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Four Steps to Dynamic Programming
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?
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Top-Down DP Idea

def myDPalgo(problem):
 if mem[problem] not blank: // Check if we’ve solved this already
  return mem[problem]
 if baseCase(problem): // Check if this is a base case
  solution = solve(problem)
  mem[problem] = solution    // Always save your solution before returning 
  return solution
 for subproblem of problem:
  subsolutions.append(myDPalgo(subproblem)) // solve each subproblem
 solution = selectAndExtend(subsolutions) // Pick the subproblem to use
 mem[problem] = solution    // Always save your solution before returning
 return solution
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Bottom-Up DP Idea

def myDPalgo(problem):

 for each baseCase:    // Identify which subproblems are base cases

  solution = solve(baseCase)

  mem[baseCase] = solution   // Save the solution for reuse

 for each subproblem in bottom-up order:

   // The order should be chosen so that every subsolution is

 // guaranteed to already be in memory when it’s needed

   solution = selectAndExtend(subsolutions) 

                        mem[subproblem] = solution // Save the solution for reuse

 return mem[problem]
4
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Weighted Interval Scheduling
Input: Like interval scheduling each request 𝒊 has start and finish times 𝒔𝒊 and 𝒇𝒊.  

Each request 𝒊 also has an associated value or weight 𝒗𝒊

  𝒗𝒊 might be
• the amount of money we get from renting out the resource

• the amount of time the resource is being used (𝒗𝒊 = 𝒇𝒊 − 𝒔𝒊)

Find: A maximum-weight compatible subset of requests.



Weighted Interval Scheduling
Input: Set of jobs with start times, finish times, and weights

Goal: Find maximum weight subset of mutually compatible jobs.
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Weighted Interval Scheduling – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?
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Weighted Interval Scheduling Top-Down DP

WIS(j):

 if OPT[j] not blank: // Check if we’ve solved this already

  return OPT[j]

 if j==0:    // Check if this is a base case

  mem[j] = 0    // Always save your solution before returning 

  return mem[j]

 includej = WIS(p(j)) // Solve each subproblem

 excludej = WIS(j -1) // Solve each subproblem

 solution = max(includej+value[j], excludej) // Pick the subproblem to use

 mem[j] = solution // Always save your solution before returning

 return solution
8
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Towards Dynamic Programming: Step 1 – Recursive Algorithm
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Option 1: Include the last request Option 2: Exclude the last request

After making this choice, the best solution possible 
is given by:
• The value of the solution to subproblem 

consisting of everything compatible
• Plus the value of the last request

𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗

After making this choice, the best solution possible 
is given by:
• The value of the solution to subproblem 

consisting of everything except the last request

𝑂𝑃𝑇 𝑗 − 1

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  
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Towards Dynamic Programming: Step 2 – Memory Structure

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  

Subproblems are identified by a single parameter
 1-dimensional array
That parameter is the last-ending compatible request
 length is the number of requests
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Weighted Interval Scheduling – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?
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Weighted Interval Scheduling – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?
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Towards Dynamic Programming: Step 3 – Order of Evaluation

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  

For any given cell 𝑗, which other cells might I need?
• 𝑗 − 1
• 𝑝 𝑗

It’s hard to know in advance what 𝑝(𝑗) might be, but 
certainly 𝑝 𝑗 < 𝑗 

Order: increasing order of 𝑗 will work 
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Bottom-Up DP Idea

def myDPalgo(problem):

 for each baseCase:    // Identify which subproblems are base cases

  solution = solve(baseCase)

  mem[baseCase] = solution   // Save the solution for reuse

 for each subproblem in bottom-up order:

   // The order should be chosen so that every subsolution is

 // guaranteed to already be in memory when it’s needed

   solution = selectAndExtend(subsolutions) 

                        mem[subproblem] = solution // Save the solution for reuse

 return mem[problem]
14



Weighted Interval Scheduling Bottom-Up DP

WIS(j):

 OPT[0] = 0   // Save the solution for the base case

 for each 𝑖 = 1 up to 𝑗:

   // The order should be chosen so that every subsolution is

 // guaranteed to already be in memory when it’s needed

   solution = max(OPT[𝑝(𝑖)]+value[𝑖], OPT[𝑖 − 1])

                        mem[𝑖] = solution // Save the solution for reuse

 return OPT[𝑗]
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Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  
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Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  
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Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0

3 6 0

4 3 1

5 5 0

6 4 2

7 4 3

8 3 5



19

Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  
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Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  
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Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  
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Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  
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Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  
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Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  
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Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  
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Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  
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Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  
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Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  
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Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  
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Weighted Interval Scheduling: Finding the Solution

So far we have computed the value OPT(𝒏) but we probably want to know what that 
solution OPT actually is!

