CSE 421 Winter 2025
Lecture 14: DP3

Nathan Brunelle
http://www.cs.uw.edu/421

Dynamic Programming Patterns

Fibonacci pattern:
« 1-D, O(1) immediately prior m
* 0(1) space

Weighted interval scheduling pattern: K ﬁ

* 1-D, O(1) arbitrary prior 1 v v om)
* 0(n) space

Longest increasing subsequence pattern:
e 1-D, all n — 1 prior
* 0(n) space

YT I T YT VTV T VT VT vT¢ O(nZ)

String Similarity

How similar are two strings?
¢ ocurrance

(o]

o

* occurrence 6 mismatches, 1 gap
Clearly a better ° °-u £ an - |-
matChIng o C C u r r H n C e

1 mismatch, 1 gap

Maybe a better matching o ¢ - ol = | - e
depends on cost of

gaps vs mismatches ©o ccurr e.n

(0}

Q

0 mismatches, 3 gaps

Edit Distance

Applications:
* Basis for Unixdiff.
* Speech recognition.
* Computational biology.
* autocorrect

Edit distance: [Levenshtein 1966, Needleman-Wunsch 1970]
* Gap penalty §; mismatch penalty a,,, if symbol p is replaced by symbol q.
e Cost = gap penalties + mismatch penalties.

cHEBE:c - - c@ET BlcteaccTtac@r
CHCTACT ccTe6acBTAaclr

aTC+aGT+aAG+2aCA 26+aCA

Sequence Alignment

Sequence Alignment:
Given: Two strings X = x1x5 ...x, andY = y1y, ...y,
Find: “Alignment” of X and Y of minimum edit cost.

Defn: An alignment M of X and Y is a set of ordered pairs x;-y;
s.t. each symbol of X and ¥ occurs in at most one pair Example:
with no “crossing pairs”. CTACCG Vs TACATG

The pairs x;-y; and x;/-y; cross iff i < i' butj > j'.
X1 X2 X3 X4 Xg X6

R VNN c | - K
cost(M) = z Uy, + z é + z 6 -T A cCPVM T 6

i i: x; unmatched j: y; unmatched
.(xl'y])EM S J Y8 Y1 Y2 Y3 Ya Y5 Ye

mismatch gap M = {x3-y1, X3-Y2, X4-Y3, X5-Y4, X6-Y6 }

Note: if x; = y; then Oy, = 0

Edit Distance — Four Steps

1. Formulate the answer with a recursive structure
* What are the options for the last choice?
* For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
* Figure out the possible values of all parameters in the recursive calls.
* How many subproblems (options for last choice) are there?
* What are the parameters needed to identify each?
* How many different values could there be per parameter?

3. Specify an order of evaluation.

* Want to guarantee that the necessary subproblem solutions are in memory
when you need them.

* With this step: a “Bottom-up” (iterative) algorithm
* Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
* Isit possible to reuse some memory locations?

X1 X2 X3 X3 X5 Xg

cC T A C C 6

Step 1: Identify Recursive Structure

‘ . . T A C A T 6
Consider the last two indices x; and y;

. . Yi Y2 Y3 Y4 Ys Ve
Options for what to do with them:
X1 X2 X3 X4 X5 |Xe
C T A C Cl6 We use up one index from x and y
Option 1: Accrue a mismatch penalty . . o
o) ifi=20
Match them T A C A T|6 11— J
OPT(i—1,j 1)+“xiyj i-6 ifj=0
Y1 Y2 Y3 Ya Ys| Ve . .
X1 X2 X3 X4 X5 |Xg . . .
c T A c cle w index | i OPT(i—~1,j)+¢
. e use up one index from x only OPT(i,j — 1) +6
Option 2: T A C AT 6 - Accrue a gap penalty
Don’t match x; OPT(i—1,j)+6
Y1 Y2 Y3 Y& Vs Ye
X1 X2 X3 X4 X5 Xe
Option 3: C T A C C 6 We use up one index from y only

Don’t match y;

T A C A T
Y1 Y2

Y3 Ya Y5

Y6

Accrue a gap penalty

OPT(i,j—1) +6

a

A T

(4

c

c

A

(4

-

-

T 6

c

T A

T A

c

c c G

A T 6

Edit Distance — Four Steps

1. Formulate the answer with a recursive structure
* What are the options for the last choice?
* For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
* Figure out the possible values of all parameters in the recursive calls.
* How many subproblems (options for last choice) are there?
* What are the parameters needed to identify each?
* How many different values could there be per parameter?

