
CSE 421 Winter 2025
Lecture 13: DP2

Nathan Brunelle

http://www.cs.uw.edu/421

http://www.cs.uw.edu/421

Four Steps to Dynamic Programming
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

2

𝑛 − 1

𝑛 − 2

M

0

1

2

3

4

5

6
M

0

1

2

3

4

5

6

M

0

1

Conclusion: a 1-
dimensional
memory of size 𝑛

Top-Down DP Idea

def myDPalgo(problem):
 if mem[problem] not blank: // Check if we’ve solved this already
 return mem[problem]
 if baseCase(problem): // Check if this is a base case
 solution = solve(problem)
 mem[problem] = solution // Always save your solution before returning
 return solution
 for subproblem of problem:
 subsolutions.append(myDPalgo(subproblem)) // solve each subproblem
 solution = selectAndExtend(subsolutions) // Pick the subproblem to use
 mem[problem] = solution // Always save your solution before returning
 return solution

3

Bottom-Up DP Idea

def myDPalgo(problem):

 for each baseCase: // Identify which subproblems are base cases

 solution = solve(baseCase)

 mem[baseCase] = solution // Save the solution for reuse

 for each subproblem in bottom-up order:

 // The order should be chosen so that every subsolution is

 // guaranteed to already be in memory when it’s needed

 solution = selectAndExtend(subsolutions)

 mem[subproblem] = solution // Save the solution for reuse

 return mem[problem]
4

5

Weighted Interval Scheduling
Input: Like interval scheduling each request 𝒊 has start and finish times 𝒔𝒊 and 𝒇𝒊.

Each request 𝒊 also has an associated value or weight 𝒗𝒊

 𝒗𝒊 might be
• the amount of money we get from renting out the resource

• the amount of time the resource is being used (𝒗𝒊 = 𝒇𝒊 − 𝒔𝒊)

Find: A maximum-weight compatible subset of requests.

Weighted Interval Scheduling
Input: Set of jobs with start times, finish times, and weights

Goal: Find maximum weight subset of mutually compatible jobs.

6

Time

4

4

3

3

6

3

2

5

0 1 2 3 4 5 6 7 8 9 10

Optimal yields 10

Weighted Interval Scheduling – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

6

7
8

4

3

1

2

5
6

7
8

4

3

1

2

5

max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , OPT 𝑗 − 1

𝒋 OPT[𝒋]

0 0

1

2

3

4

5

6

7

8

Weighted Interval Scheduling Top-Down DP

WIS(j):

 if OPT[j] not blank: // Check if we’ve solved this already

 return OPT[j]

 if j==0: // Check if this is a base case

 mem[j] = 0 // Always save your solution before returning

 return mem[j]

 includej = WIS(p(j)) // Solve each subproblem

 excludej = WIS(j -1) // Solve each subproblem

 solution = max(includej+value[j], excludej) // Pick the subproblem to use

 mem[j] = solution // Always save your solution before returning

 return solution
8

9

Towards Dynamic Programming: Step 1 – Recursive Algorithm

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

Option 1: Include the last request Option 2: Exclude the last request

After making this choice, the best solution possible
is given by:
• The value of the solution to subproblem

consisting of everything compatible
• Plus the value of the last request

𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗

After making this choice, the best solution possible
is given by:
• The value of the solution to subproblem

consisting of everything except the last request

𝑂𝑃𝑇 𝑗 − 1

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

10

Towards Dynamic Programming: Step 2 – Memory Structure

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Subproblems are identified by a single parameter
 1-dimensional array
That parameter is the last-ending compatible request
 length is the number of requests

𝒋 OPT[𝒋]

0 0

1

2

3

4

5

6

7

8

Weighted Interval Scheduling – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

6

7
8

4

3

1

2

5
6

7
8

4

3

1

2

5

max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , OPT 𝑗 − 1

𝒋 OPT[𝒋]

0 0

1

2

3

4

5

6

7

8

Weighted Interval Scheduling – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

6

7
8

4

3

1

2

5
6

7
8

4

3

1

2

5

max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , OPT 𝑗 − 1

𝒋 OPT[𝒋]

0 0

1

2

3

4

5

6

7

8

13

Towards Dynamic Programming: Step 3 – Order of Evaluation

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

For any given cell 𝑗, which other cells might I need?
• 𝑗 − 1
• 𝑝 𝑗

It’s hard to know in advance what 𝑝(𝑗) might be, but
certainly 𝑝 𝑗 < 𝑗

Order: increasing order of 𝑗 will work

𝒋 OPT[𝒋]