We can do this, too, by keeping track of which option was better at each step. 

Define Used[𝒋] = ቊ𝟏 solution with value OPT 𝒋  includes request 𝒋
𝟎 otherwise

This gives a “pointer” that leads the way along a path to the optimal solution…

30
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Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  
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Weighted Interval Scheduling: Finding the Solution
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Weighted Interval Scheduling:  Iterative Solution
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  
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0 - - 0 -

1 3 0 3 1

2 2 0 3 0

3 6 0 6 1

4 3 1 6 1

5 5 0 6 0

6 4 2 7 1

7 4 3 10 1

8 3 5 10 0



Weighted Interval Scheduling - Complete
Sort requests by finish time

Compute each p(i)

WIS(j):

    OPT[0] = 0   

    for each 𝑖 = 1 up to 𝑗:

        includei =  OPT[𝑝(𝑖)]+value[𝑖]

        excludei = OPT[𝑖 − 1]

        if includei > excludei:

            OPT[𝑖] = includei

            used[𝑖] = 1

        else:

 OPT[𝑖] = excludei

 used[𝑖] = 0

 return find_opt(used);
33

find_opt(used):

    𝑗= 𝑛

    intervals = {}

    while 𝑗 > 0:

    if used[𝑗]==0:

            𝑗 = 𝑗 − 1

        else:

        intervals.add(𝑗)

            𝑗 = 𝑝(𝑗)

    return intervals



Weighted Interval Scheduling – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

6

7
8

4

3

1

2

5
6

7
8

4

3

1

2

5

max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , OPT 𝑗 − 1

𝒋 OPT[𝒋]

0 0

1

2

3

4

5

6

7

8

𝒋 OPT[𝒋]

0 0

1

2

3

4

5

6

7

8



Dynamic Programming Patterns

Fibonacci pattern:

• 1-dimensional, 𝑂(1) values immediately prior

• Space saving possible

Weighted interval scheduling pattern:

• 1-dimensional, 𝑂(1) values arbitrarily far back

• No space saving possible
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Longest Increasing Subsequence (LIS)

Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that           
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].
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6 3 4 2 7 5 10 6 8 5

10 9 8 7 6 5 4 3 2 8

5 6 83 4



Weighted Interval Scheduling – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?



Step 1: Finding a Recursive Structure

Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that           
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].

38

6 3 4 2 7 5 10 6 8 5

If the value at the last index were included, then best solution would look like:
• The longest sequence ending with something less than that value, 
• Followed by that value

Extend the longest solution that ends with something less than 5

𝑶𝑷𝑻 𝒋 = ቊ
𝟏 𝒋 = 𝟎

𝟏 + 𝒎𝒂𝒙 𝑶𝑷𝑻 𝒌 ∶ 𝒌 < 𝒋 𝒂𝒏𝒅 𝑨 𝒌 < 𝑨 𝒋  𝒋 > 𝟎 

𝑂𝑃𝑇 9  is 1 plus the max of:
• 𝑂𝑃𝑇 3
• 𝑂𝑃𝑇 2
• 𝑂𝑃𝑇(1)



Step 1: Finding a Recursive Structure

Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that           
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].
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If the value at the last index were included, then best solution would look like:
• The longest sequence ending with something less than that value, 
• Followed by that value

6 3 4 2 7 5 10 6 8 5

𝑶𝑷𝑻 𝒋 = ቊ
𝟏 𝒋 = 𝟎

𝟏 + 𝒎𝒂𝒙 𝑶𝑷𝑻 𝒌 ∶ 𝒌 < 𝒋 𝒂𝒏𝒅 𝑨 𝒌 < 𝑨 𝒋  𝒋 > 𝟎 

𝑂𝑃𝑇 8  is 1 plus the max of:
• 𝑂𝑃𝑇 7
• 𝑂𝑃𝑇 5
• 𝑂𝑃𝑇 4
• 𝑂𝑃𝑇(3)
• 𝑂𝑃𝑇(2)
• 𝑂𝑃𝑇(1)
• 𝑂𝑃𝑇(0)