3. Specify an order of evaluation.

* Want to guarantee that the necessary subproblem solutions are in memory
when you need them.

* With this step: a “Bottom-up” (iterative) algorithm
* Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
* Isit possible to reuse some memory locations?

Step 2: Identity Memory Structure

(j-6 ifi=20
-0 ifj=0
OPT(i,j) = ¢ OPT(i—1,j—1)+ Ay,

min OPT(i—1,j))+§6
OPT(i,j—1)+ 6

* How many parameters?
2
* What does each represent?
* The number of items in each sequence

 How many different values?
* Length of sequence x for i
* Length of sequence y for j
* n-m overall

X1 X2 X3 X4 X5 Xg
C T A C C 6
T A C A T 6
Y1 Y2 Y3 Y4 Y5 JYe

Ys Ye Y7 Y8

Top-Down Sequence Alignment

align(i, j):

if OPT[i][j] not blank:
return OPT[{][/]

ifi-j==0:
solution=(i+j) -6
OPTIi][j] = solution
return solution

match = align(i — 1,j — 1)

gapx = align(i — 1,j)

gapy = align(j,i — 1)

solution = min(match + Ary;» BAPX + &, gapy+ 0)

OPT[i][j] = solution

return solution

10

Edit Distance — Four Steps

(4

T 1. Formulate the answer with a recursive structure
- ~ " "~ * Whatare the options for the last choice?
T — * For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
* Figure out the possible values of all parameters in the recursive calls.
* How many subproblems (options for last choice) are there?
* What are the parameters needed to identify each?
* How many different values could there be per parameter?

3. Specify an order of evaluation.

* Want to guarantee that the necessary subproblem solutions are in memory
when you need them.

* With this step: a “Bottom-up” (iterative) algorithm
* Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
* Isit possible to reuse some memory locations?

Step 3: Identify Order of Evaluation

Y1 Y2 Y3 Ya Ys Ye Y7 Vs

(j-&6 ifi=0
i-8§ ifj=0

min{ OPT(i—1,j)+6 °
X4 4,6
\

OPT(i,j —1) +6

Any of these orders will work:

Each index depends on 3 others: Top-to-bottom, then left-to-right §
1. Theoneaboveit: (i —1,j)
2. Theonetoits left: (i,j — 1) e Left-to-right, then top-to-bottom l ll l

3. Theonetoit’supperleft: (i —1,j —1) //'1 [/
 Diagonally / / v

Bottom-Up Sequence Alignment

fori = Qupton:

align(x, y): _:
>

OPT[i][0] =0

forj = 0 uptom:

OPT[O][j]=0
fori = 1upton:
forj=1uptom:
match = OPT[i — 1][j — 1]
gapx = OPT[i][j — 1]
gapy = OPT[i — 1][/]
solution = min(match + Ary;» BAPX + &, gapy+ 0)
OPT[i][j] = solution
return OPT[n][m]

13

Edit Distance — Four Steps

(4

T 1. Formulate the answer with a recursive structure
- ~ " "~ * Whatare the options for the last choice?
—— * For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
* Figure out the possible values of all parameters in the recursive calls.
* How many subproblems (options for last choice) are there?
* What are the parameters needed to identify each?
* How many different values could there be per parameter?

3. Specify an order of evaluation.

* Want to guarantee that the necessary subproblem solutions are in memory
when you need them.

* With this step: a “Bottom-up” (iterative) algorithm
* Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
* Isit possible to reuse some memory locations?

