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Algorithmic Paradigms
Greedy: Build up a solution incrementally, myopically optimizing some local 
criterion.

Divide-and-conquer: Break up a problem into sub-problems (each typically a 
constant factor smaller), solve each sub-problem independently, and combine 
solution to sub-problems to form solution to original problem. 

Dynamic programming: Break up a problem into a series of overlapping sub-
problems, and build up solutions to larger and larger sub-problems.



Algorithm Design Techniques

Dynamic Programming:
• Technique for making building solution to a problem based on solutions to 

smaller subproblems (recursive ideas).

• The subproblems just have to be smaller, but don’t need to be a constant-
factor smaller like divide and conquer.

• Useful when the same subproblems show up over and over again

• The final solution is simple iterative code when the following holds:

• The parameters to all the subproblems are predictable in advance
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Dynamic Programming History
Bellman. [1950s] Pioneered the systematic study of dynamic programming.

Etymology

• Dynamic programming = planning over time.

• Secretary of Defense was hostile to mathematical research.

• Bellman sought an impressive name to avoid confrontation.
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Reference:  Bellman, R. E. Eye of the Hurricane, An Autobiography.

"it's impossible to use dynamic in a pejorative sense"

"something not even a Congressman could object to"
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How many ways are there to tile 
a 2 × 𝑛 board with dominoes?

Two ways to fill the final column:

𝑛 − 1

𝑛 − 2

𝑇𝑖𝑙𝑒 𝑛 = 𝑇𝑖𝑙𝑒 𝑛 − 1 + 𝑇𝑖𝑙𝑒(𝑛 − 2)

𝑇𝑖𝑙𝑒 0 = 𝑇𝑖𝑙𝑒 1 = 1



How to compute 𝑇𝑖𝑙𝑒(𝑛)?
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Tile(n):
 if n < 2:
  return 1
 return Tile(n-1)+Tile(n-2)

Running Time?



Recursion Tree
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Tile(5)

Tile(4) Tile(3)

Tile(3) Tile(2) Tile(2) Tile(1)

Tile(0)Tile(1)Tile(0)Tile(1)Tile(1)Tile(2)

Tile(0)Tile(1)

Many redundant calls!

Better way: Use Memory!

Run time: Ω(2𝑛) 



Recursion Tree
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Tile(5)

Tile(4) Tile(3)

Tile(3) Tile(2) Tile(2) Tile(1)

Tile(0)Tile(1)Tile(0)Tile(1)Tile(1)Tile(2)

Tile(0)Tile(1)

Many redundant calls!

Better way: Use Memory!

Run time: Ω(2𝑛) 



Computing 𝑇𝑖𝑙𝑒(𝑛) with Memory
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Initialize Memory M
Tile(n):
 if n < 2:
  return 1
 if M[n] is filled:
  return M[n]
 M[n] = Tile(n-1)+Tile(n-2)
 return M[n]

M
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Technique: “memoization” (note no “r”)



Computing 𝑇𝑖𝑙𝑒(𝑛) with Memory - “Top Down”
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Initialize Memory M
Tile(n):
 if n < 2:
  return 1
 if M[n] is filled:
  return M[n]
 M[n] = Tile(n-1)+Tile(n-2)
 return M[n]
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Computing 𝑇𝑖𝑙𝑒(𝑛) with Memory - “Top Down”
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Initialize Memory M
Tile(n):
 if n < 2:
  return 1
 if M[n] is filled:
  return M[n]
 M[n] = Tile(n-1)+Tile(n-2)
 return M[n]
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Recursive calls happen in a predictable order



𝑇𝑖𝑙𝑒(𝑛) with Memory - “Bottom Up”
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Tile(n):
 Initialize Memory M
 M[0] = 1
 M[1] = 1
 for i = 2 to n:
  M[i] = M[i-1] + M[i-2]
 return M[n]

M
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Better 𝑇𝑖𝑙𝑒(𝑛) with Memory - “Bottom Up”
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Tile(n):
 M[0] = 1
 M[1] = 1
 answer = -1
 for i = 2 to n:
  answer = M[0]+M[1]
  M[0] = M[1]
  M[1] = answer
 return M[1]

M

0

1

Observation: We only need 
to remember the last two 
subproblems!