Step 1: Finding a Recursive Structure

Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that           
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].
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If the value at the last index were included, then best solution would look like:
• The longest sequence ending with something less than that value, 
• Followed by that value

6 3 4 2 7 5 10 6 8 5

𝑶𝑷𝑻 𝒋 = ቊ
𝟏 𝒋 = 𝟎

𝟏 + 𝒎𝒂𝒙 𝑶𝑷𝑻 𝒌 ∶ 𝒌 < 𝒋 𝒂𝒏𝒅 𝑨 𝒌 < 𝑨 𝒋  𝒋 > 𝟎 

𝑂𝑃𝑇 7  is 1 plus the max of:
• 𝑂𝑃𝑇 5
• 𝑂𝑃𝑇(3)
• 𝑂𝑃𝑇(2)
• 𝑂𝑃𝑇(1)



Step 1: Finding a Recursive Structure

Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that           
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].
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If the value at the last index were included, then best solution would look like:
• The longest sequence ending with something less than that value, 
• Followed by that value

6 3 4 2 7 5 10 6 8 5

𝑶𝑷𝑻 𝒋 = ቊ
𝟏 𝒋 = 𝟎

𝟏 + 𝒎𝒂𝒙 𝑶𝑷𝑻 𝒌 ∶ 𝒌 < 𝒋 𝒂𝒏𝒅 𝑨 𝒌 < 𝑨 𝒋  𝒋 > 𝟎 

𝑂𝑃𝑇 3  is 1 plus the max of:
• ∅



LIS – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

6 3 4 2 7 5 10 6 8 5

𝟏 + 𝒎𝒂𝒙 𝑶𝑷𝑻 𝒌 ∶ 𝒌 < 𝒋 𝒂𝒏𝒅 𝑨 𝒌 < 𝑨 𝒋



Step 2: Memory Structure

• How many parameters?
• Just 1

• What does each represent?
• An index in the array

• How many different values?
• Length of the array

𝑶𝑷𝑻 𝒋 = ቊ
𝟏 𝒋 = 𝟎

𝟏 + 𝒎𝒂𝒙 𝑶𝑷𝑻 𝒌 ∶ 𝒌 < 𝒋 𝒂𝒏𝒅 𝑨 𝒌 < 𝑨 𝒋  𝒋 > 𝟎 

𝑶𝑷𝑻 =



LIS Top-Down DP
LISRec(𝑗):

 if OPT[𝑗] not blank: // Check if we’ve solved this already

  return OPT[𝑗]

 if 𝑗==0:    // Check if this is a base case

  OPT[𝑗] = 1    // Always save your solution before returning 

  return OPT[𝑗]

 best = 0

 for 𝑘 = 0 up to 𝑗 − 1:

   if 𝐴[𝑘]  <  𝐴[𝑗]:

   best = max(best, LIS(𝑘)) // Solve each subproblem, pick which to use

 OPT[𝑗] = 1+best // Always save your solution before returning

 return 1+best

44

LIS(𝐴):

 solution = 1

 for 𝑖=0 up to A.length:

  solution = max(solution, LISRec(𝑖))

 return solution



LIS – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

6 3 4 2 7 5 10 6 8 5

𝟏 + 𝒎𝒂𝒙 𝑶𝑷𝑻 𝒌 ∶ 𝒌 < 𝒋 𝒂𝒏𝒅 𝑨 𝒌 < 𝑨 𝒋

1-dimensional 
memory of size 𝑛



Step 2: Memory Structure

• For each choice of 𝑗 we might need any solution before it

• Solve in order of increasing index.