Example run with AGACATTG and GAGTTA: 6 = a,is =1

> 4 40> 0
a|ln|sr|lwnv|-|o

Amis = 1

Example run with AGACATTG and GAGTTA: 6

A 6 A C A T T 6

Amis = 1

Example run with AGACATTG and GAGTTA: 6

A 6 A C A T T 6

Amis = 1

Example run with AGACATTG and GAGTTA: 6

A 6 A C A T T 6

F - <

Amis = 1

Example run with AGACATTG and GAGTTA: 6

A 6 A C A T T 6

Example run with AGACATTG and GAGTTA: 6 = a,is =1

D 4 40 > 0
mLmlb_lw_LN_J:
>N
=
N
N
ﬂA
w
A A
S
_1‘
On
DD ITOUV|IUV|O || 0O

Example run with AGACATTG and GAGTTA: 6 = a,is =1

Optimal Alignment

AGACATTG
_GAG_TTA

D 4 40 > 0
mL¢kai

>N

i

N

N

ﬂA

W

A A

D

_1‘

ol
DIV IOUVIO || 00

Dynamic Programming Patterns

Fibonacci pattern:
e 1-D, O(1) immediately prior
* 0(1) space

L [[[[[[["[Y]"]
Weighted interval scheduling pattern:
* 1-D, O(1) arbitrary prior
* 0O(n) space
L1 [T+ [[[[Q']

Longest increasing subsequence pattern:
e 1-D, allm — 1 prior
 0(n) space 0(n?)

MEIREEEALAEARARA

om)

0(n)

Alignment pattern:

e 2-D, O(1) in previous row, above and
arbitrary prior

* O(n-m) space

0(nm)

22

Single-source shortest paths (332)

Given: an (un)directed graph G = (V, E) with each edge e having a
non-negative weight w(e) and a vertex s

Find: (length of) shortest paths from s to each vertex in G

Single-source shortest paths (Today)

Given: an (un)directed graph G = (V, E) with each edge e having a
Renp-negative weight w(e) and a vertex s

Find: (length of) shortest paths from s to each vertex in G

Dijkstra’s Algorithm

* Maintain a set S of vertices whose shortest paths are known
* initially S = {s}
* Maintaining current best lengths of paths that only go through § to
each of the vertices in G
* path-lengths to elements of S will be right, to V' \ $ they might
not be right
» Repeatedly add vertex v to S that has the shortest path-length of
any vertexinV\ §
e update path lengths based on new paths through v

Directed Graph with Negative Weights

Dijkstra’s algorithm would not find the
shortest path from 1to 5

4
Shortest path is 1,3,5 which has cost 4 @
! 4
5 ,

Dijkstra’s will “lock in” before - @ @
processing node 3 9 -8 2

®

9
7/

,E

Negative Cycles

There’s an issue when a graph has
negative cost cycles

The shortest simple path to node 11 is
1,3,5,10,6,7,11 which has cost 13

The cycle has cost -4

The (non-simple) path
1, ,5,10,6,7,11 has cost 9

Taking twice gives cost 5

No shortest path exists!

Observations

Claim: A simple path has at most |VV| — 1 edges

Justication: Pigeon-hole principle. If we have > |V| edges then we have used at
least one node at least twice

Claim: If a graph has no negative weight cycles then any shortest path must be
simple

Justication: If some shortest path was not simple then there is a repeated node.
The cycle involving that repeated node must have weight = 0. Removing that cycle
from the path can’t make it worse

© ©

Cost mustbe > 0

Single-source shortest paths, with negative
edge weights

Given: an (un)directed graph G = (V, E) with each edge e having a
weight w(e) and a vertex s

Find: (length of) shortest paths from s to each vertex in G, or else
indicate that there is a negative-cost cycle

Called the Bellman-Ford algorithm
(The original DP algorithm!)
(Also, the original shortest path algorithm!)

Bellman Ford— Four Steps

1. Formulate the answer with a recursive structure
* What are the options for the last choice?
* For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
* Figure out the possible values of all parameters in the recursive calls.
* How many subproblems (options for last choice) are there?
* What are the parameters needed to identify each?
* How many different values could there be per parameter?

3. Specify an order of evaluation.

* Want to guarantee that the necessary subproblem solutions are in memory
when you need them.