0 0

1

2

3

4

5

6

7

8

Bottom-Up DP Idea

def myDPalgo(problem):

 for each baseCase: // Identify which subproblems are base cases

 solution = solve(baseCase)

 mem[baseCase] = solution // Save the solution for reuse

 for each subproblem in bottom-up order:

 // The order should be chosen so that every subsolution is

 // guaranteed to already be in memory when it’s needed

 solution = selectAndExtend(subsolutions)

 mem[subproblem] = solution // Save the solution for reuse

 return mem[problem]
14

Weighted Interval Scheduling Bottom-Up DP

WIS(j):

 OPT[0] = 0 // Save the solution for the base case

 for each 𝑖 = 1 up to 𝑗:

 // The order should be chosen so that every subsolution is

 // guaranteed to already be in memory when it’s needed

 solution = max(OPT[𝑝(𝑖)]+value[𝑖], OPT[𝑖 − 1])

 mem[𝑖] = solution // Save the solution for reuse

 return OPT[𝑗]

15

16

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0

2 2 0

3 6 0

4 3 1

5 5 0

6 4 2

7 4 3

8 3 5

17

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0

3 6 0

4 3 1

5 5 0

6 4 2

7 4 3

8 3 5

18

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0

3 6 0

4 3 1

5 5 0

6 4 2

7 4 3

8 3 5

19

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0

4 3 1

5 5 0

6 4 2

7 4 3

8 3 5

20

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0

4 3 1

5 5 0

6 4 2

7 4 3

8 3 5

21

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1

5 5 0

6 4 2

7 4 3

8 3 5

22

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1

5 5 0

6 4 2

7 4 3

8 3 5

23

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0

6 4 2

7 4 3

8 3 5

24

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0 5

6 4 2

7 4 3

8 3 5

25

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0 6

6 4 2 7

7 4 3

8 3 5

26

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0 6

6 4 2 7

7 4 3

8 3 5

27

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0 6

6 4 2 7

7 4 3 10

8 3 5

28

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0 6

6 4 2 7

7 4 3 10

8 3 5

29

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0 6

6 4 2 7

7 4 3 10

8 3 5 10

Weighted Interval Scheduling: Finding the Solution

So far we have computed the value OPT(𝒏) but we probably want to know what that
solution OPT actually is!

We can do this, too, by keeping track of which option was better at each step.

Define Used[𝒋] = ቊ𝟏 solution with value OPT 𝒋 includes request 𝒋
𝟎 otherwise

This gives a “pointer” that leads the way along a path to the optimal solution…

30

31

Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋] Used[𝒋]

0 - - 0 -

1 3 0 3 1

2 2 0 3 0

3 6 0 6 1

4 3 1 6 1

5 5 0 6 0

6 4 2 7 1

7 4 3 10 1

8 3 5 10 0

Weighted Interval Scheduling: Finding the Solution

32

Weighted Interval Scheduling: Iterative Solution
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋] Used[𝒋]

0 - - 0 -

1 3 0 3 1

2 2 0 3 0

3 6 0 6 1

4 3 1 6 1

5 5 0 6 0

6 4 2 7 1

7 4 3 10 1

8 3 5 10 0

Weighted Interval Scheduling - Complete
Sort requests by finish time

Compute each p(i)

WIS(j):

 OPT[0] = 0

 for each 𝑖 = 1 up to 𝑗:

 includei = OPT[𝑝(𝑖)]+value[𝑖]

 excludei = OPT[𝑖 − 1]

 if includei > excludei:

 OPT[𝑖] = includei

 used[𝑖] = 1

 else:

 OPT[𝑖] = excludei

 used[𝑖] = 0

 return find_opt(used);
33

find_opt(used):

 𝑗= 𝑛

 intervals = {}

 while 𝑗 > 0:

 if used[𝑗]==0:

 𝑗 = 𝑗 − 1

 else:

 intervals.add(𝑗)

 𝑗 = 𝑝(𝑗)

 return intervals

Weighted Interval Scheduling – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

6

7
8

4

3

1

2

5
6

7
8

4

3

1

2

5

max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , OPT 𝑗 − 1

𝒋 OPT[𝒋]

0 0

1

2

3

4

5

6

7

8

𝒋 OPT[𝒋]

0 0

1

2

3

4

5

6

7

8

Dynamic Programming Patterns

Fibonacci pattern:

• 1-dimensional, 𝑂(1) values immediately prior

• Space saving possible

Weighted interval scheduling pattern:

• 1-dimensional, 𝑂(1) values arbitrarily far back

• No space saving possible

35

Longest Increasing Subsequence (LIS)

Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].

