
CSE 421 Winter 2025
Lecture 12: Dynamic Programming

Nathan Brunelle

http://www.cs.uw.edu/421

http://www.cs.uw.edu/421

Algorithmic Paradigms
Greedy: Build up a solution incrementally, myopically optimizing some local
criterion.

Divide-and-conquer: Break up a problem into sub-problems (each typically a
constant factor smaller), solve each sub-problem independently, and combine
solution to sub-problems to form solution to original problem.

Dynamic programming: Break up a problem into a series of overlapping sub-
problems, and build up solutions to larger and larger sub-problems.

Algorithm Design Techniques

Dynamic Programming:
• Technique for making building solution to a problem based on solutions to

smaller subproblems (recursive ideas).

• The subproblems just have to be smaller, but don’t need to be a constant-
factor smaller like divide and conquer.

• Useful when the same subproblems show up over and over again

• The final solution is simple iterative code when the following holds:

• The parameters to all the subproblems are predictable in advance

3

Dynamic Programming History
Bellman. [1950s] Pioneered the systematic study of dynamic programming.

Etymology

• Dynamic programming = planning over time.

• Secretary of Defense was hostile to mathematical research.

• Bellman sought an impressive name to avoid confrontation.

4

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

"it's impossible to use dynamic in a pejorative sense"

"something not even a Congressman could object to"

5

How many ways are there to tile
a 2 × 𝑛 board with dominoes?

Two ways to fill the final column:

𝑛 − 1

𝑛 − 2

𝑇𝑖𝑙𝑒 𝑛 = 𝑇𝑖𝑙𝑒 𝑛 − 1 + 𝑇𝑖𝑙𝑒(𝑛 − 2)

𝑇𝑖𝑙𝑒 0 = 𝑇𝑖𝑙𝑒 1 = 1

How to compute 𝑇𝑖𝑙𝑒(𝑛)?

6

Tile(n):
 if n < 2:
 return 1
 return Tile(n-1)+Tile(n-2)

Running Time?

Recursion Tree

7

Tile(5)

Tile(4) Tile(3)

Tile(3) Tile(2) Tile(2) Tile(1)

Tile(0)Tile(1)Tile(0)Tile(1)Tile(1)Tile(2)

Tile(0)Tile(1)

Many redundant calls!

Better way: Use Memory!

Run time: Ω(2𝑛)

Recursion Tree

8

Tile(5)

Tile(4) Tile(3)

Tile(3) Tile(2) Tile(2) Tile(1)

Tile(0)Tile(1)Tile(0)Tile(1)Tile(1)Tile(2)

Tile(0)Tile(1)

Many redundant calls!

Better way: Use Memory!

Run time: Ω(2𝑛)

Computing 𝑇𝑖𝑙𝑒(𝑛) with Memory

9

Initialize Memory M
Tile(n):
 if n < 2:
 return 1
 if M[n] is filled:
 return M[n]
 M[n] = Tile(n-1)+Tile(n-2)
 return M[n]

M

0

1

2

3

4

5

6

Technique: “memoization” (note no “r”)

Computing 𝑇𝑖𝑙𝑒(𝑛) with Memory - “Top Down”

10

Initialize Memory M
Tile(n):
 if n < 2:
 return 1
 if M[n] is filled:
 return M[n]
 M[n] = Tile(n-1)+Tile(n-2)
 return M[n]

1

1

2

3

5

8

13

M

0

1

2

3

4

5

6

Computing 𝑇𝑖𝑙𝑒(𝑛) with Memory - “Top Down”

11

Initialize Memory M
Tile(n):
 if n < 2:
 return 1
 if M[n] is filled:
 return M[n]
 M[n] = Tile(n-1)+Tile(n-2)
 return M[n]

1

1

2

3

5

8

13

M

0

1

2

3

4

5

6

Recursive calls happen in a predictable order

𝑇𝑖𝑙𝑒(𝑛) with Memory - “Bottom Up”

12

Tile(n):
 Initialize Memory M
 M[0] = 1
 M[1] = 1
 for i = 2 to n:
 M[i] = M[i-1] + M[i-2]
 return M[n]

M

0

1

2

3

4

5

6

Better 𝑇𝑖𝑙𝑒(𝑛) with Memory - “Bottom Up”

13

Tile(n):
 M[0] = 1
 M[1] = 1
 answer = -1
 for i = 2 to n:
 answer = M[0]+M[1]
 M[0] = M[1]
 M[1] = answer
 return M[1]

M

0

1

Observation: We only need
to remember the last two
subproblems!

