
CSE 421 Winter 2025
Lecture 14: DP3

Nathan Brunelle
http://www.cs.uw.edu/421

Dynamic Programming Patterns

Fibonacci pattern:
• 1-D, immediately prior
• space

Weighted interval scheduling pattern:
• 1-D, arbitrary prior
• space

Longest increasing subsequence pattern:
• 1-D, all prior
• space

2

𝟐

How similar are two strings?
• ocurrance
• occurrence

3

String Similarity
o c u r r a n c e

c c u r r e n c eo

-

6 mismatches, 1 gap

o c u r r a n c e

c c u r r e n c eo

-

1 mismatch, 1 gap

o c u r r n c e

c c u r r n c eo

- - a

e -

0 mismatches, 3 gaps

Clearly a better
matching

Maybe a better matching
• depends on cost of

gaps vs mismatches

3

Applications:
• Basis for Unix diff.
• Speech recognition.
• Computational biology.
• autocorrect

Edit distance: [Levenshtein 1966, Needleman-Wunsch 1970]
• Gap penalty 𝜹; mismatch penalty 𝜶𝒑𝒒 if symbol 𝒑 is replaced by symbol 𝒒.
• Cost = gap penalties + mismatch penalties.

4

Edit Distance

C G A C C T A C C T

C T G A C T A C A T

T

C

𝜶TC + 𝜶GT + 𝜶AG + 𝟐𝜶CA

T G A C C T A C C T

C T G A C T A C A T

- C

C -

𝟐𝜹 + 𝜶CA

4

Sequence Alignment:
Given: Two strings 𝑿 = 𝒙𝟏𝒙𝟐 … 𝒙𝒎 and 𝒀 = 𝒚𝟏𝒚𝟐 … 𝒚𝒏

Find: “Alignment” of 𝑿 and 𝒀 of minimum edit cost.

Defn: An alignment 𝑴 of 𝑿 and 𝒀 is a set of ordered pairs 𝒙𝒊-𝒚𝒋

s.t. each symbol of 𝑿 and 𝒀 occurs in at most one pair
with no “crossing pairs”.

The pairs 𝒙𝒊-𝒚𝒋 and 𝒙𝒊ᇲ-𝒚𝒋ᇲ cross iff 𝒊 < 𝒊′ but 𝒋 > 𝒋′.

Sequence Alignment

cost 𝑴 = ෍ 𝜶𝒙𝒊𝒚𝒋

𝒙𝒊,𝒚𝒋 ∈𝑴

+ ෍ 𝜹

𝒊∶ 𝒙𝒊 ୳୬୫ୟ୲ୡ୦ୣୢ

+ ෍ 𝜹

𝒋: 𝒚𝒋 ୳୬୫ୟ୲ୡ୦ୣୢ

 mismatch gap

C T A C C -

T A C A T-

G

G

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 𝒚𝟔

𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓𝒙𝟏 𝒙𝟔

Example:
CTACCG vs TACATG

𝑴 = {𝒙𝟐−𝒚𝟏, 𝒙𝟑-𝒚𝟐, 𝒙𝟒-𝒚𝟑, 𝒙𝟓-𝒚𝟒, 𝒙𝟔-𝒚𝟔}

Note: if 𝒙𝒊 = 𝒚𝒋 then 𝜶𝒙𝒊𝒚𝒋
= 𝟎

5

Edit Distance – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?
• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.
• How many subproblems (options for last choice) are there?
• What are the parameters needed to identify each?
• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.
• With this step: a “Bottom-up” (iterative) algorithm
• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

Step 1: Identify Recursive Structure
T A C A T G

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 𝒚𝟔

C T A C C G

𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓𝒙𝟏 𝒙𝟔

7

Consider the last two indices ௜ and ௝

Options for what to do with them:

Option 1:
Match them T A C A T G

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 𝒚𝟔

C T A C C G

𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓𝒙𝟏 𝒙𝟔

We use up one index from 𝑥 and 𝑦
Accrue a mismatch penalty

𝑂𝑃𝑇 𝑖 − 1, 𝑗 − 1 + 𝛼௫೔௬ೕ

Option 2:
Don’t match 𝑥௜

We use up one index from 𝑥 only
Accrue a gap penalty

𝑂𝑃𝑇 𝑖 − 1, 𝑗 + 𝛿

C T A C C G

𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓𝒙𝟏 𝒙𝟔

T A C A T G

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 𝒚𝟔

-

Option 3:
Don’t match 𝑦௜ T A C A T G

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 𝒚𝟔

C T A C C G

𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓𝒙𝟏 𝒙𝟔

- We use up one index from 𝑦 only
Accrue a gap penalty

𝑂𝑃𝑇 𝑖, 𝑗 − 1 + 𝛿

𝑂𝑃𝑇 𝑖, 𝑗 =

𝑗 ⋅ 𝛿 if 𝑖 = 0
𝑖 ⋅ 𝛿 if 𝑗 = 0

min ൞

𝑂𝑃𝑇 𝑖 − 1, 𝑗 − 1 + 𝛼௫೔௬ೕ

𝑂𝑃𝑇 𝑖 − 1, 𝑗 + 𝛿

𝑂𝑃𝑇 𝑖, 𝑗 − 1 + 𝛿

Edit Distance – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?
• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.
• How many subproblems (options for last choice) are there?
• What are the parameters needed to identify each?
• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.
• With this step: a “Bottom-up” (iterative) algorithm
• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

T A C A T G

C T A C C G

C T A C C G

T A C A T G -

T A C A T G

C T A C C G -

Step 2: Identify Memory Structure
T A C A T G

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 𝒚𝟔

C T A C C G

𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓𝒙𝟏 𝒙𝟔

9

𝑂𝑃𝑇 𝑖, 𝑗 =

𝑗 ⋅ 𝛿 if 𝑖 = 0
𝑖 ⋅ 𝛿 if 𝑗 = 0

min ൞

𝑂𝑃𝑇 𝑖 − 1, 𝑗 − 1 + 𝛼௫೔௬ೕ

𝑂𝑃𝑇 𝑖 − 1, 𝑗 + 𝛿

𝑂𝑃𝑇 𝑖, 𝑗 − 1 + 𝛿

• How many parameters?
• 2

• What does each represent?
• The number of items in each sequence

• How many different values?
• Length of sequence for
• Length of sequence for
• overall

𝑦ଵ 𝑦ଶ 𝑦ସ 𝑦଻𝑦ହ𝑦ଷ 𝑦଼𝑦଺

𝑥ହ

𝑥ଵ

𝑥ଶ

𝑥ଷ

𝑥ସ

𝑥଺

Top-Down Sequence Alignment
align():

if OPT[][] not blank: // Check if we’ve solved this already
return OPT[][]

if : // Check if this is a base case
solution =
OPT[][] = solution // Always save your solution before returning
return solution

match = align() // solve each subproblem
gapx = align(,) // solve each subproblem
gapy = align() // solve each subproblem
solution = min(match + ௫೔௬ೕ

, gapx + , gapy+) // Pick the subproblem to use
OPT[][] = solution // Always save your solution before returning
return solution

10

Edit Distance – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?
• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.
• How many subproblems (options for last choice) are there?
• What are the parameters needed to identify each?
• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.
• With this step: a “Bottom-up” (iterative) algorithm
• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

T A C A T G

C T A C C G

C T A C C G

T A C A T G -

T A C A T G

C T A C C G -

Step 3: Identify Order of Evaluation

12

𝑂𝑃𝑇 𝑖, 𝑗 =

𝑗 ⋅ 𝛿 if 𝑖 = 0
𝑖 ⋅ 𝛿 if 𝑗 = 0

min ൞

𝑂𝑃𝑇 𝑖 − 1, 𝑗 − 1 + 𝛼௫೔௬ೕ

𝑂𝑃𝑇 𝑖 − 1, 𝑗 + 𝛿

𝑂𝑃𝑇 𝑖, 𝑗 − 1 + 𝛿
4,6

𝑦ଵ 𝑦ଶ 𝑦ସ 𝑦଻𝑦ହ𝑦ଷ 𝑦଼𝑦଺

𝑥ହ

𝑥ଵ

𝑥ଶ

𝑥ଷ

𝑥ସ

𝑥଺

Each index depends on 3 others:
1. The one above it:
2. The one to its left:
3. The one to it’s upper left:

Any of these orders will work:

• Top-to-bottom, then left-to-right

• Left-to-right, then top-to-bottom

• Diagonally

Bottom-Up Sequence Alignment
align():

for up to :
OPT[][] = 0 // Solve and save base cases

for up to :
OPT[0][] = 0 // Solve and save base cases

for up to :
for up to :

match = OPT[][] // solve each subproblem
gapx = OPT[][] // solve each subproblem
gapy = OPT[][] // solve each subproblem
solution = min(match + ௫೔௬ೕ

, gapx + , gapy+) // pick solution
OPT[][] = solution // save solution

return OPT[][]
13

Edit Distance – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?
• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.
• How many subproblems (options for last choice) are there?
• What are the parameters needed to identify each?
• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.
• With this step: a “Bottom-up” (iterative) algorithm
• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

T A C A T G

C T A C C G

C T A C C G

T A C A T G -

T A C A T G

C T A C C G -

6
5
4
3
2
1

870 51 3 42 6

15

Example run with AGACATTG and GAGTTA: ୫୧ୱ

A G C TAA GT

T

G
A
G
T

A

A G C TAA GT

111 2 3 4 5 6 7

6
5
4
3
2

80 51 3 42 6 7

16

T

G
A
G
T

A

Example run with AGACATTG and GAGTTA: ୫୧ୱ

6
5
4
3

1 122
111 2 3 4 5 6 7

870 51 3 42 6

17

Example run with AGACATTG and GAGTTA: ୫୧ୱ

A G C TAA GT

T

G
A
G
T

A

6
5
4

1 222 3 4 53 5
1 1 222 3 4 5 6

111 2 3 4 5 6 7
870 51 3 42 6

18

Example run with AGACATTG and GAGTTA: ୫୧ୱ

A G C TAA GT

T

G
A
G
T

A

4 435 3 4 46 4
3 334 4 3 35 4
2 323 3 3 44 5
1 222 3 4 53 5

1 1 222 3 4 5 6
111 2 3 4 5 6 7

870 51 3 42 6

19

Example run with AGACATTG and GAGTTA: ୫୧ୱ

A G C TAA GT

T

G
A
G
T

A

20

Example run with AGACATTG and GAGTTA: ୫୧ୱ

A G C TAA GT

T

G
A
G
T

A

870 51 3 42 6
111 2 3 4 5 6 7

1 1 222 3 4 5 6
1 222 3 4 53 5

4 435 3 4 46 4

2 323 3 3 44 5
3 334 4 3 35 4

21

Example run with AGACATTG and GAGTTA: ୫୧ୱ

A G C TAA GT

T

G
A
G
T

A

870 51 3 42 6
111 2 3 4 5 6 7

1 1 222 3 4 5 6
1 222 3 4 53 5

4 435 3 4 46 4

2 323 3 3 44 5
3 334 4 3 35 4

Optimal Alignment

A G A C A T T G
_ G A G _ T T A

Alignment pattern:
• 2-D, O(1) in previous row, above and

arbitrary prior
• 𝑂(𝒏 ⋅ 𝒎) space

Dynamic Programming Patterns
Fibonacci pattern:

• 1-D, 𝑂(𝟏) immediately prior
• 𝑂(𝟏) space

Weighted interval scheduling pattern:
• 1-D, 𝑂(𝟏) arbitrary prior
• 𝑂(𝒏) space

Longest increasing subsequence pattern:
• 1-D, all 𝒏 − 𝟏 prior
• 𝑂(𝒏) space

22

𝑂(𝒏)

𝑂(𝒏)

𝑂(𝒏𝟐)

𝑂(𝒏𝒎)

23

Single-source shortest paths (332)

Given: an (un)directed graph with each edge having a
non-negative weight and a vertex

Find: (length of) shortest paths from to each vertex in

24

Single-source shortest paths (Today)

Given: an (un)directed graph with each edge having a
non-negative weight and a vertex

