CSE 421 Winter 2025
Lecture 11: Quicksort and Medians
Y,

Nathan Brunelle

http://www.cs.uw.edu/421

http://www.cs.uw.edu/421

ij(n+m) vs. f(n) + f(m) mz’

e When is each true?

—> flntm) = f)+fm) 3 - /7/4
— 7 flntm) <f() +f(m)._
2 WﬂnH@
(-t %)

2 4"

f(n) = 0(n)
fmn+m)=fn)+ f(m)
Tl
f(n) f(m)

f(n) € 0(n)

/

f(m)

(%)
@ F) Hm Fm)

| | | | le
n m n+m

fn+m) < f(n) + f(m)

f(n)

V2

e Q(n)

S f@m) 2 £+ fom)
f(m)
f(n)

120 140
n+m

Divide and Conquer (Quick Sort)

5
2 5
-

\ 5

e Base Case:

e If the list is of Iengtlz 1 or O, it’s already sorted, so just return
* (Alternative: when length is < 15, use insertion sort)

e Divide:
e Select an element to use as a @1

. &rtgciﬁpz rearrange the list so that all elements less than the pivot are
to the left of the pivot, all elements greater are to the right

| @Conquer:
» Sort the sublists to the left and right of the pivot recursively.

e Combine:

* Nothing!

Partition

Pu@at beginning of list
) just after p, and a pointer (End) at the end of

2. Put a pointer (
the list L —
3. While < End:
1. |If value,< p, move right
2. E o Lva‘ﬂue with Malue, move End Left
4. If pointers meet at element : Swap » with
5. Else If pointers meet at element > p: Swap p with

Run time? O(n)

Partition, Procedure

If value < p, move
value with End value, move End Left

Else swap
Done when

= End

right

7

12

10

4
ﬁ.@

b

U

7 12 | 10 6 | 11
7 6 | 11

10

‘H

Partition, Procedure

If value < p, move right
Else swap value with End value, move End Left
Done when = End

7 3&10 1 2 4

{

7 3 6 | 10 | 1 2 4

{

7 3 6 [10 | 1 2 4

7 3 Gﬁl 2 4

Partition, Procedure

If value < p, move right
Else swap value with End value, move End Left
Done when = End

Case 1: meet at element

Swap p with (2 in this case)

el

2 5 7 3 6 4 1

10

Partition, Procedure

If value < p, move right
Else swap value with End value, move End Left
Done when = End

Case 2: meet at element > p

Swap p with (2 in this case)

e[Tale

2 5 7 3 6 4 1

11

Quick Sort Running Time

Master Theorem: Suppose that T(n) = a-T(n/b) + O (nk) forn > b.

~— < Ifa < b*then T(n) is 0(n%)
e Cost is dominated by work at top level of recursion
e If a = b¥then T(n) is 0(n*logn)
* Total cost is the same for all logy, n levels of recursion
e If @ > b*then T(n) is O0(n'°8» @)
* Note that log, a > k in this case
e Cost is dominated by total work at lowest level of recursion

IdeallyW
bniogm |

a=2,b=2k=1soa= b Solution:

Worst Case: T(n) =T(n—1) +n

The master theorem does not apply, but the solution is 0 (n?)
Expected: O(nlog n) ... Our first task today is to show this!

Expected Runtime for QuickSort: “Global analysis”

Runtime is the # of comparisons

Recurrence & Master Theorem kind of analysis won’t work ...

Instead, use a “global” analysis:
* Number elements a4, a,, ..., a,, based on final sorted order

* Let p; ; = Probability that QuickSort compareS(_cEa\rmlfl—j/
Expected number of comparisons:

Zn—l n -
i=1 Zj=i+1Pij
L—’ L’\)

Observation — We only compare to pivot

1. Putp at beginning of list
2. Putapointer () just after p, and a pointer (End) at the end of the list

3. While < End:
1. If valuemove right

2. Elseswap value with End value, move End Left
4. If pointers meet at elementlj Swap p with
5. Else If pointers meet at element{> p} Swap p with

Conclusion: we only compare a; with a;when both of these are true:

.Laiirﬁfzare in the same subproblem wous pivot fell bwj)

* One of a; and q; is the pivot

L |

14

Finding p; ; - Adjacent Values

We always compare consecutive elements

-—_____.

Pii+1 =1
y L
Why?