Four Steps to Dynamic Programming
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

14

𝑛 − 1

𝑛 − 2

M

0

1

2

3

4

5

6
M

0

1

2

3

4

5

6

M

0

1

Conclusion: a 1-
dimensional
memory of size 𝑛

Top-Down DP Idea

def myDPalgo(problem):
 if mem[problem] not blank: // Check if we’ve solved this already
 return mem[problem]
 if baseCase(problem): // Check if this is a base case
 solution = solve(problem)
 mem[problem] = solution // Always save your solution before returning
 return solution
 for subproblem of problem:
 subsolutions.append(myDPalgo(subproblem)) // solve each subproblem
 solution = selectAndExtend(subsolutions) // Pick the subproblem to use
 mem[problem] = solution // Always save your solution before returning
 return solution

15

Bottom-Up DP Idea

def myDPalgo(problem):

 for each baseCase: // Identify which subproblems are base cases

 solution = solve(baseCase)

 mem[baseCase] = solution // Save the solution for reuse

 for each subproblem in bottom-up order:

 // The order should be chosen so that every subsolution is

 // guaranteed to already be in memory when it’s needed

 solution = selectAndExtend(subsolutions)

 mem[subproblem] = solution // Save the solution for reuse

 return mem[problem]
16

17

Weighted Interval Scheduling
Input: Like interval scheduling each request 𝒊 has start and finish times 𝒔𝒊 and 𝒇𝒊.

Each request 𝒊 also has an associated value or weight 𝒗𝒊

 𝒗𝒊 might be
• the amount of money we get from renting out the resource

• the amount of time the resource is being used (𝒗𝒊 = 𝒇𝒊 − 𝒔𝒊)

Find: A maximum-weight compatible subset of requests.

Weighted Interval Scheduling

Input: Set of jobs with start times, finish times, and weights

Goal: Find maximum weight subset of mutually compatible jobs.

18

Time

4

4

3

3

6

3

2

5

0 1 2 3 4 5 6 7 8 9 10

Weighted Interval Scheduling
Input: Set of jobs with start times, finish times, and weights

Goal: Find maximum weight subset of mutually compatible jobs.

19

Time

4

4

3

3

6

3

2

5

0 1 2 3 4 5 6 7 8 9 10

Greedy by finish times would give 9

Weighted Interval Scheduling
Input: Set of jobs with start times, finish times, and weights

Goal: Find maximum weight subset of mutually compatible jobs.

20

Time

4

4

3

3

6

3

2

5

0 1 2 3 4 5 6 7 8 9 10

Optimal yields 10

Greedy Algorithms for Weighted Interval Scheduling?

• What criterion should we try?
• Earliest start time 𝒔𝒊

• Doesn’t work

• Shortest request time 𝒇𝒊 − 𝒔𝒊
• Doesn’t work

• Fewest conflicts
• Doesn’t work

• Earliest finish time 𝒇𝒊
• Doesn’t work

• Largest value/weight 𝒗𝒊
• Doesn’t work

21

Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Time

6

7

8

4

3

1

2

5

0 1 2 3 4 5 6 7 8 9 10

22

Weighted Interval Scheduling

11

23

Weighted Interval Scheduling
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

Weighted Interval Scheduling – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

25

Towards Dynamic Programming: Step 1 – Recursive Algorithm
Suppose that we first sort the requests by finish time 𝒇𝒊 so 𝒇𝟏 𝒇𝟐 … 𝒇𝒏.