𝑶𝑷𝑻 𝒋 = ቊ
𝟏 𝒋 = 𝟎

𝟏 + 𝒎𝒂𝒙 𝑶𝑷𝑻 𝒌 ∶ 𝒌 < 𝒋 𝒂𝒏𝒅 𝑨 𝒌 < 𝑨 𝒋  𝒋 > 𝟎 

𝑶𝑷𝑻 =



LIS – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

6 3 4 2 7 5 10 6 8 5

𝟏 + 𝒎𝒂𝒙 𝑶𝑷𝑻 𝒌 ∶ 𝒌 < 𝒋 𝒂𝒏𝒅 𝑨 𝒌 < 𝑨 𝒋

1-dimensional 
memory of size 𝑛

Increasing order of index



LIS Bottom-up DP
LIS(𝐴):

 OPT[0]=1 // Solve and save the bast case solution

 for 𝑗 = 0 up to A.length: // Going in bottom-up order

  best = 0 // Applying the recursive structure

  for 𝑘 =  0 up to 𝑗:

   if A[𝑘]<A[𝑗]:

    best = max(best, OPT[𝑘])

  OPT[𝑗] = 1 + best // Save the solution for reuse

 solution = 0

 for 𝑖 = 0 up to 𝐴.length: // This was the for loop from the “public” method

  solution = max(solution, OPT(𝑖))

 return solution

48



Longest Increasing Subsequence (LIS)
Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that           
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].
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6 3 4 2 7 5 10 6 8 5

OPT[𝒋] 1

pred[𝒋] 0

𝒋 1 2 3 4 5 6 7 8 9 10



Longest Increasing Subsequence (LIS)
Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that           
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].
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6 3 4 2 7 5 10 6 8 5

OPT[𝒋] 1 1

pred[𝒋] 0 0

𝒋 1 2 3 4 5 6 7 8 9 10



Longest Increasing Subsequence (LIS)
Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that           
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].
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6 3 4 2 7 5 10 6 8 5

OPT[𝒋] 1 1 2

pred[𝒋] 0 0 2

𝒋 1 2 3 4 5 6 7 8 9 10



Longest Increasing Subsequence (LIS)

Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that           
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].
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6 3 4 2 7 5 10 6 8 5

OPT[𝒋] 1 1 2 1

pred[𝒋] 0 0 2 0

𝒋 1 2 3 4 5 6 7 8 9 10



Longest Increasing Subsequence (LIS)
Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that           
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].
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6 3 4 2 7 5 10 6 8 5

OPT[𝒋] 1 1 2 1 3

pred[𝒋] 0 0 2 0 3

𝒋 1 2 3 4 5 6 7 8 9 10



Longest Increasing Subsequence (LIS)
Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that           
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].
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6 3 4 2 7 5 10 6 8 5

OPT[𝒋] 1 1 2 1 3 3

pred[𝒋] 0 0 2 0 3 3

𝒋 1 2 3 4 5 6 7 8 9 10



Longest Increasing Subsequence (LIS)
Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that           
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].
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6 3 4 2 7 5 10 6 8 5

OPT[𝒋] 1 1 2 1 3 3 4

pred[𝒋] 0 0 2 0 3 3 5

𝒋 1 2 3 4 5 6 7 8 9 10



Longest Increasing Subsequence (LIS)
Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that           
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].
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6 3 4 2 7 5 10 6 8 5

OPT[𝒋] 1 1 2 1 3 3 4 4

pred[𝒋] 0 0 2 0 3 3 5 6

𝒋 1 2 3 4 5 6 7 8 9 10



Longest Increasing Subsequence (LIS)
Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that           
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].
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6 3 4 2 7 5 10 6 8 5

OPT[𝒋] 1 1 2 1 3 3 4 4 5

pred[𝒋] 0 0 2 0 3 3 5 6 8

𝒋 1 2 3 4 5 6 7 8 9 10



Longest Increasing Subsequence (LIS)
Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that           
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].
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6 3 4 2 7 5 10 6 8 5

OPT[𝒋] 1 1 2 1 3 3 4 4 5 3

pred[𝒋] 0 0 2 0 3 3 5 6 8 3

𝒋 1 2 3 4 5 6 7 8 9 10



Longest Increasing Subsequence (LIS)
Given: An array 𝑨 of 𝒏 integers.