36

6 3 4 2 7 5 10 6 8 5

10 9 8 7 6 5 4 3 2 8

5 6 83 4

Weighted Interval Scheduling – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

Step 1: Finding a Recursive Structure

Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].

38

6 3 4 2 7 5 10 6 8 5

If the value at the last index were included, then best solution would look like:
• The longest sequence ending with something less than that value,
• Followed by that value

Extend the longest solution that ends with something less than 5

𝑶𝑷𝑻 𝒋 = ቊ
𝟏 𝒋 = 𝟎

𝟏 + 𝒎𝒂𝒙 𝑶𝑷𝑻 𝒌 ∶ 𝒌 < 𝒋 𝒂𝒏𝒅 𝑨 𝒌 < 𝑨 𝒋 𝒋 > 𝟎

𝑂𝑃𝑇 9 is 1 plus the max of:
• 𝑂𝑃𝑇 3
• 𝑂𝑃𝑇 2
• 𝑂𝑃𝑇(1)

Step 1: Finding a Recursive Structure

Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].

39

If the value at the last index were included, then best solution would look like:
• The longest sequence ending with something less than that value,
• Followed by that value

6 3 4 2 7 5 10 6 8 5

𝑶𝑷𝑻 𝒋 = ቊ
𝟏 𝒋 = 𝟎

𝟏 + 𝒎𝒂𝒙 𝑶𝑷𝑻 𝒌 ∶ 𝒌 < 𝒋 𝒂𝒏𝒅 𝑨 𝒌 < 𝑨 𝒋 𝒋 > 𝟎

𝑂𝑃𝑇 8 is 1 plus the max of:
• 𝑂𝑃𝑇 7
• 𝑂𝑃𝑇 5
• 𝑂𝑃𝑇 4
• 𝑂𝑃𝑇(3)
• 𝑂𝑃𝑇(2)
• 𝑂𝑃𝑇(1)
• 𝑂𝑃𝑇(0)

Step 1: Finding a Recursive Structure

Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].

40

If the value at the last index were included, then best solution would look like:
• The longest sequence ending with something less than that value,
• Followed by that value

6 3 4 2 7 5 10 6 8 5

𝑶𝑷𝑻 𝒋 = ቊ
𝟏 𝒋 = 𝟎

𝟏 + 𝒎𝒂𝒙 𝑶𝑷𝑻 𝒌 ∶ 𝒌 < 𝒋 𝒂𝒏𝒅 𝑨 𝒌 < 𝑨 𝒋 𝒋 > 𝟎

𝑂𝑃𝑇 7 is 1 plus the max of:
• 𝑂𝑃𝑇 5
• 𝑂𝑃𝑇(3)
• 𝑂𝑃𝑇(2)
• 𝑂𝑃𝑇(1)

Step 1: Finding a Recursive Structure

Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].

41

If the value at the last index were included, then best solution would look like:
• The longest sequence ending with something less than that value,
• Followed by that value

6 3 4 2 7 5 10 6 8 5

𝑶𝑷𝑻 𝒋 = ቊ
𝟏 𝒋 = 𝟎

𝟏 + 𝒎𝒂𝒙 𝑶𝑷𝑻 𝒌 ∶ 𝒌 < 𝒋 𝒂𝒏𝒅 𝑨 𝒌 < 𝑨 𝒋 𝒋 > 𝟎

𝑂𝑃𝑇 3 is 1 plus the max of:
• ∅

LIS – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

6 3 4 2 7 5 10 6 8 5

𝟏 + 𝒎𝒂𝒙 𝑶𝑷𝑻 𝒌 ∶ 𝒌 < 𝒋 𝒂𝒏𝒅 𝑨 𝒌 < 𝑨 𝒋

Step 2: Memory Structure

• How many parameters?
• Just 1

• What does each represent?
• An index in the array

• How many different values?
• Length of the array

𝑶𝑷𝑻 𝒋 = ቊ
𝟏 𝒋 = 𝟎

𝟏 + 𝒎𝒂𝒙 𝑶𝑷𝑻 𝒌 ∶ 𝒌 < 𝒋 𝒂𝒏𝒅 𝑨 𝒌 < 𝑨 𝒋 𝒋 > 𝟎

𝑶𝑷𝑻 =

LIS Top-Down DP
LISRec(𝑗):

 if OPT[𝑗] not blank: // Check if we’ve solved this already

 return OPT[𝑗]

 if 𝑗==0: // Check if this is a base case

 OPT[𝑗] = 1 // Always save your solution before returning

 return OPT[𝑗]

 best = 0

 for 𝑘 = 0 up to 𝑗 − 1:

 if 𝐴[𝑘] < 𝐴[𝑗]:

 best = max(best, LIS(𝑘)) // Solve each subproblem, pick which to use

 OPT[𝑗] = 1+best // Always save your solution before returning

 return 1+best

44

LIS(𝐴):

 solution = 1

 for 𝑖=0 up to A.length:

 solution = max(solution, LISRec(𝑖))

 return solution

LIS – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

6 3 4 2 7 5 10 6 8 5

𝟏 + 𝒎𝒂𝒙 𝑶𝑷𝑻 𝒌 ∶ 𝒌 < 𝒋 𝒂𝒏𝒅 𝑨 𝒌 < 𝑨 𝒋

1-dimensional
memory of size 𝑛

Step 2: Memory Structure

• For each choice of 𝑗 we might need any solution before it

• Solve in order of increasing index.

𝑶𝑷𝑻 𝒋 = ቊ
𝟏 𝒋 = 𝟎

𝟏 + 𝒎𝒂𝒙 𝑶𝑷𝑻 𝒌 ∶ 𝒌 < 𝒋 𝒂𝒏𝒅 𝑨 𝒌 < 𝑨 𝒋 𝒋 > 𝟎

𝑶𝑷𝑻 =

LIS – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

6 3 4 2 7 5 10 6 8 5

𝟏 + 𝒎𝒂𝒙 𝑶𝑷𝑻 𝒌 ∶ 𝒌 < 𝒋 𝒂𝒏𝒅 𝑨 𝒌 < 𝑨 𝒋

1-dimensional
memory of size 𝑛

Increasing order of index

LIS Bottom-up DP
LIS(𝐴):

 OPT[0]=1 // Solve and save the bast case solution

 for 𝑗 = 0 up to A.length: // Going in bottom-up order

 best = 0 // Applying the recursive structure

 for 𝑘 = 0 up to 𝑗:

 if A[𝑘]<A[𝑗]:

 best = max(best, OPT[𝑘])

 OPT[𝑗] = 1 + best // Save the solution for reuse

 solution = 0

 for 𝑖 = 0 up to 𝐴.length: // This was the for loop from the “public” method

 solution = max(solution, OPT(𝑖))

 return solution

48

Longest Increasing Subsequence (LIS)
Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].

49

6 3 4 2 7 5 10 6 8 5

OPT[𝒋] 1

pred[𝒋] 0

𝒋 1 2 3 4 5 6 7 8 9 10

Longest Increasing Subsequence (LIS)
Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].

50

6 3 4 2 7 5 10 6 8 5

OPT[𝒋] 1 1

pred[𝒋] 0 0

𝒋 1 2 3 4 5 6 7 8 9 10

Longest Increasing Subsequence (LIS)
Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].

51

6 3 4 2 7 5 10 6 8 5

OPT[𝒋] 1 1 2

pred[𝒋] 0 0 2

𝒋 1 2 3 4 5 6 7 8 9 10

Longest Increasing Subsequence (LIS)

Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].

52

6 3 4 2 7 5 10 6 8 5

OPT[𝒋] 1 1 2 1

pred[𝒋] 0 0 2 0

𝒋 1 2 3 4 5 6 7 8 9 10

Longest Increasing Subsequence (LIS)
Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].

53

6 3 4 2 7 5 10 6 8 5

OPT[𝒋] 1 1 2 1 3

pred[𝒋] 0 0 2 0 3

𝒋 1 2 3 4 5 6 7 8 9 10

Longest Increasing Subsequence (LIS)
Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].

54

6 3 4 2 7 5 10 6 8 5

OPT[𝒋] 1 1 2 1 3 3

pred[𝒋] 0 0 2 0 3 3

𝒋 1 2 3 4 5 6 7 8 9 10

Longest Increasing Subsequence (LIS)
Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].

55

6 3 4 2 7 5 10 6 8 5

OPT[𝒋] 1 1 2 1 3 3 4

pred[𝒋] 0 0 2 0 3 3 5

𝒋 1 2 3 4 5 6 7 8 9 10

Longest Increasing Subsequence (LIS)
Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].

56

6 3 4 2 7 5 10 6 8 5

OPT[𝒋] 1 1 2 1 3 3 4 4

pred[𝒋] 0 0 2 0 3 3 5 6

𝒋 1 2 3 4 5 6 7 8 9 10

Longest Increasing Subsequence (LIS)
Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].

57

6 3 4 2 7 5 10 6 8 5

OPT[𝒋] 1 1 2 1 3 3 4 4 5

pred[𝒋] 0 0 2 0 3 3 5 6 8

𝒋 1 2 3 4 5 6 7 8 9 10

Longest Increasing Subsequence (LIS)
Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].