We now want

• a recursive solution that makes calls to smaller problems and

• the indices for those smaller problems to be convenient,

 so we first focus on the options for the last request, request 𝒏.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

Option 1: Include the last request Option 2: Exclude the last request

26

Towards Dynamic Programming: Step 1 – Recursive Algorithm

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

Option 1: Include the last request Option 2: Exclude the last request

After making this choice, the best solution possible
is given by:
• The value of the solution to subproblem

consisting of everything compatible
• Plus the value of the last request

After making this choice, the best solution possible
is given by:
• The value of the solution to subproblem

consisting of everything except the last request

It will be convenient to be able to
prune incompatible requests quickly…

27

Weighted Interval Scheduling
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

Example: 𝒑(𝟖) = 𝟓, 𝒑(𝟕) = 𝟑, 𝒑(𝟐) = 𝟎

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒑(𝒋)

1 0

2 0

3 0

4 1

5 0

6 2

7 3

8 5

28

Towards Dynamic Programming: Step 1 – Recursive Algorithm

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

Option 1: Include the last request Option 2: Exclude the last request

After making this choice, the best solution possible
is given by:
• The value of the solution to subproblem

consisting of everything compatible
• Plus the value of the last request

𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗

After making this choice, the best solution possible
is given by:
• The value of the solution to subproblem

consisting of everything except the last request

𝑂𝑃𝑇 𝑗 − 1

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Weighted Interval Scheduling – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

6

7
8

4

3

1

2

5
6

7
8

4

3

1

2

5

max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , OPT 𝑗 − 1

30

Towards Dynamic Programming: Step 2 – Memory Structure

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Subproblems are identified by a single parameter
 1-dimensional array
That parameter is the last-ending compatible request
 length is the number of requests

𝒋 OPT[𝒋]

0 0

1

2

3

4

5

6

7

8

Weighted Interval Scheduling – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

6

7
8

4

3

1

2

5
6

7
8

4

3

1

2

5

max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , OPT 𝑗 − 1

𝒋 OPT[𝒋]

0 0

1

2

3

4

5

6

7

8

Top-Down DP Idea

def myDPalgo(problem):
 if mem[problem] not blank: // Check if we’ve solved this already
 return mem[problem]
 if baseCase(problem): // Check if this is a base case
 solution = solve(problem)
 mem[problem] = solution // Always save your solution before returning
 return solution
 for subproblem of problem:
 subsolutions.append(myDPalgo(subproblem)) // solve each subproblem
 solution = selectAndExtend(subsolutions) // Pick the subproblem to use
 mem[problem] = solution // Always save your solution before returning
 return solution

32

Weighted Interval Scheduling Top-Down DP

WIS(j):

 if OPT[j] not blank: // Check if we’ve solved this already

 return OPT[j]

 if j==0: // Check if this is a base case

 mem[j] = 0 // Always save your solution before returning

 return mem[j]

 includej = WIS(p(j)) // Solve each subproblem

 excludej = WIS(j -1) // Solve each subproblem

 solution = max(includej+value[j], excludej) // Pick the subproblem to use

 mem[j] = solution // Always save your solution before returning

 return solution
33

Weighted Interval Scheduling – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

6

7
8

4

3

1

2

5
6

7
8

4

3

1

2

5

max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , OPT 𝑗 − 1

𝒋 OPT[𝒋]

0 0

1

2

3

4

5

6

7

8

35

Towards Dynamic Programming: Step 3 – Order of Evaluation

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

For any given cell 𝑗, which other cells might I need?
• 𝑗 − 1
• 𝑝 𝑗

It’s hard to know in advance what 𝑝(𝑗) might be, but
certainly 𝑝 𝑗 < 𝑗

Order: increasing order of 𝑗 will work

𝒋 OPT[𝒋]

0 0

1

2

3

4

5

6

7

8

Bottom-Up DP Idea

def myDPalgo(problem):

 for each baseCase: // Identify which subproblems are base cases

 solution = solve(baseCase)

 mem[baseCase] = solution // Save the solution for reuse

 for each subproblem in bottom-up order:

 // The order should be chosen so that every subsolution is

 // guaranteed to already be in memory when it’s needed

 solution = selectAndExtend(subsolutions)

 mem[subproblem] = solution // Save the solution for reuse

 return mem[problem]
36

Weighted Interval Scheduling Bottom-Up DP

WIS(j):

 OPT[0] = 0 // Save the solution for the base case

 for each 𝑖 = 1 up to 𝑗:

 // The order should be chosen so that every subsolution is

 // guaranteed to already be in memory when it’s needed

 solution = max(OPT[𝑝(𝑖)]+value[𝑖], OPT[𝑖 − 1])

 mem[𝑖] = solution // Save the solution for reuse

 return OPT[𝑗]