Find: A longest possible sequence 𝒊𝟏 < 𝒊𝟐 < ⋯ < 𝒊𝒌 such that           
𝑨 𝒊𝟏 < 𝑨 𝒊𝟐 < ⋯ < 𝑨[𝒊𝒌].
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6 3 4 2 7 5 10 6 8 5

OPT[𝒋] 1 1 2 1 3 3 4 4 5 3

pred[𝒋] 0 0 2 0 3 3 5 6 8 3

𝒋 1 2 3 4 5 6 7 8 9 10



Dynamic Programming Patterns

Fibonacci pattern:

• 1-D, 𝑂(𝟏) immediately prior

• 𝑂(𝟏) space

Weighted interval scheduling pattern:

• 1-D, 𝑂(𝟏) arbitrary prior

• 𝑂(𝒏) space

Longest increasing subsequence pattern:

• 1-D, all 𝒏 − 𝟏 prior

• 𝑂(𝒏) space

60

𝑂(𝒏)

𝑂(𝒏)

𝑂(𝒏𝟐)



Dynamic Programming Patterns

Fibonacci pattern:

• 1-dimensional, 𝑂(1) values immediately prior

• Space saving possible

Weighted interval scheduling pattern:

• 1-dimensional, 𝑂(1) values arbitrarily far back

• No space saving possible
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How similar are two strings?
• ocurrance

• occurrence

62

String Similarity
o c u r r a n c e

c c u r r e n c eo

-

6 mismatches, 1 gap

o c u r r a n c e

c c u r r e n c eo

-

1 mismatch, 1 gap

o c u r r n c e

c c u r r n c eo

- - a

e -

0 mismatches, 3 gaps

Clearly a better 
matching

Maybe a better matching 
• depends on cost of 

gaps vs mismatches
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Applications:
• Basis for Unix diff.

• Speech recognition.

• Computational biology.

• autocorrect

Edit distance: [Levenshtein 1966, Needleman-Wunsch 1970]

• Gap penalty 𝜹; mismatch penalty 𝜶𝒑𝒒 if symbol 𝒑 is replaced by symbol 𝒒.

• Cost =  gap penalties + mismatch penalties.

63

Edit Distance

C G A C C T A C C T

C T G A C T A C A T

T

C

𝜶
TC

+ 𝜶
GT

+ 𝜶
AG

+ 𝟐𝜶
CA

T G A C C T A C C T

C T G A C T A C A T

- C

C -

𝟐𝜹 + 𝜶
CA
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Sequence Alignment: 
Given:  Two strings 𝑿 = 𝒙𝟏𝒙𝟐 … 𝒙𝒎 and 𝒀 = 𝒚𝟏𝒚𝟐 … 𝒚𝒏

Find:  “Alignment” of 𝑿 and 𝒀 of minimum edit cost.

Defn: An alignment 𝑴 of 𝑿 and 𝒀 is a set of ordered pairs 𝒙𝒊-𝒚𝒋 
s.t. each symbol of 𝑿 and 𝒀 occurs in at most one pair 
with no “crossing pairs”.

    The pairs 𝒙𝒊-𝒚𝒋 and 𝒙𝒊′-𝒚𝒋′  cross iff 𝒊 < 𝒊′ but 𝒋 > 𝒋′.

Sequence Alignment

cost 𝑴 = 

𝒙𝒊,𝒚𝒋 ∈𝑴

𝜶𝒙𝒊𝒚𝒋
+ 

𝒊∶ 𝒙𝒊 unmatched

𝜹 + 

𝒋: 𝒚𝒋 unmatched

𝜹

 mismatch gap

C T A C C -

T A C A T-

G

G

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 𝒚𝟔

𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓𝒙𝟏 𝒙𝟔

Example: 
CTACCG vs TACATG  

𝑴 = {𝒙𝟐−𝒚𝟏, 𝒙𝟑-𝒚𝟐, 𝒙𝟒-𝒚𝟑, 𝒙𝟓-𝒚𝟒, 𝒙𝟔-𝒚𝟔}

Note: if 𝒙𝒊 = 𝒚𝒋 then 𝜶𝒙𝒊𝒚𝒋
= 𝟎
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Edit Distance – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?



Step 1: Identify Recursive Structure
T A C A T G

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 𝒚𝟔

C T A C C G

𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓𝒙𝟏 𝒙𝟔
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Consider the last two indices x𝑖 and 𝑦𝑗

Options for what to do with them:

Option 1: 
Match them T A C A T G

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 𝒚𝟔

C T A C C G

𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓𝒙𝟏 𝒙𝟔

We use up one index from 𝑥 and 𝑦
Accrue a mismatch penalty 

𝑂𝑃𝑇 𝑖 − 1, 𝑗 − 1 + 𝛼𝑥𝑖𝑦𝑗

Option 2: 
Don’t match 𝑥𝑖

We use up one index from 𝑥 only
Accrue a gap penalty 

𝑂𝑃𝑇 𝑖 − 1, 𝑗 + 𝛿

C T A C C G

𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓𝒙𝟏 𝒙𝟔

T A C A T G

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 𝒚𝟔

-

Option 3: 
Don’t match 𝑦𝑖 T A C A T G

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 𝒚𝟔

C T A C C G

𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓𝒙𝟏 𝒙𝟔

- We use up one index from 𝑦 only
Accrue a gap penalty 

𝑂𝑃𝑇 𝑖, 𝑗 − 1 + 𝛿

𝑂𝑃𝑇 𝑖, 𝑗 =

𝑗 ⋅ 𝛿 if 𝑖 = 0
𝑖 ⋅ 𝛿 if 𝑗 = 0

min ൞

𝑂𝑃𝑇 𝑖 − 1, 𝑗 − 1 + 𝛼𝑥𝑖𝑦𝑗

𝑂𝑃𝑇 𝑖 − 1, 𝑗 + 𝛿

𝑂𝑃𝑇 𝑖, 𝑗 − 1 + 𝛿



Edit Distance – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

T A C A T G

C T A C C G

C T A C C G

T A C A T G -

T A C A T G

C T A C C G -



Step 2: Identify Memory Structure
T A C A T G

𝒚𝟏 𝒚𝟐 𝒚𝟑 𝒚𝟒 𝒚𝟓 𝒚𝟔

C T A C C G

𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓𝒙𝟏 𝒙𝟔
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𝑂𝑃𝑇 𝑖, 𝑗 =

𝑗 ⋅ 𝛿 if 𝑖 = 0
𝑖 ⋅ 𝛿 if 𝑗 = 0

min ൞

𝑂𝑃𝑇 𝑖 − 1, 𝑗 − 1 + 𝛼𝑥𝑖𝑦𝑗

𝑂𝑃𝑇 𝑖 − 1, 𝑗 + 𝛿

𝑂𝑃𝑇 𝑖, 𝑗 − 1 + 𝛿

• How many parameters?
• 2

• What does each represent?
• The number of items in each sequence

• How many different values?
• Length of sequence 𝑥 for 𝑖
• Length of sequence 𝑦 for 𝑗
• 𝑛 ⋅ 𝑚 overall

𝑦1 𝑦2 𝑦4 𝑦7𝑦5𝑦3 𝑦8𝑦6

𝑥5

𝑥1

𝑥2

𝑥3

𝑥4

𝑥6



Top-Down Sequence Alignment
align(𝑖, 𝑗):

 if OPT[𝑖][𝑗] not blank: // Check if we’ve solved this already

  return OPT[𝑖][𝑗]

 if 𝑖 ⋅ 𝑗 == 0:    // Check if this is a base case

  solution = (𝑖 + 𝑗) ⋅ 𝛿

  OPT[𝑖][𝑗] = solution    // Always save your solution before returning 

  return solution

 match = align(𝑖 − 1, 𝑗 − 1) // solve each subproblem

 gapx = align(𝑖 − 1,𝑗) // solve each subproblem

 gapy = align(𝑗, 𝑖 − 1) // solve each subproblem

 solution = min(match + 𝛼𝑥𝑖𝑦𝑗
, gapx + 𝛿, gapy+ 𝛿) // Pick the subproblem to use

  OPT[𝑖][𝑗] = solution    // Always save your solution before returning

 return solution
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Edit Distance – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

T A C A T G

C T A C C G

C T A C C G

T A C A T G -

T A C A T G

C T A C C G -



Step 3: Identify Order of Evaluation
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𝑂𝑃𝑇 𝑖, 𝑗 =

𝑗 ⋅ 𝛿 if 𝑖 = 0
𝑖 ⋅ 𝛿 if 𝑗 = 0

min ൞

𝑂𝑃𝑇 𝑖 − 1, 𝑗 − 1 + 𝛼𝑥𝑖𝑦𝑗

𝑂𝑃𝑇 𝑖 − 1, 𝑗 + 𝛿

𝑂𝑃𝑇 𝑖, 𝑗 − 1 + 𝛿
4,6

𝑦1 𝑦2 𝑦4 𝑦7𝑦5𝑦3 𝑦8𝑦6

𝑥5

𝑥1

𝑥2

𝑥3

𝑥4

𝑥6

Each index depends on 3 others:
1. The one above it: 𝑖 − 1, 𝑗
2. The one to its left: 𝑖, 𝑗 − 1
3. The one to it’s upper left: 𝑖 − 1, 𝑗 − 1