Find: (length of) shortest paths from to each vertex in

Dijkstra’s Algorithm
• Maintain a set of vertices whose shortest paths are known

• initially
• Maintaining current best lengths of paths that only go through to

each of the vertices in
• path-lengths to elements of will be right, to they might

not be right
• Repeatedly add vertex to that has the shortest path-length of

any vertex in
• update path lengths based on new paths through

Directed Graph with Negative Weights

26

2

4

2

-4
1

8

5

1
3

5
10

6

9
4

-9
79

-8 2

1
Dijkstra’s algorithm would not find the
shortest path from 1 to 5

Shortest path is 1,3,5 which has cost 4

The path 1,2,4,5 has cost 7

Dijkstra’s will “lock in” that path before
processing node 3

Negative Cycles

27

2

4

2

-4
1

8

5

1
3

5
10

6

9
4

-9
79

-8 2

1

There’s an issue when a graph has
negative cost cycles

The shortest simple path to node 11 is
1,3,5,10,6,7,11 which has cost 13

The cycle 3,5,8,10,6,7,3 has cost -4

The (non-simple) path
1,3,5,8,10,6,7,3,5,10,6,7,11 has cost 9

Taking the cycle twice gives cost 5

No shortest path exists!

Observations

Claim: A simple path has at most edges
Justication: Pigeon-hole principle. If we have edges then we have used at
least one node at least twice

Claim: If a graph has no negative weight cycles then any shortest path must be
simple
Justication: If some shortest path was not simple then there is a repeated node.
The cycle involving that repeated node must have weight . Removing that cycle
from the path can’t make it worse

Cost must be ≥ 0

29

Single-source shortest paths, with negative
edge weights

Given: an (un)directed graph with each edge having a
weight and a vertex

Find: (length of) shortest paths from to each vertex in , or else
indicate that there is a negative-cost cycle

Called the Bellman-Ford algorithm
(The original DP algorithm!)
(Also, the original shortest path algorithm!)

Bellman Ford– Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?
• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.
• How many subproblems (options for last choice) are there?
• What are the parameters needed to identify each?
• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.
• With this step: a “Bottom-up” (iterative) algorithm
• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

Identifying Recursive Structure – False Start

31

Consider the shortest path from to

This shortest path is composed of:
• The shortest path from to the

second-to-last node (call it)
• The edge

The cost of the shortest path from to

௨∈௏

Where is the weight of the edge from to
if it exists and if not.

So…What’s wrong with this?

32

The cost of the shortest path from to

௨∈௏

Where is the weight of the edge from to
if it exists and if not.

1

11

𝑂𝑃𝑇 𝑡 = min ቊ
𝑶𝑷𝑻 𝒙 + 𝟏
𝑂𝑃𝑇 𝑠 + 1

𝑂𝑃𝑇 𝑥 = min ቊ
𝑶𝑷𝑻 𝒕 + 𝟏
𝑂𝑃𝑇 𝑠 + ∞

𝑂𝑃𝑇 𝑠 = 0

We never reach a base case!

Identifying Recursive Structure – Correctly!

33

Suppose the shortest path from to has or fewer edges

This shortest path will be one of these:
Option 1: the shortest path from to some with or fewer edges, plus the edge

≤ 𝑖 edges

𝑖 − 1 edges

Option 2: the same as shortest path from to with or fewer edges

≤ 𝑖 − 1 edges

the weight of the shortest
path from to with at most edges

௨∈௏

Final Recursive Structure

34

≤ 𝑖 edges

𝑂𝑃𝑇 𝑖, 𝑡 = the weight of the shortest path from 𝑠 to 𝑡 with at most 𝑖 edges

𝑂𝑃𝑇 𝑖, 𝑡 =

0 if 𝑖 = 0 and 𝑠 = 𝑡
∞ if 𝑖 = 0 and 𝑠 ≠ 𝑡

min ൝
min
௨∈௏

𝑂𝑃𝑇 𝑖 − 1, 𝑢 + 𝑤(𝑢, 𝑡)

𝑂𝑃𝑇 𝑖 − 1, 𝑡

Where 𝑤(𝑢, 𝑡) is the weight of the edge from 𝑢 to 𝑡 if it exists and ∞ if not.