37

38

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0

2 2 0

3 6 0

4 3 1

5 5 0

6 4 2

7 4 3

8 3 5

39

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0

3 6 0

4 3 1

5 5 0

6 4 2

7 4 3

8 3 5

40

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0

3 6 0

4 3 1

5 5 0

6 4 2

7 4 3

8 3 5

41

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0

4 3 1

5 5 0

6 4 2

7 4 3

8 3 5

42

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0

4 3 1

5 5 0

6 4 2

7 4 3

8 3 5

43

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1

5 5 0

6 4 2

7 4 3

8 3 5

44

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1

5 5 0

6 4 2

7 4 3

8 3 5

45

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0

6 4 2

7 4 3

8 3 5

46

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0 5

6 4 2

7 4 3

8 3 5

47

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0 6

6 4 2 7

7 4 3

8 3 5

48

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0 6

6 4 2 7

7 4 3

8 3 5

49

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0 6

6 4 2 7

7 4 3 10

8 3 5

50

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0 6

6 4 2 7

7 4 3 10

8 3 5

51

Example Execution (iterative)
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋]

0 - - 0

1 3 0 3

2 2 0 3

3 6 0 6

4 3 1 6

5 5 0 6

6 4 2 7

7 4 3 10

8 3 5 10

Weighted Interval Scheduling: Finding the Solution

So far we have computed the value OPT(𝒏) but we probably want to know what that
solution OPT actually is!

We can do this, too, by keeping track of which option was better at each step.

Define Used[𝒋] = ቊ𝟏 solution with value OPT 𝒋 includes request 𝒋
𝟎 otherwise

This gives a “pointer” that leads the way along a path to the optimal solution…

52

53

Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋] Used[𝒋]

0 - - 0 -

1 3 0 3 1

2 2 0 3 0

3 6 0 6 1

4 3 1 6 1

5 5 0 6 0

6 4 2 7 1

7 4 3 10 1

8 3 5 10 0

Weighted Interval Scheduling: Finding the Solution

54

Weighted Interval Scheduling: Iterative Solution
Notation: Label jobs by finishing time: 𝒇𝟏 ≤ 𝒇𝟐 ≤ ⋯ ≤ 𝒇𝒏.

Defn: 𝒑(𝒋) = largest index 𝒊 < 𝒋 s.t. job 𝒊 is compatible with 𝒋.

𝑂𝑃𝑇 𝑗 = max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , 𝑂𝑃𝑇 𝑗 − 1

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

𝒋 𝒗𝒋 𝒑(𝒋) OPT[𝒋] Used[𝒋]

0 - - 0 -

1 3 0 3 1

2 2 0 3 0

3 6 0 6 1

4 3 1 6 1

5 5 0 6 0

6 4 2 7 1

7 4 3 10 1

8 3 5 10 0

Weighted Interval Scheduling - Complete
Sort requests by finish time

Compute each p(i)

WIS(j):

 OPT[0] = 0

 for each 𝑖 = 1 up to 𝑗:

 includei = OPT[𝑝(𝑖)]+value[𝑖]

 excludei = OPT[𝑖 − 1]

 if includei > excludei:

 OPT[𝑖] = includei

 used[𝑖] = 1

 else:

 OPT[𝑖] = excludei

 used[𝑖] = 0

 return find_opt(used);
55

find_opt(used):

 𝑗= 𝑛

 intervals = {}

 while 𝑗 > 0:

 if used[𝑗]==0:

 𝑗 = 𝑗 − 1

 else:

 intervals.add(𝑗)

 𝑗 = 𝑝(𝑗)

 return intervals

Weighted Interval Scheduling – Four Steps
1. Formulate the answer with a recursive structure

• What are the options for the last choice?

• For each such option, what does the subproblem look like? How do we use it?

2. Choose a memory structure.
• Figure out the possible values of all parameters in the recursive calls.

• How many subproblems (options for last choice) are there?

• What are the parameters needed to identify each?

• How many different values could there be per parameter?

3. Specify an order of evaluation.
• Want to guarantee that the necessary subproblem solutions are in memory

when you need them.

