, the original shortest path algorithm!)



Bellman Ford– Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?
• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.
• How many subproblems (options for last choice) are there?
• What are the parameters needed to identify each?
• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.
• With this step: a “Bottom-up” (iterative) algorithm
• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?



Identifying Recursive Structure – False Start
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Consider the shortest path from to 

This shortest path is composed of:
• The shortest path from to the 

second-to-last node (call it )
• The edge 

The cost of the shortest path from to 

௨∈௏

Where is the weight of the edge from to 
if it exists and if not.



So…What’s wrong with this?
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The cost of the shortest path from to 

௨∈௏

Where is the weight of the edge from to 
if it exists and if not.

1

11

𝑂𝑃𝑇 𝑡 = min ቊ
𝑶𝑷𝑻 𝒙 + 𝟏
𝑂𝑃𝑇 𝑠 + 1

𝑂𝑃𝑇 𝑥 = min ቊ
𝑶𝑷𝑻 𝒕 + 𝟏
𝑂𝑃𝑇 𝑠 + ∞

𝑂𝑃𝑇 𝑠 = 0

We never reach a base case!



Identifying Recursive Structure – Correctly!
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Suppose the shortest path from to has or fewer edges

This shortest path will be one of these:
Option 1: the shortest path from to some with or fewer edges, plus  the edge 

≤ 𝑖 edges

𝑖 − 1 edges

Option 2: the same as shortest path from to with or fewer edges

≤ 𝑖 − 1 edges

the weight of the shortest 
path from to with at most edges

௨∈௏



Final Recursive Structure

34

≤ 𝑖 edges

𝑂𝑃𝑇 𝑖, 𝑡 = the weight of the shortest path from 𝑠 to 𝑡 with at most 𝑖 edges

𝑂𝑃𝑇 𝑖, 𝑡 =

0 if 𝑖 = 0 and 𝑠 = 𝑡
∞ if 𝑖 = 0 and 𝑠 ≠ 𝑡

min ൝
min
௨∈௏

𝑂𝑃𝑇 𝑖 − 1, 𝑢 + 𝑤(𝑢, 𝑡)

𝑂𝑃𝑇 𝑖 − 1, 𝑡

Where 𝑤(𝑢, 𝑡) is the weight of the edge from 𝑢 to 𝑡 if it exists and ∞ if not.

𝑖 − 1 edges

≤ 𝑖 − 1 edges



Bellman Ford– Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?
• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.
• How many subproblems (options for last choice) are there?
• What are the parameters needed to identify each?
• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.
• With this step: a “Bottom-up” (iterative) algorithm
• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

𝑖 − 1 edges

≤ 𝑖 − 1 edges

min



Identifying the Memory Structure
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𝑂𝑃𝑇 𝑖, 𝑡 =

0 if 𝑖 = 0 and 𝑠 = 𝑡
∞ if 𝑖 = 0 and 𝑠 ≠ 𝑡

min ൝
min
௨∈௏

𝑂𝑃𝑇 𝑖 − 1, 𝑢 + 𝑤(𝑢, 𝑡)

𝑂𝑃𝑇 𝑖 − 1, 𝑡

• How many parameters?
• 2

• What does each represent?
• : the length of the path
• : a node

• How many different values?
• : (from length 0 up to if the path is simple)
• : (one value per node)

2 3 5 64 7

5

1

2

3

4

6

1

0



Top-Down Bellman-Ford
BF( ):

if OPT[ ][ ] not blank:    // Check if we’ve solved this already

return OPT[ ][ ]

if :    // Check if this is a base case

solution = 0 ? : 

OPT[ ][ ] = solution    // Always save your solution before returning 

return solution

solution = 

for each :

solution = min(solution, BF( , ) + ) // solve each subproblem, pick which to use

solution = min(solution, BF( , )) // solve each subproblem, pick which to use

OPT[ ][ ] = solution    // Always save your solution before returning

return solution 37

This algorithm correctly finds shortest paths 
when there are no negative-cost cycles
How can we check for negative cost cycles?