58

6 3 4 2 7 5 10 6 8 5

OPT[𝒋] 1 1 2 1 3 3 4 4 5 3

pred[𝒋] 0 0 2 0 3 3 5 6 8 3

𝒋 1 2 3 4 5 6 7 8 9 10

Longest Increasing Subsequence (LIS)
Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].

59

6 3 4 2 7 5 10 6 8 5

OPT[𝒋] 1 1 2 1 3 3 4 4 5 3

pred[𝒋] 0 0 2 0 3 3 5 6 8 3

𝒋 1 2 3 4 5 6 7 8 9 10

Dynamic Programming Patterns

Fibonacci pattern:

• 1-D, 𝑂(𝟏) immediately prior

• 𝑂(𝟏) space

Weighted interval scheduling pattern:

• 1-D, 𝑂(𝟏) arbitrary prior

• 𝑂(𝒏) space

Longest increasing subsequence pattern:

• 1-D, all 𝒏 − 𝟏 prior

• 𝑂(𝒏) space

60

𝑂(𝒏)

𝑂(𝒏)

𝑂(𝒏𝟐)

Dynamic Programming Patterns

Fibonacci pattern:

• 1-dimensional, 𝑂(1) values immediately prior

• Space saving possible

Weighted interval scheduling pattern:

• 1-dimensional, 𝑂(1) values arbitrarily far back

• No space saving possible

61

How similar are two strings?
• ocurrance

• occurrence

62

String Similarity
o c u r r a n c e

c c u r r e n c eo

-

6 mismatches, 1 gap

o c u r r a n c e

c c u r r e n c eo

-

1 mismatch, 1 gap

o c u r r n c e

c c u r r n c eo

- - a

e -

0 mismatches, 3 gaps

Clearly a better
matching

Maybe a better matching
• depends on cost of

gaps vs mismatches

62

Applications:
• Basis for Unix diff.

• Speech recognition.

• Computational biology.

• autocorrect

Edit distance: [Levenshtein 1966, Needleman-Wunsch 1970]

• Gap penalty 𝜹; mismatch penalty 𝜶𝒑𝒒 if symbol 𝒑 is replaced by symbol 𝒒.

• Cost = gap penalties + mismatch penalties.

63

Edit Distance

C G A C C T A C C T

C T G A C T A C A T

T

C

𝜶
TC

+ 𝜶
GT

+ 𝜶
AG

+ 𝟐𝜶
CA

T G A C C T A C C T

C T G A C T A C A T

- C

C -

𝟐𝜹 + 𝜶
CA

63

Sequence Alignment:
Given: Two strings 𝑿 = 𝒙𝟏𝒙𝟐 … 𝒙𝒎 and 𝒀 = 𝒚𝟏𝒚𝟐 … 𝒚𝒏

Find: “Alignment” of 𝑿 and 𝒀 of minimum edit cost.

Defn: An alignment 𝑴 of 𝑿 and 𝒀 is a set of ordered pairs 𝒙𝒊-𝒚𝒋
s.t. each symbol of 𝑿 and 𝒀 occurs in at most one pair
with no “crossing pairs”.

 The pairs 𝒙𝒊-𝒚𝒋 and 𝒙𝒊′-𝒚𝒋′ cross iff 𝒊 < 𝒊′ but 𝒋 > 𝒋′.

Sequence Alignment

cost 𝑴 =

𝒙𝒊,𝒚𝒋 ∈𝑴

𝜶𝒙𝒊𝒚𝒋
+

𝒊∶ 𝒙𝒊 unmatched

𝜹 +

𝒋: 𝒚𝒋 unmatched

𝜹

 mismatch gap

C T A C C -

T A C A T-

G

G

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 𝒚𝟔

𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓𝒙𝟏 𝒙𝟔

Example:
CTACCG vs TACATG

𝑴 = {𝒙𝟐−𝒚𝟏, 𝒙𝟑-𝒚𝟐, 𝒙𝟒-𝒚𝟑, 𝒙𝟓-𝒚𝟒, 𝒙𝟔-𝒚𝟔}

Note: if 𝒙𝒊 = 𝒚𝒋 then 𝜶𝒙𝒊𝒚𝒋
= 𝟎

64

Edit Distance – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

Step 1: Identify Recursive Structure
T A C A T G

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 𝒚𝟔

C T A C C G

𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓𝒙𝟏 𝒙𝟔

66

Consider the last two indices x𝑖 and 𝑦𝑗

Options for what to do with them:

Option 1:
Match them T A C A T G

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 𝒚𝟔

C T A C C G

𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓𝒙𝟏 𝒙𝟔

We use up one index from 𝑥 and 𝑦
Accrue a mismatch penalty

𝑂𝑃𝑇 𝑖 − 1, 𝑗 − 1 + 𝛼𝑥𝑖𝑦𝑗

Option 2:
Don’t match 𝑥𝑖

We use up one index from 𝑥 only
Accrue a gap penalty

𝑂𝑃𝑇 𝑖 − 1, 𝑗 + 𝛿

C T A C C G

𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓𝒙𝟏 𝒙𝟔

T A C A T G

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 𝒚𝟔

-

Option 3:
Don’t match 𝑦𝑖 T A C A T G

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 𝒚𝟔

C T A C C G

𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓𝒙𝟏 𝒙𝟔

- We use up one index from 𝑦 only
Accrue a gap penalty

𝑂𝑃𝑇 𝑖, 𝑗 − 1 + 𝛿

𝑂𝑃𝑇 𝑖, 𝑗 =

𝑗 ⋅ 𝛿 if 𝑖 = 0
𝑖 ⋅ 𝛿 if 𝑗 = 0

min ൞

𝑂𝑃𝑇 𝑖 − 1, 𝑗 − 1 + 𝛼𝑥𝑖𝑦𝑗

𝑂𝑃𝑇 𝑖 − 1, 𝑗 + 𝛿

𝑂𝑃𝑇 𝑖, 𝑗 − 1 + 𝛿

Edit Distance – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

T A C A T G

C T A C C G

C T A C C G

T A C A T G -

T A C A T G

C T A C C G -

Step 2: Identify Memory Structure
T A C A T G

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 𝒚𝟔

C T A C C G

𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓𝒙𝟏 𝒙𝟔

68

𝑂𝑃𝑇 𝑖, 𝑗 =

𝑗 ⋅ 𝛿 if 𝑖 = 0
𝑖 ⋅ 𝛿 if 𝑗 = 0

min ൞

𝑂𝑃𝑇 𝑖 − 1, 𝑗 − 1 + 𝛼𝑥𝑖𝑦𝑗

𝑂𝑃𝑇 𝑖 − 1, 𝑗 + 𝛿

𝑂𝑃𝑇 𝑖, 𝑗 − 1 + 𝛿

• How many parameters?
• 2

• What does each represent?
• The number of items in each sequence

• How many different values?
• Length of sequence 𝑥 for 𝑖
• Length of sequence 𝑦 for 𝑗
• 𝑛 ⋅ 𝑚 overall

𝑦1 𝑦2 𝑦4 𝑦7𝑦5𝑦3 𝑦8𝑦6

𝑥5

𝑥1

𝑥2

𝑥3

𝑥4

𝑥6

Top-Down Sequence Alignment
align(𝑖, 𝑗):

 if OPT[𝑖][𝑗] not blank: // Check if we’ve solved this already

 return OPT[𝑖][𝑗]

 if 𝑖 ⋅ 𝑗 == 0: // Check if this is a base case

 solution = (𝑖 + 𝑗) ⋅ 𝛿

 OPT[𝑖][𝑗] = solution // Always save your solution before returning

 return solution

 match = align(𝑖 − 1, 𝑗 − 1) // solve each subproblem

 gapx = align(𝑖 − 1,𝑗) // solve each subproblem

 gapy = align(𝑗, 𝑖 − 1) // solve each subproblem

 solution = min(match + 𝛼𝑥𝑖𝑦𝑗
, gapx + 𝛿, gapy+ 𝛿) // Pick the subproblem to use

 OPT[𝑖][𝑗] = solution // Always save your solution before returning

 return solution
69

Edit Distance – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

T A C A T G

C T A C C G

C T A C C G

T A C A T G -

T A C A T G

C T A C C G -

Step 3: Identify Order of Evaluation

71

𝑂𝑃𝑇 𝑖, 𝑗 =

𝑗 ⋅ 𝛿 if 𝑖 = 0
𝑖 ⋅ 𝛿 if 𝑗 = 0

min ൞

𝑂𝑃𝑇 𝑖 − 1, 𝑗 − 1 + 𝛼𝑥𝑖𝑦𝑗

𝑂𝑃𝑇 𝑖 − 1, 𝑗 + 𝛿

𝑂𝑃𝑇 𝑖, 𝑗 − 1 + 𝛿
4,6

𝑦1 𝑦2 𝑦4 𝑦7𝑦5𝑦3 𝑦8𝑦6

𝑥5

𝑥1

𝑥2

𝑥3

𝑥4

𝑥6

Each index depends on 3 others:
1. The one above it: 𝑖 − 1, 𝑗
2. The one to its left: 𝑖, 𝑗 − 1
3. The one to it’s upper left: 𝑖 − 1, 𝑗 − 1