• With this step: a “Bottom-up” (iterative) algorithm

• Without this step: a “Top-down” (recursive) algorithm

4. See if there’s a way to save space
• Is it possible to reuse some memory locations?

6

7
8

4

3

1

2

5
6

7
8

4

3

1

2

5

max 𝑂𝑃𝑇 𝑝 𝑗 + 𝑣𝑗 , OPT 𝑗 − 1

𝒋 OPT[𝒋]

0 0

1

2

3

4

5

6

7

8

𝒋 OPT[𝒋]

0 0

1

2

3

4

5

6

7

8

Dynamic Programming Patterns

Fibonacci pattern:

• 1-dimensional, 𝑂(1) values immediately prior

• Space saving possible

Weighted interval scheduling pattern:

• 1-dimensional, 𝑂(1) values arbitrarily far back

• No space saving possible

57

	Slide 1: CSE 421 Winter 2025 Lecture 12: Dynamic Programming
	Slide 2: Algorithmic Paradigms
	Slide 3: Algorithm Design Techniques
	Slide 4: Dynamic Programming History
	Slide 5: How many ways are there to tile a 2 times n board with dominoes?
	Slide 6: How to compute cap T i. l e open paren n close paren ?
	Slide 7: Recursion Tree
	Slide 8: Recursion Tree
	Slide 9: Computing cap T i. l e open paren n close paren with Memory
	Slide 10: Computing cap T i. l e open paren n close paren with Memory - “Top Down”
	Slide 11: Computing cap T i. l e open paren n close paren with Memory - “Top Down”
	Slide 12: cap T i. l e open paren n close paren with Memory - “Bottom Up”
	Slide 13: Better cap T i. l e open paren n close paren with Memory - “Bottom Up”
	Slide 14: Four Steps to Dynamic Programming
	Slide 15: Top-Down DP Idea
	Slide 16: Bottom-Up DP Idea
	Slide 17: Weighted Interval Scheduling
	Slide 18: Weighted Interval Scheduling
	Slide 19: Weighted Interval Scheduling
	Slide 20: Weighted Interval Scheduling
	Slide 21: Greedy Algorithms for Weighted Interval Scheduling?
	Slide 22: Weighted Interval Scheduling
	Slide 23: Weighted Interval Scheduling
	Slide 24: Weighted Interval Scheduling – Four Steps
	Slide 25: Towards Dynamic Programming: Step 1 – Recursive Algorithm
	Slide 26: Towards Dynamic Programming: Step 1 – Recursive Algorithm
	Slide 27: Weighted Interval Scheduling
	Slide 28: Towards Dynamic Programming: Step 1 – Recursive Algorithm
	Slide 29: Weighted Interval Scheduling – Four Steps
	Slide 30: Towards Dynamic Programming: Step 2 – Memory Structure
	Slide 31: Weighted Interval Scheduling – Four Steps
	Slide 32: Top-Down DP Idea
	Slide 33: Weighted Interval Scheduling Top-Down DP
	Slide 34: Weighted Interval Scheduling – Four Steps
	Slide 35: Towards Dynamic Programming: Step 3 – Order of Evaluation
	Slide 36: Bottom-Up DP Idea
	Slide 37: Weighted Interval Scheduling Bottom-Up DP
	Slide 38: Example Execution (iterative)
	Slide 39: Example Execution (iterative)
	Slide 40: Example Execution (iterative)
	Slide 41: Example Execution (iterative)
	Slide 42: Example Execution (iterative)
	Slide 43: Example Execution (iterative)
	Slide 44: Example Execution (iterative)
	Slide 45: Example Execution (iterative)
	Slide 46: Example Execution (iterative)
	Slide 47: Example Execution (iterative)
	Slide 48: Example Execution (iterative)
	Slide 49: Example Execution (iterative)
	Slide 50: Example Execution (iterative)
	Slide 51: Example Execution (iterative)
	Slide 52: Weighted Interval Scheduling: Finding the Solution
	Slide 53: Weighted Interval Scheduling: Finding the Solution
	Slide 54: Weighted Interval Scheduling: Iterative Solution
	Slide 55: Weighted Interval Scheduling - Complete
	Slide 56: Weighted Interval Scheduling – Four Steps
	Slide 57: Dynamic Programming Patterns