Four Steps to Dynamic Programming
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?
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Conclusion: a 1-
dimensional 
memory of size 𝑛



Top-Down DP Idea

def myDPalgo(problem):
 if mem[problem] not blank:    // Check if we’ve solved this already
  return mem[problem]
 if baseCase(problem):    // Check if this is a base case
  solution = solve(problem)
  mem[problem] = solution    // Always save your solution before returning 
  return solution
 for subproblem of problem:
  subsolutions.append(myDPalgo(subproblem)) // solve each subproblem
 solution = selectAndExtend(subsolutions) // Pick the subproblem to use
 mem[problem] = solution    // Always save your solution before returning
 return solution
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Bottom-Up DP Idea

def myDPalgo(problem):

 for each baseCase:    // Identify which subproblems are base cases

  solution = solve(baseCase)

  mem[baseCase] = solution   // Save the solution for reuse

 for each subproblem in bottom-up order:

   // The order should be chosen so that every subsolution is

                       // guaranteed to already be in memory when it’s needed

   solution = selectAndExtend(subsolutions) 

                        mem[subproblem] = solution // Save the solution for reuse

 return mem[problem]
16
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Weighted Interval Scheduling
Input: Like interval scheduling each request 𝒊 has start and finish times 𝒔𝒊 and 𝒇𝒊.  

Each request 𝒊 also has an associated value or weight 𝒗𝒊

  𝒗𝒊 might be
• the amount of money we get from renting out the resource

• the amount of time the resource is being used (𝒗𝒊 = 𝒇𝒊 − 𝒔𝒊)

Find: A maximum-weight compatible subset of requests.



Weighted Interval Scheduling

Input: Set of jobs with start times, finish times, and weights

Goal: Find maximum weight subset of mutually compatible jobs.
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Weighted Interval Scheduling
Input: Set of jobs with start times, finish times, and weights

Goal: Find maximum weight subset of mutually compatible jobs.
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Greedy by finish times would give 9



Weighted Interval Scheduling
Input: Set of jobs with start times, finish times, and weights

Goal: Find maximum weight subset of mutually compatible jobs.
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Optimal yields 10



Greedy Algorithms for Weighted Interval Scheduling?

• What criterion should we try?
• Earliest start time 𝒔𝒊

• Doesn’t work

• Shortest request time 𝒇𝒊 − 𝒔𝒊
• Doesn’t work

• Fewest conflicts
• Doesn’t work

• Earliest finish time 𝒇𝒊
• Doesn’t work

• Largest value/weight 𝒗𝒊
• Doesn’t work
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Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.
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22

Weighted Interval Scheduling

11
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Weighted Interval Scheduling
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.
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Weighted Interval Scheduling – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?
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Towards Dynamic Programming: Step 1 – Recursive Algorithm
Suppose that we first sort the requests by finish time 𝒇𝒊 so 𝒇𝟏 𝒇𝟐 … 𝒇𝒏.

We now want

• a recursive solution that makes calls to smaller problems and 

• the indices for those smaller problems to be convenient,

        so we first focus on the options for the last request, request 𝒏.  
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Option 1: Include the last request Option 2: Exclude the last request
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Towards Dynamic Programming: Step 1 – Recursive Algorithm

Time
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Option 1: Include the last request Option 2: Exclude the last request

After making this choice, the best solution possible 
is given by:
• The value of the solution to subproblem 

consisting of everything compatible
• Plus the value of the last request

After making this choice, the best solution possible 
is given by:
• The value of the solution to subproblem 

consisting of everything except the last request

It will be convenient to be able to 
prune incompatible requests quickly… 
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Weighted Interval Scheduling
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

Example: 𝒑(𝟖) = 𝟓, 𝒑(𝟕) = 𝟑, 𝒑(𝟐) = 𝟎
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Towards Dynamic Programming: Step 1 – Recursive Algorithm
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Option 1: Include the last request Option 2: Exclude the last request

After making this choice, the best solution possible 
is given by:
• The value of the solution to subproblem 

consisting of everything compatible
• Plus the value of the last request

𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗

After making this choice, the best solution possible 
is given by:
• The value of the solution to subproblem 

consisting of everything except the last request

𝑂𝑃𝑇 𝑗 − 1

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  



Weighted Interval Scheduling – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?
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max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , OPT 𝑗 − 1
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Towards Dynamic Programming: Step 2 – Memory Structure

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  

Subproblems are identified by a single parameter
 1-dimensional array
That parameter is the last-ending compatible request
 length is the number of requests

𝒋 OPT[𝒋]

0 0
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2

3

4

5

6

7

8



Weighted Interval Scheduling – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?
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Top-Down DP Idea

def myDPalgo(problem):
 if mem[problem] not blank:    // Check if we’ve solved this already
  return mem[problem]
 if baseCase(problem):    // Check if this is a base case
  solution = solve(problem)
  mem[problem] = solution    // Always save your solution before returning 
  return solution
 for subproblem of problem:
  subsolutions.append(myDPalgo(subproblem)) // solve each subproblem
 solution = selectAndExtend(subsolutions) // Pick the subproblem to use
 mem[problem] = solution    // Always save your solution before returning
 return solution