* With this step: a “Bottom-up” (iterative) algorithm
* Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
* Isit possible to reuse some memory locations?

ldentifying Recursive Structure — False Start

Consider the shortest path fromsto t

This shortest path is composed of:
* The shortest path from s to the
second-to-last node (call it u)

* The edge

O V) _oc

OPT(t) = The cost of the shortest path from s tot

0 ifs=t
OPT(t) = min{OPT (u) + 1 o.w.
u

Where w(u, t) is the weight of the edge fromu to ¢t
if it exists and oo if not.

31

So...What’s wrong with this?

OPT(t) = The cost of the shortest path from s to t

0 ifs=t
OPT(t) = mei‘rll{OPT(u) + } o.w.
u

Where w(u, t) is the weight of the edge fromu to t
if it exists and oo if not.

©

1 1
©1 ©

OPT(x) + 1
OPT(s) + 1

OPT(t) = min{

OPT(t) +1

OPT(x) = min {OPT(S) + oo

OPT(s) =0

We never reach a base case!

32

|dentifying Recursive Structure — Correctly!

Suppose the shortest path from s to t has i or fewer edges

OPT(i,t) = the weight of the shortest

@ @ path from s to t with at most i edges

< i edges
This shortest path will be one of these:

Option 1: the shortest path from s to some u with i — 1 or fewer edges, plus the edge

m@ o min{OPT (i — 1,u) +)

[— 1 edges
Option 2: the same as shortest path from s to t with i — 1 or fewer edges

OPT(i—1,t)

33
<i—1edges

Final Recursive Structure

2

OPT(i,t) =«

\

Where w(u, t) is the weight of

OPT (i, t) = the weight of the shortest path from s to t with at most i edges

Oifi=0ands =t
wifi=0ands #t
milrll{OPT(i —1,u)+ }

min{ 4€
OPT(i — 1,t)

the edge from u to t if it exists and oo if not.

©

< i edges

pm—

. [— 1 edges
= ImMin -

< i—1 edges

34

min=

_ Bellman Ford— Four Steps

i T edges © 1. Formulate the answer with a recursive structure

m/@ * What are the options for the last choice?
- D~ * For each such option, what does the subproblem look like? How do we use it?
2. Choose a memory structure.
* Figure out the possible values of all parameters in the recursive calls.
* How many subproblems (options for last choice) are there?
* What are the parameters needed to identify each?

* How many different values could there be per parameter?

3. Specify an order of evaluation.

* Want to guarantee that the necessary subproblem solutions are in memory
when you need them.

* With this step: a “Bottom-up” (iterative) algorithm
* Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
* Isit possible to reuse some memory locations?

ldentifying the Memory Structure

(Qifi=0ands =t
| wifi=0ands #t
OPT(i,t) =< min{OPT(i — 1,u) + }

min uev
OPT(i — 1,t)

\

* How many parameters?

° 2

 What does each represent?

 i:the length of the path

e t:anode

 How many different values?

oUW R O

e i: |[V] (from length O up to |V| — 1 if the path is simple)

* t: |V| (one value per node)

36

BF(i, t):

Top-Down Bellman-Ford

if OPT[i][t] not blank:
return OPT[{][/]
ifi ==0:
solution=0?t ==s5:00
OPT[i][t] = solution
return solution
solution = oo
foreachu e V:
solution = min(solution, BF(i — 1, u) +w(u, t))
solution = min(solution, BF(i — 1,t))
OPT[i][t] = solution

return solution

This algorithm correctly finds shortest paths
when there are no negative-cost cycles
How can we check for negative cost cycles?

37

Checking for Negatlve Cycles

OPT(i,t) =

Qifi=0ands =t
wifi=0ands #t

min{OPT (i — 1,u) + w(u,t)}

mln uev

\

OPT(i — 1,¢)

* How many parameters?
i
 What does each represent?

* i: the length of the path
e t:anode

 How many different values?
o i: |[V]+1

* a path of |V| edges is not simple, so if any |V|-edge path is
shorter than one with fewer edges, there must be a negative

cycle!
e t: |V] (one value per node)

No 1B N R, o

38

min=

_ Bellman Ford— Four Steps

i T edges © 1. Formulate the answer with a recursive structure

W * What are the options for the last choice?
- D~ * For each such option, what does the subproblem look like? How do we use it?
2. Choose a memory structure.