𝑖 − 1 edges

≤ 𝑖 − 1 edges

Bellman Ford– Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?
• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.
• How many subproblems (options for last choice) are there?
• What are the parameters needed to identify each?
• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.
• With this step: a “Bottom-up” (iterative) algorithm
• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

𝑖 − 1 edges

≤ 𝑖 − 1 edges

min

Identifying the Memory Structure

36

𝑂𝑃𝑇 𝑖, 𝑡 =

0 if 𝑖 = 0 and 𝑠 = 𝑡
∞ if 𝑖 = 0 and 𝑠 ≠ 𝑡

min ൝
min
௨∈௏

𝑂𝑃𝑇 𝑖 − 1, 𝑢 + 𝑤(𝑢, 𝑡)

𝑂𝑃𝑇 𝑖 − 1, 𝑡

• How many parameters?
• 2

• What does each represent?
• : the length of the path
• : a node

• How many different values?
• : (from length 0 up to if the path is simple)
• : (one value per node)

2 3 5 64 7

5

1

2

3

4

6

1

0

Top-Down Bellman-Ford
BF():

if OPT[][] not blank: // Check if we’ve solved this already

return OPT[][]

if : // Check if this is a base case

solution = 0 ? :

OPT[][] = solution // Always save your solution before returning

return solution

solution =

for each :

solution = min(solution, BF(,) +) // solve each subproblem, pick which to use

solution = min(solution, BF(,)) // solve each subproblem, pick which to use

OPT[][] = solution // Always save your solution before returning

return solution 37

This algorithm correctly finds shortest paths
when there are no negative-cost cycles
How can we check for negative cost cycles?

Checking for Negative Cycles

38

𝑂𝑃𝑇 𝑖, 𝑡 =

0 if 𝑖 = 0 and 𝑠 = 𝑡
∞ if 𝑖 = 0 and 𝑠 ≠ 𝑡

min ൝
min
௨∈௏

𝑂𝑃𝑇 𝑖 − 1, 𝑢 + 𝑤(𝑢, 𝑡)

𝑂𝑃𝑇 𝑖 − 1, 𝑡

• How many parameters?
• 2

• What does each represent?
• : the length of the path
• : a node

• How many different values?
• : +1

• a path of |𝑽| edges is not simple, so if any |𝑽|-edge path is
shorter than one with fewer edges, there must be a negative
cycle!

• : (one value per node)

2 3 5 64 7

5

1

2

3

4

6

1

0

7

Bellman Ford– Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?
• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.
• How many subproblems (options for last choice) are there?
• What are the parameters needed to identify each?
• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.
• With this step: a “Bottom-up” (iterative) algorithm
• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

𝑖 − 1 edges

≤ 𝑖 − 1 edges

min

Order of Evaluations

40

௨∈௏

Each cell depends on every value in the
previous row

Solve in order of

2 3 5 64 7

5

1

2

3

4

6

1

0

7

Bottom-Up Bellman-Ford
BF():

OPT[][] = 0 // Solve and save base cases
for :

OPT[0][] = // Solve and save base cases
for up to :

for :
for :

// solve and pick
// solve and pick

for :
if : // check for negative cycles

return “negative cycle”
return OPT[][] // return the final answer

41

Bottom-Up Bellman-Ford
BF():

OPT[][] = 0 // Solve and save base cases
for :

OPT[0][] = // Solve and save base cases
for up to :

for :
for :

// solve and pick
// solve and pick

for :
if : // check for negative cycles

return “negative cycle”
return OPT[][] // return the final answer

42

Bellman Ford– Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?
• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.
• How many subproblems (options for last choice) are there?
• What are the parameters needed to identify each?
• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.
• With this step: a “Bottom-up” (iterative) algorithm
• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

𝑖 − 1 edges

≤ 𝑖 − 1 edges

min

Order of Evaluations

44

௨∈௏

Each cell depends only on values in the
previous row

We only need two rows!