32



Weighted Interval Scheduling Top-Down DP

WIS(j):

 if OPT[j] not blank:    // Check if we’ve solved this already

  return OPT[j]

 if j==0:    // Check if this is a base case

  mem[j] = 0    // Always save your solution before returning 

  return mem[j]

 includej = WIS(p(j)) // Solve each subproblem

 excludej = WIS(j -1) // Solve each subproblem

 solution = max(includej+value[j], excludej) // Pick the subproblem to use

 mem[j] = solution // Always save your solution before returning

 return solution
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Weighted Interval Scheduling – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?
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Towards Dynamic Programming: Step 3 – Order of Evaluation

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  

For any given cell 𝑗, which other cells might I need?
• 𝑗 − 1
• 𝑝 𝑗

It’s hard to know in advance what 𝑝(𝑗) might be, but 
certainly 𝑝 𝑗 < 𝑗 

Order: increasing order of 𝑗 will work 

𝒋 OPT[𝒋]
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Bottom-Up DP Idea

def myDPalgo(problem):

 for each baseCase:    // Identify which subproblems are base cases

  solution = solve(baseCase)

  mem[baseCase] = solution   // Save the solution for reuse

 for each subproblem in bottom-up order:

   // The order should be chosen so that every subsolution is

                       // guaranteed to already be in memory when it’s needed

   solution = selectAndExtend(subsolutions) 

                        mem[subproblem] = solution // Save the solution for reuse

 return mem[problem]
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Weighted Interval Scheduling Bottom-Up DP

WIS(j):

 OPT[0] = 0   // Save the solution for the base case

 for each 𝑖 = 1 up to 𝑗:

   // The order should be chosen so that every subsolution is

                       // guaranteed to already be in memory when it’s needed

   solution = max(OPT[𝑝(𝑖)]+value[𝑖], OPT[𝑖 − 1])

                        mem[𝑖] = solution // Save the solution for reuse

 return OPT[𝑗]
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Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  
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Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  
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Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  
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Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  
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Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  
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Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  
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Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7
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4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1

5 5 0

6 4 2

7 4 3

8 3 5
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Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0

6 4 2

7 4 3

8 3 5
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Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0 5

6 4 2

7 4 3

8 3 5



47

Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0 6

6 4 2 7

7 4 3

8 3 5
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Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  

Time
0 1 2 3 4 5 6 7 8 9 10 11
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7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0 6

6 4 2 7

7 4 3

8 3 5
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Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0 6

6 4 2 7

7 4 3 10

8 3 5
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Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0 6

6 4 2 7

7 4 3 10

8 3 5
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Example Execution (iterative)
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0 6

6 4 2 7

7 4 3 10

8 3 5 10



Weighted Interval Scheduling: Finding the Solution

So far we have computed the value OPT(𝒏) but we probably want to know what that 
solution OPT actually is!

We can do this, too, by keeping track of which option was better at each step. 

Define Used[𝒋] = ቊ𝟏 solution with value OPT 𝒋  includes request 𝒋
𝟎 otherwise

This gives a “pointer” that leads the way along a path to the optimal solution…
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Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋] Used[𝒋]

0 - - 0 -

1 3 0 3 1

2 2 0 3 0

3 6 0 6 1

4 3 1 6 1

5 5 0 6 0

6 4 2 7 1

7 4 3 10 1

8 3 5 10 0

Weighted Interval Scheduling: Finding the Solution
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Weighted Interval Scheduling:  Iterative Solution
Notation:  Label jobs by finishing time:  𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn:  𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.    

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1  

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋] Used[𝒋]

0 - - 0 -

1 3 0 3 1

2 2 0 3 0

3 6 0 6 1

4 3 1 6 1

5 5 0 6 0

6 4 2 7 1

7 4 3 10 1

8 3 5 10 0



Weighted Interval Scheduling - Complete
Sort requests by finish time

Compute each p(i)

WIS(j):

    OPT[0] = 0   

    for each 𝑖 = 1 up to 𝑗:

        includei =  OPT[𝑝(𝑖)]+value[𝑖]

        excludei = OPT[𝑖 − 1]

        if includei > excludei:

            OPT[𝑖] = includei

            used[𝑖] = 1

        else:

            OPT[𝑖] = excludei

            used[𝑖] = 0

    return find_opt(used);
55

find_opt(used):

    𝑗= 𝑛

    intervals = {}

    while 𝑗 > 0:

        if used[𝑗]==0:

            𝑗 = 𝑗 − 1

        else:

            intervals.add(𝑗)

            𝑗 = 𝑝(𝑗)

    return intervals



Weighted Interval Scheduling – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation. 
• Want to guarantee that the necessary subproblem solutions are in memory 

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

6

7
8

4

3

1

2

5
6

7
8

4

3

1

2

5

max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , OPT 𝑗 − 1

𝒋 OPT[𝒋]

0 0
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𝒋 OPT[𝒋]

0 0
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Dynamic Programming Patterns

Fibonacci pattern:

• 1-dimensional, 𝑂(1) values immediately prior

• Space saving possible

Weighted interval scheduling pattern:

• 1-dimensional, 𝑂(1) values arbitrarily far back

• No space saving possible
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