— Intuitively, we MUST compare adjacent items to guarantee we get them in

the right order

7— Precisely, a; and a;, 4 can’t be on opposite sides of any third value, so they’ll
only end up in separate subproblems when one was the pivot

Finding p; ; - Extreme Values

We rarely compare the min and the max

P1,n=% f&/\/\J/R

Why?
— The only way we will compare the smallest and largest items is if one
. . 1
or the other was the very first pivot chosen (E chance of each)

Finding p; j - In General

For any pair of elements, the probability we compare them
in proportional to their distance

—7 T~

a; |dzx|| A3 | Q4 | A5 | Qg | Q7 | Ag |\dg | Q10 [A11 | Q12

B 4
2 e U
\ﬁ{/_j—iﬂ ifi <j
~—
Why?

— a; and a; will only be compared if one of them was the very first pivot chosen
from among the range a;, a; 4, ..., ;

— There are j — i + 1 items in this range, two of which result in this comparison

17

Expected Runtime for QuickSort: “Global analysis”

. . 2
For/i < jwe have p;; = BTPL Harmonic series sum
- J

H, = klk_1+ + +2 . +—

Expected number of comparisons: Fact: H, = Inn+ 0(1)

_ 2 -

Z Zn i+1 2

Tt 1 fork=j—i

12"& C)

—annn+0(n) < 1.387nlog, n
L

. Finds@order statistic
e kth smallest element in the list

* 15t order statistic: minimum
th
* n order statistic: maximum

. E‘th order statistic: median (for odd n)

o)

QuickSeIect@@

o °
TS TeTel3T5Ts Base Case:

5
k=0 e Iffk = 0 then return S|0
* Divide:

* Select an element to use as a “pivoi”

2(5(3](5
EE|SE * Partition: rearrange S so that all elements less than the pivot are to
the left of the pivot, all elements greater are to the right

Z é -Con uer:

3 OR _ * Leti,;,,; be the index of the pivot after partitioning

k=i k=k—tpwor * Itk <1,;,,; then call QuickSelect(S;.r¢, k)
» Otherwise call Quickselect(S,;yne,k — ipivor)

e Combine: ﬂs
* Nothing!

20

QuickSelect Running Time

Master Theorem: Suppose that T(n) = a-T(n/b) + O (nk) forn > b.
* If a < b*then T(n) is O(nk)
e Cost is dominated by work at top level of recursion
e If a = b¥then T(n) is 0(n*logn)
* Total cost is the same for all logy, n levels of recursion
e If @ > b*then T(n) is O0(n'°8» @)
* Note that log, a > k in this case
e Cost is dominated by total work at lowest level of recursion

Ideally: f(n) =T (g) + n |

a=1,b=2, k_i}_so a < b*: Solution: W
Worst Ca’s.-g:L'T/(’ri) =T(n—1)+n ‘ q,/
The master theorem does not apply, but the solution is 0(n?)

We don’t need the “ideal” for 0(n)!,

Master Theorem: Suppose that T(n) = a-T(n/b) + O(nk) forn > b.
+ If a < b¥ then T(n) is 0 (n¥) ?

* Cost is dominated by work at top level of recursion
* If a = b*then T(n) is O(n*log n)

* Total cost is the same for all logy, n levels of recursion
e If a > b¥ then T(n) is O(n'°8 @)

* Note that log, a > k in this case
e Cost is dominated by total work at lowest level of recursion

— T(??T(%)-l-n

a=1,b=4/3,k=1so0a < b* Solution: 0(n)

QuickSelect: Random Choice of Pivot

Consider a call to QuickSelect. We will say the pivot is ”EOOd enough” if it
is among the middle half of the value —

Elements ' in sorted order
Say p is “good enough” iff
I it is in the middle half

t | t
bad p good p good p bad p
With probabilit\(i/zl pivot p is good enough
* For any good enough pivot the recursive call has subproblem size%
. AfteEjZ calls, QuickSelect has expected problem size < 3n/4

So T(n), < 2T'(n) wh -
0L Y= . (n) where = Expected O(n) time
T'(n) = T' () +nforb=4/3>1

23

Doing Buickse\ect in 0(n) Worst Case,

* We can make adapt Quickselect by running in O(n) worst case by
applying some tricky extra recursion!