* Figure out the possible values of all parameters in the recursive calls.

* How many subproblems (options for last choice) are there?

* What are the parameters needed to identify each?

* How many different values could there be per parameter?

3. Specify an order of evaluation.

* Want to guarantee that the necessary subproblem solutions are in memory
when you need them.

* With this step: a “Bottom-up” (iterative) algorithm
* Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
* Isit possible to reuse some memory locations?

Order of Evaluations

OPT(i,t) = 4

z

\

Oifi=0ands =t
woifi =0ands #t
min{OPT (i —1,u) + w(u,t)}

min uev
OPT(i —1,¢)

Each cell depends on every value in the

previous row

Solve in order of i

No 1A wNn R, o

40

Bottom-Up Bellman-Ford

BF(s, t):
OPT[O][s] =0
forueV\ {s}
OPT[O][u] = oo
fori = Qupto |V|:
foruel:
for v € neighbors(u):
OPT|i][u] = min(OPT]i][u], OPT[i — 1][v])
OPT|i][u] = min(OPT|i][u], OPT[i — 1][u])
foruelV:
if OPT[|V|][u] < OPT[|V| — 1][u]:
return “negative cycle”
return OPT[s][t]

Bottom-Up Bellman-Ford

BF(s, t):
OPT[0][s] =0 O(1)
foruelV\ {s}
OPT[0][u] = oo oV
fori = Qupto |V|:
forueV:
for v € neighbors(u): OVIIED
OPT|i][u] = min(OPT]i][u], OPT[i — 1][v])
OPT|i][u] = min(OPT|i][u], OPT[i — 1][u])
foruel:
if OPT[|V|][u] < OPT[|V| — 1][u]: o(|V|)

return “negative cycle”
return OPT[s][t] 0(1)

min=

_ Bellman Ford— Four Steps

i T edges © 1. Formulate the answer with a recursive structure

W * What are the options for the last choice?
- D~ * For each such option, what does the subproblem look like? How do we use it?
2. Choose a memory structure.

* Figure out the possible values of all parameters in the recursive calls.

* How many subproblems (options for last choice) are there?

* What are the parameters needed to identify each?

* How many different values could there be per parameter?

3. Specify an order of evaluation.

* Want to guarantee that the necessary subproblem solutions are in memory
when you need them.

* With this step: a “Bottom-up” (iterative) algorithm
* Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
* Isit possible to reuse some memory locations?

Order of Evaluations

(Oifi=0ands =t
wifi=0ands #t

min uev

OPT(i—1,t)

\

OPT(i,t) = 1 min{OPT (i — 1,u) + w(u, 1)}

Each cell depends only on values in the
previous row

We only need two rows!

No 1A wNn R, o

44

min=

_ Bellman Ford— Four Steps

i T edges © 1. Formulate the answer with a recursive structure

W * What are the options for the last choice?
- D~ * For each such option, what does the subproblem look like? How do we use it?
2. Choose a memory structure.

* Figure out the possible values of all parameters in the recursive calls.

* How many subproblems (options for last choice) are there?

* What are the parameters needed to identify each?

* How many different values could there be per parameter?

3. Specify an order of evaluation.

* Want to guarantee that the necessary subproblem solutions are in memory
when you need them.

* With this step: a “Bottom-up” (iterative) algorithm
* Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
* Isit possible to reuse some memory locations?