2 3 5 64 7

5

1

2

3

4

6

1

0

7

Bellman Ford– Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?
• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.
• How many subproblems (options for last choice) are there?
• What are the parameters needed to identify each?
• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.
• With this step: a “Bottom-up” (iterative) algorithm
• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

𝑖 − 1 edges

≤ 𝑖 − 1 edges

min

Alignment pattern:
• 2-D, O(1) in previous row, above, left, diagonal
• 𝑂(𝒏 ⋅ 𝒎) space

Dynamic Programming Patterns
Fibonacci pattern:

• 1-D, 𝑂(𝟏) immediately prior
• 𝑂(𝟏) space

Weighted interval scheduling pattern:
• 1-D, 𝑂(𝟏) arbitrary prior
• 𝑂(𝒏) space

Longest increasing subsequence pattern:
• 1-D, all 𝒏 − 𝟏 prior
• 𝑂(𝒏) space

46

𝑂(𝒏)

𝑂(𝒏)

𝑂(𝒏𝟐)

𝑂(𝒏𝒎)

Bellman Ford pattern:
• 2-D, O(|V|) in previous row,
• 𝑂(|𝑉|) space

𝑂(|𝑉||𝐸|)

Example Execution

47

௨∈௏

2 3 5 64 7

5

1

2

3

4

6

1

0 ∞ ∞ ∞0 ∞ ∞ ∞

7

8 -8

2 1 3
4

-7

1

Example Execution

48

௨∈௏

2 3 5 64 7

5

1

2

3

4

6

1

0

∞ ∞ 80 2 ∞ ∞

∞ ∞ ∞0 ∞ ∞ ∞

7

8 -8

2 1 3
4

-7

1

Example Execution

49

௨∈௏

2 3 5 64 7

5

1

2

3

4

6

1

0

∞ ∞ 80 2 ∞ ∞

∞ ∞ 80 2 3 0

∞ ∞ ∞0 ∞ ∞ ∞

7

8 -8

2 1 3
4

-7

1

Example Execution

50

௨∈௏

2 3 5 64 7

5

1

2

3

4

6

1

0

∞ ∞ 80 2 ∞ ∞

∞ ∞ 80 2 3 0

∞ ∞ ∞0 ∞ ∞ ∞

7 ∞ 80 2 3 0

7

8 -8

2 1 3
4

-7

1

Example Execution

51

௨∈௏

2 3 5 64 7

5

1

2

3

4

6

1

0

∞ ∞ 80 2 ∞ ∞

∞ ∞ 80 2 3 0

∞ ∞ ∞0 ∞ ∞ ∞

7 ∞ 80 2 3 0

7 0 80 2 3 0

7

8 -8

2 1 3
4

-7

1

Example Execution

52

௨∈௏

2 3 5 64 7

5

1

2

3

4

6

1

0

∞ ∞ 80 2 ∞ ∞

∞ ∞ 80 2 3 0

∞ ∞ ∞0 ∞ ∞ ∞

7 ∞ 80 2 3 0

7 0 80 2 3 0

7 0 80 1 3 0

7

8 -8

2 1 3
4

-7

1

Example Execution

53

௨∈௏

2 3 5 64 7

5

1

2

3

4

6

1

0

∞ ∞ 80 2 ∞ ∞

∞ ∞ 80 2 3 0

∞ ∞ ∞0 ∞ ∞ ∞

7 ∞ 80 2 3 0

7 0 80 2 3 0

7 0 80 1 3 0

7 0 80 1 2 0

7

8 -8

2 1 3
4

-7

1

Example Execution

54

௨∈௏

2 3 5 64 7

5

1

2

3

4

6

1

0

∞ ∞ 80 2 ∞ ∞

∞ ∞ 80 2 3 0

∞ ∞ ∞0 ∞ ∞ ∞

7 ∞ 80 2 3 0

7 0 80 2 3 0

7 0 80 1 3 0

7 0 80 1 2 0

3 0 80 1 2 07

8 -8

2 1 3
4

-7

1

Example Execution

55

௨∈௏

2 3 5 64 7

5

1

2

3

4

6

1

0

∞ ∞ 80 2 ∞ ∞

∞ ∞ 80 2 3 0

∞ ∞ ∞0 ∞ ∞ ∞

7 ∞ 80 2 3 0

7 0 80 2 3 0

7 0 80 1 3 0

7 0 80 1 2 0

3 0 80 1 2 07

8 -8

2 1 3
4

-7

1

Negative Cycle Found!