Any of these orders will work:

• Top-to-bottom, then left-to-right

• Left-to-right, then top-to-bottom

• Diagonally



Bottom-Up Sequence Alignment
align(𝑥, 𝑦):

 for 𝑖 = 0 up to 𝑛:

  OPT[𝑖][0] = 0   // Solve and save base cases

  for 𝑗 = 0 up to 𝑚:

  OPT[0][𝑗] = 0   // Solve and save base cases

 for 𝑖 = 1 up to 𝑛:

  for 𝑗 = 1 up to 𝑚 :

   match = OPT[𝑖 − 1][𝑗 − 1] // solve each subproblem

   gapx = OPT[𝑖][𝑗 − 1] // solve each subproblem

   gapy = OPT[𝑖 − 1][𝑗] // solve each subproblem

   solution = min(match + 𝛼𝑥𝑖𝑦𝑗
, gapx + 𝛿, gapy+ 𝛿) // pick solution

   OPT[𝑖][𝑗] = solution // save solution

 return OPT[𝑛][𝑚]
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Edit Distance – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

T A C A T G

C T A C C G

C T A C C G

T A C A T G -

T A C A T G

C T A C C G -



6

5

4

3

2

1

870 51 3 42 6
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Example run with AGACATTG  and GAGTTA: 𝜹 = 𝜶mis = 𝟏

A G C TAA GT

T

G

A

G

T

A



A G C TAA GT

111 2 3 4 5 6 7

6

5

4

3

2

80 51 3 42 6 7
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T

G

A

G

T

A

Example run with AGACATTG  and GAGTTA: 𝜹 = 𝜶mis = 𝟏



6

5

4

3

1 122

111 2 3 4 5 6 7

870 51 3 42 6
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Example run with AGACATTG  and GAGTTA: 𝜹 = 𝜶mis = 𝟏

A G C TAA GT

T

G

A

G

T

A



6

5

4

1 222 3 4 53 5

1 1 222 3 4 5 6

111 2 3 4 5 6 7

870 51 3 42 6
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Example run with AGACATTG  and GAGTTA: 𝜹 = 𝜶mis = 𝟏

A G C TAA GT

T

G

A

G

T

A



4 435 3 4 46 4

3 334 4 3 35 4

2 323 3 3 44 5

1 222 3 4 53 5

1 1 222 3 4 5 6

111 2 3 4 5 6 7

870 51 3 42 6
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Example run with AGACATTG  and GAGTTA: 𝜹 = 𝜶mis = 𝟏

A G C TAA GT

T

G

A

G

T

A
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Example run with AGACATTG  and GAGTTA: 𝜹 = 𝜶mis = 𝟏

A G C TAA GT

T

G

A

G

T

A

870 51 3 42 6

111 2 3 4 5 6 7

1 1 222 3 4 5 6

1 222 3 4 53 5

4 435 3 4 46 4

2 323 3 3 44 5

3 334 4 3 35 4



80

Example run with AGACATTG  and GAGTTA: 𝜹 = 𝜶mis = 𝟏

A G C TAA GT

T

G

A

G

T

A

870 51 3 42 6

111 2 3 4 5 6 7

1 1 222 3 4 5 6

1 222 3 4 53 5

4 435 3 4 46 4

2 323 3 3 44 5

3 334 4 3 35 4

Optimal Alignment

A G A C A T T G

_  G A  G _ T T A



Alignment pattern:
• 2-D, O(1) in previous row, above and 

arbitrary prior

• 𝑂(𝒏 ⋅ 𝒎) space

Dynamic Programming Patterns
Fibonacci pattern:

• 1-D, 𝑂(𝟏) immediately prior

• 𝑂(𝟏) space

Weighted interval scheduling pattern:

• 1-D, 𝑂(𝟏) arbitrary prior

• 𝑂(𝒏) space

Longest increasing subsequence pattern:

• 1-D, all 𝒏 − 𝟏 prior

• 𝑂(𝒏) space
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𝑂(𝒏)

𝑂(𝒏)

𝑂(𝒏𝟐)

𝑂(𝒏𝒎)
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