Dynamic Programming Patterns

Alignment pattern:
* 2-D, O(1) in previous row, above, left, diagonal
* O(n-m) space

Fibonacci pattern:
e 1-D, O(1) immediately prior
* 0(1) space

L [[[["[Y["]

Weighted interval scheduling pattern:
* 1-D, O(1) arbitrary prior +<3
* 0O(n) space O(n)
T T 17 T 1 T T°1"] Bellman Ford pattern:
e 2-D, O(|V]) in previous row,
* O(|V]) space

om)

0(nm)

Longest increasing subsequence pattern:
e 1-D, allm — 1 prior
 0(n) space 0(n?)

m oQIVIIED
A2 A A KA A A A A

< 46

Example Execution

8 @ -8
(Oifi =0ands =t
| woifi=0ands #t
OPT (i, t) = { min{OPT (i — 1,u) + w(u,)}

\

min uev
OPT(i —1,t)

N o VU1 N R O

47

Example Execution

8 @ -8
(Oifi =0ands =t
| woifi=0ands #t
OPT (i, t) = { min{OPT (i — 1,u) + w(u,)}

\

min uev
OPT(i —1,t)

N o VU1 N R O

48

Example Execution

8 @ -8
(Oifi=0ands =t
woifi =0ands #t
OPT(i,t) =4 min{OPT (i —1,u) + w(u,t)}
min { U€V
\ OPT(i—1,t)

N U1 w N R, O

olo|lo|r

(Ol I O ol NG

W8 |8 |w

8188 |»

81818 |

|8 |

o818 |

49

Example Execution

8 @ -8
(Oifi=0ands =t
woifi =0ands #t
OPT(i,t) =4 min{OPT (i —1,u) + w(u,t)}
min { U€V
\ OPT(i—1,t)

N U1 w N R, O

(=l Bl Neo il Nen)

(Sl N I I I3 NG

wWwlw |8 18 |w

N8 I8 |8 |

818188 |w

o|o|®]|8 |

clol8 18|

50

Example Execution

8 @ -8
(Oifi=0ands =t
woifi =0ands #t
OPT(i,t) =4 min{OPT (i —1,u) + w(u,t)}
min { U€V
\ OPT(i—1,t)

N U1 w N R, O

(=l Bl Nl Nl N

(Sl NSl Ol I O NS IFNC

Wl lw|lw|8 18 |lw

N 98818 I

S8 8|88 |wn

w|ow|ow|xw|8 |

olo]lo|8 18 |

51

Example Execution

2 . :
O30
8 @ -8

(Oifi=0ands =t

| wifi=0ands #t

OPT(i,t) = < min{OPT (i — 1,u) + w(u,)}

min uev
\ OPT(i —1,t)

N o VU1 N R O

olo|lo|lol|lo|o

=9 I CN NN N T ol PN

N 99888 |

o|lo 88|88 |w,

ow|lo|ow|o|®]|8 |

olo|lo|lo|8 18|V

52

Example Execution

8 @ -8
(Oifi=0ands =t
woifi =0ands #t
OPT(i,t) =4 min{OPT (i —1,u) + w(u,t)}
min { U€V
\ OPT(i—1,t)

N U1 w N R, O

(=l Bl Nl Nl Nl Nl K=

Rl o] 8

Njwlw|lw|lw|8 |8 |lw

N 9 998188 |

oleo|=o|8|8 |88 |w

w|lo|low|]o|low|xo |8 |an

olo|lo|lolo|8 |8 |

53

Example Execution

8 @ -8
(Oifi =0ands =t
woifi=0ands #t
OPT(i,t) = 4 min{OPT (i — 1,u) + w(w,)}
min { U€V
\ OPT(i — 1,t)

—_

o|lo|lo|o|o|o|lo|o

Rl R, oo] 8

NN |jwlwlw|lw]8 I8 |lw

W w9988 I8S |

oleo|o|=|8|8 |88 |wn

©o|w|low|w|ow|w|xo]|8 |

olo|lo|lo|lolo|8 81w

54

Example Execution

8 @ -8
(Oifi=0ands =t
woifi =0ands #t
OPT(i,t) =4 min{OPT (i —1,u) + w(u,t)}
min { U€V
\ OPT(i—1,t)

No 1B N R, o

—_

NN 98|88 |

~

Sleo|o|=|8|8 |88 |wn

2 3
o | o
2 | o«
2 |3
2 |3
2 |3
1] 3
11| 2
1| 2

=l Joll Holl Holl Nl Rl =2 K=

||l |ow|w|w|®]|8 |

olojlo|lo|lolol8 18|V

Negative Cycle Found!

55