Checking for Negative Cycles

38

𝑂𝑃𝑇 𝑖, 𝑡 =

0 if 𝑖 = 0 and 𝑠 = 𝑡
∞ if 𝑖 = 0 and 𝑠 ≠ 𝑡

min ൝
min
௨∈௏

𝑂𝑃𝑇 𝑖 − 1, 𝑢 + 𝑤(𝑢, 𝑡)

𝑂𝑃𝑇 𝑖 − 1, 𝑡

• How many parameters?
• 2

• What does each represent?
• : the length of the path
• : a node

• How many different values?
• : +1

• a path of |𝑽| edges is not simple, so if any |𝑽|-edge path is 
shorter than one with fewer edges, there must be a negative 
cycle!

• : (one value per node)

2 3 5 64 7

5

1

2

3

4

6

1

0

7



Bellman Ford– Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?
• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.
• How many subproblems (options for last choice) are there?
• What are the parameters needed to identify each?
• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.
• With this step: a “Bottom-up” (iterative) algorithm
• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

𝑖 − 1 edges

≤ 𝑖 − 1 edges

min



Order of Evaluations
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Bottom-Up Bellman-Ford
BF( ):

OPT[ ][ ] = 0 // Solve and save base cases
for :

OPT[0][ ] = // Solve and save base cases
for up to :

for :
for :

// solve and pick
// solve and pick

for :
if : // check for negative cycles

return “negative cycle”
return OPT[ ][ ] // return the final answer
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Bottom-Up Bellman-Ford
BF( ):

OPT[ ][ ] = 0 // Solve and save base cases
for :

OPT[0][ ] = // Solve and save base cases
for up to :

for :
for :

// solve and pick
// solve and pick

for :
if : // check for negative cycles

return “negative cycle”
return OPT[ ][ ] // return the final answer
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Bellman Ford– Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?
• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.
• How many subproblems (options for last choice) are there?
• What are the parameters needed to identify each?
• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.
• With this step: a “Bottom-up” (iterative) algorithm
• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

𝑖 − 1 edges

≤ 𝑖 − 1 edges

min



Order of Evaluations
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Each cell depends only on values in the 
previous row

We only need two rows!
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Bellman Ford– Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?
• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.
• How many subproblems (options for last choice) are there?
• What are the parameters needed to identify each?
• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.
• With this step: a “Bottom-up” (iterative) algorithm
• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

𝑖 − 1 edges

≤ 𝑖 − 1 edges

min



Alignment pattern:
• 2-D, O(1) in previous row, above, left, diagonal
• 𝑂(𝒏 ⋅ 𝒎) space

Dynamic Programming Patterns
Fibonacci pattern:

• 1-D, 𝑂(𝟏) immediately prior
• 𝑂(𝟏) space

Weighted interval scheduling pattern:
• 1-D, 𝑂(𝟏) arbitrary prior
• 𝑂(𝒏) space

Longest increasing subsequence pattern:
• 1-D, all 𝒏 − 𝟏 prior
• 𝑂(𝒏) space

46

𝑂(𝒏)

𝑂(𝒏)

𝑂(𝒏𝟐)

𝑂(𝒏𝒎)

Bellman Ford pattern:
• 2-D, O(|V|) in previous row, 
• 𝑂(|𝑉|) space

𝑂(|𝑉||𝐸|)



Example Execution
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Example Execution
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Example Execution

52

௨∈௏

2 3 5 64 7

5

1

2

3

4

6

1

0

∞ ∞ 80 2 ∞ ∞

∞ ∞ 80 2 3 0

∞ ∞ ∞0 ∞ ∞ ∞

7 ∞ 80 2 3 0

7 0 80 2 3 0

7 0 80 1 3 0

7

8 -8

2 1 3
4

-7

1



Example Execution
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Example Execution
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Negative Cycle Found!