Any of these orders will work:

• Top-to-bottom, then left-to-right

• Left-to-right, then top-to-bottom

• Diagonally

Bottom-Up Sequence Alignment
align(𝑥, 𝑦):

 for 𝑖 = 0 up to 𝑛:

 OPT[𝑖][0] = 0 // Solve and save base cases

 for 𝑗 = 0 up to 𝑚:

 OPT[0][𝑗] = 0 // Solve and save base cases

 for 𝑖 = 1 up to 𝑛:

 for 𝑗 = 1 up to 𝑚 :

 match = OPT[𝑖 − 1][𝑗 − 1] // solve each subproblem

 gapx = OPT[𝑖][𝑗 − 1] // solve each subproblem

 gapy = OPT[𝑖 − 1][𝑗] // solve each subproblem

 solution = min(match + 𝛼𝑥𝑖𝑦𝑗
, gapx + 𝛿, gapy+ 𝛿) // pick solution

 OPT[𝑖][𝑗] = solution // save solution

 return OPT[𝑛][𝑚]
72

Edit Distance – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

T A C A T G

C T A C C G

C T A C C G

T A C A T G -

T A C A T G

C T A C C G -

6

5

4

3

2

1

870 51 3 42 6

74

Example run with AGACATTG and GAGTTA: 𝜹 = 𝜶mis = 𝟏

A G C TAA GT

T

G

A

G

T

A

A G C TAA GT

111 2 3 4 5 6 7

6

5

4

3

2

80 51 3 42 6 7

75

T

G

A

G

T

A

Example run with AGACATTG and GAGTTA: 𝜹 = 𝜶mis = 𝟏

6

5

4

3

1 122

111 2 3 4 5 6 7

870 51 3 42 6

76

Example run with AGACATTG and GAGTTA: 𝜹 = 𝜶mis = 𝟏

A G C TAA GT

T

G

A

G

T

A

6

5

4

1 222 3 4 53 5

1 1 222 3 4 5 6

111 2 3 4 5 6 7

870 51 3 42 6

77

Example run with AGACATTG and GAGTTA: 𝜹 = 𝜶mis = 𝟏

A G C TAA GT

T

G

A

G

T

A

4 435 3 4 46 4

3 334 4 3 35 4

2 323 3 3 44 5

1 222 3 4 53 5

1 1 222 3 4 5 6

111 2 3 4 5 6 7

870 51 3 42 6

78

Example run with AGACATTG and GAGTTA: 𝜹 = 𝜶mis = 𝟏

A G C TAA GT

T

G

A

G

T

A

79

Example run with AGACATTG and GAGTTA: 𝜹 = 𝜶mis = 𝟏

A G C TAA GT

T

G

A

G

T

A

870 51 3 42 6

111 2 3 4 5 6 7

1 1 222 3 4 5 6

1 222 3 4 53 5

4 435 3 4 46 4

2 323 3 3 44 5

3 334 4 3 35 4

80

Example run with AGACATTG and GAGTTA: 𝜹 = 𝜶mis = 𝟏

A G C TAA GT

T

G

A

G

T

A

870 51 3 42 6

111 2 3 4 5 6 7

1 1 222 3 4 5 6

1 222 3 4 53 5

4 435 3 4 46 4

2 323 3 3 44 5

3 334 4 3 35 4

Optimal Alignment

A G A C A T T G

_ G A G _ T T A

Alignment pattern:
• 2-D, O(1) in previous row, above and

arbitrary prior

• 𝑂(𝒏 ⋅ 𝒎) space

Dynamic Programming Patterns
Fibonacci pattern:

• 1-D, 𝑂(𝟏) immediately prior

• 𝑂(𝟏) space

Weighted interval scheduling pattern:

• 1-D, 𝑂(𝟏) arbitrary prior

• 𝑂(𝒏) space

Longest increasing subsequence pattern:

• 1-D, all 𝒏 − 𝟏 prior

• 𝑂(𝒏) space

81

𝑂(𝒏)

𝑂(𝒏)

𝑂(𝒏𝟐)

𝑂(𝒏𝒎)

	Slide 1: CSE 421 Winter 2025 Lecture 13: DP2
	Slide 2: Four Steps to Dynamic Programming
	Slide 3: Top-Down DP Idea
	Slide 4: Bottom-Up DP Idea
	Slide 5: Weighted Interval Scheduling
	Slide 6: Weighted Interval Scheduling
	Slide 7: Weighted Interval Scheduling – Four Steps
	Slide 8: Weighted Interval Scheduling Top-Down DP
	Slide 9: Towards Dynamic Programming: Step 1 – Recursive Algorithm
	Slide 10: Towards Dynamic Programming: Step 2 – Memory Structure
	Slide 11: Weighted Interval Scheduling – Four Steps
	Slide 12: Weighted Interval Scheduling – Four Steps
	Slide 13: Towards Dynamic Programming: Step 3 – Order of Evaluation
	Slide 14: Bottom-Up DP Idea
	Slide 15: Weighted Interval Scheduling Bottom-Up DP
	Slide 16: Example Execution (iterative)
	Slide 17: Example Execution (iterative)
	Slide 18: Example Execution (iterative)
	Slide 19: Example Execution (iterative)
	Slide 20: Example Execution (iterative)
	Slide 21: Example Execution (iterative)
	Slide 22: Example Execution (iterative)
	Slide 23: Example Execution (iterative)
	Slide 24: Example Execution (iterative)
	Slide 25: Example Execution (iterative)
	Slide 26: Example Execution (iterative)
	Slide 27: Example Execution (iterative)
	Slide 28: Example Execution (iterative)
	Slide 29: Example Execution (iterative)
	Slide 30: Weighted Interval Scheduling: Finding the Solution
	Slide 31: Weighted Interval Scheduling: Finding the Solution
	Slide 32: Weighted Interval Scheduling: Iterative Solution
	Slide 33: Weighted Interval Scheduling - Complete
	Slide 34: Weighted Interval Scheduling – Four Steps
	Slide 35: Dynamic Programming Patterns
	Slide 36: Longest Increasing Subsequence (LIS)
	Slide 37: Weighted Interval Scheduling – Four Steps
	Slide 38: Step 1: Finding a Recursive Structure
	Slide 39: Step 1: Finding a Recursive Structure
	Slide 40: Step 1: Finding a Recursive Structure
	Slide 41: Step 1: Finding a Recursive Structure
	Slide 42: LIS – Four Steps
	Slide 43: Step 2: Memory Structure
	Slide 44: LIS Top-Down DP
	Slide 45: LIS – Four Steps
	Slide 46: Step 2: Memory Structure
	Slide 47: LIS – Four Steps
	Slide 48: LIS Bottom-up DP
	Slide 49: Longest Increasing Subsequence (LIS)
	Slide 50: Longest Increasing Subsequence (LIS)
	Slide 51: Longest Increasing Subsequence (LIS)
	Slide 52: Longest Increasing Subsequence (LIS)
	Slide 53: Longest Increasing Subsequence (LIS)
	Slide 54: Longest Increasing Subsequence (LIS)
	Slide 55: Longest Increasing Subsequence (LIS)
	Slide 56: Longest Increasing Subsequence (LIS)
	Slide 57: Longest Increasing Subsequence (LIS)
	Slide 58: Longest Increasing Subsequence (LIS)
	Slide 59: Longest Increasing Subsequence (LIS)
	Slide 60: Dynamic Programming Patterns
	Slide 61: Dynamic Programming Patterns
	Slide 62: String Similarity
	Slide 63: Edit Distance
	Slide 64: Sequence Alignment
	Slide 65: Edit Distance – Four Steps
	Slide 66: Step 1: Identify Recursive Structure
	Slide 67: Edit Distance – Four Steps
	Slide 68: Step 2: Identify Memory Structure
	Slide 69: Top-Down Sequence Alignment
	Slide 70: Edit Distance – Four Steps
	Slide 71: Step 3: Identify Order of Evaluation
	Slide 72: Bottom-Up Sequence Alignment
	Slide 73: Edit Distance – Four Steps
	Slide 74: Example run with AGACATTG and GAGTTA: bold italic delta equals bold italic alpha sub mis equals bold 1
	Slide 75: Example run with AGACATTG and GAGTTA: bold italic delta equals bold italic alpha sub mis equals bold 1
	Slide 76: Example run with AGACATTG and GAGTTA: bold italic delta equals bold italic alpha sub mis equals bold 1
	Slide 77: Example run with AGACATTG and GAGTTA: bold italic delta equals bold italic alpha sub mis equals bold 1
	Slide 78: Example run with AGACATTG and GAGTTA: bold italic delta equals bold italic alpha sub mis equals bold 1
	Slide 79: Example run with AGACATTG and GAGTTA: bold italic delta equals bold italic alpha sub mis equals bold 1
	Slide 80: Example run with AGACATTG and GAGTTA: bold italic delta equals bold italic alpha sub mis equals bold 1
	Slide 81: Dynamic Programming Patterns