°lﬂedlan—gf;Medlan§/
1. Brea@into chunks of size 5, sort them
2. Sort each chunk by its median value (i.e. value at index 2)
3. Use{%&to find the median of these medians, use that as the@

—————

\

M-0-M, Step 1:

Input:

Group:

Sort each
group:

)

Construct s

13, 15, 32, 14, 9

7 9,7,81, 18, 25, 42, 91, 64, 98, 96, 91, 6, 51, 21, 12, 36, 11, 11, 9, 5, 17, 77

13 5 62 32 47 81 64 51 11
15 16 41 12 8 18 98 21

32 45 81 /3 69 25 96 12

14 86 52 25 42 91 36 17
95 65 32 81 91 6 11 77
95 86 81 81 69 91 98 51 77
32 65 62 73 47 81 96 36 17
15 45 52 32 9 42 91 21 11
14 16 41 25 8 25 64 12

13 5 32 12 7 18 6 11 5

ets of size 5; Step 2: sort each set

__—\—
16, 45, 86, 65,62, 41, 81, 52, 32, 32, 12, 73, 25, 81, 47, 8,

Oo(n)

M-0-M, Step 3: Find median of column medians

95 86 81 81 69 91 98 51 77
o 32 65 : 81 36
olumn i
mEdiaZ = L 52 9 42 91 21 11 ~ T(n/5)
14 16 41 5 8 25 64— |12 9
13 5 32 12 7 18 6 11 5

Choose pivot to be that median of medians

95 86 81 81 69 91 98 51 77
32 65 62 |73 47 81 96 36 17
15 45 52 9 42 91 21 11
14 16 41 |25 8 25 64 12 9
13 5 32 12 7 18 6 11 5

This Pivot is “Good Enough™!

Column
medians:

95 86 81 69 01 08 51 77
32 65 62 47 81 96 36 17
15 45 52 9 42 01 21 11
14 16 41 25 64 12 9
13 5 32 12 7 18 6 11 5
Imagining rearranging columns by columns’ medians
95 51 77 69 8l| o1 08 86 81
32 36 17 47 ‘A\ 81 96 65 62
1 21 H 32) _l4p— ot :::§5 52
14 12 8 ?/ 25 64 16 41
13 |1 7 12/ |18 |6 5 32

L

T(n/5)

This Pivot is “Good Enough”!

Column
medians:

All < pivot

Notin S;ign:

Size=n/4

3n
Sizeof S,.; ,psis < —
right '> =

95 86 81 69 91 08 51 77
32 65 62 47 81 96 36 17
15 45 52 9 42 91 21 11
14 16 41 8 25 64 12

13 5 32 12 7 18 6 11 5

Choose pivot to be that median of medians

95 51 144 69 81 91 98 86 81
32 36 17 A7 |73 81 96 65 62
15 21 11 32 42 91 45 52
14 12 25 25 64 16 41
13 11 12 18 6 5 32

T(n/5)

This Pivot is “Good Enough™!

Column
medians:

95 86 81 69 91 98 51 77
32 65 62 47 81 96 36 17
15 45 52 9 42 91 21 11
14 16 41 8 25 64 12

13 5 32 12 7 18 6 11 5

Choose pivot to be that median of medians

95 51 77 69 81 91 98 86 81
32 36 17 A7 81 96 65 62
15 21 11 9 | 32 42 91 45 52
14 12 9 s 25 64 16 41
13 11 7 12 18 6 5 32

T(n/5)

All = pivot
Not in Sleft

Size > n/4

: . _3n
Size of Sppp is < i

QuickSelect With Median-of-Medians

 Base Case:
.5 71219(8(3|5]8 * If i = 0 then return S[0]

* Use median-of-medians to select an element to use as a “pivot”

_ . BreakSinto%chunks of size 5 each
i e Sort each chunk

* Makea newlist M containing all chunks” medians
¢ Use QuEI?S‘eIeLt(_M,%) as the pivot

* Partition "
* Conquer:
2/3|5]|5
- OR __ * Leti,;,,: be the index of the pivot after partitioning 3n
i=1i L= 1= Ipipot e Ifi < ipivot then call QuickSeIect(Sleft,) T T)
* Otherwise call Quickselect(S,; ne/i — ipivor)

e Combine:
* Nothing!

T(n)=T(g)+T(%Tn>+n

Solving the QS with MoM Recurrence

Master Theorem: Suppose that T(n) = a-T(n/b) + O (nk) forn > b.

* If a < b*then T(n) is O(nk)
e Cost is dominated by work at top level of recursion
e If a = b¥then T(n) is 0(n*logn)
* Total cost is the same for all logy, n levels of recursion
e If @ > b*then T(n) is O0(n'°8» @)
* Note that log, a > k in this case
e Cost is dominated by total work at lowest level of recursion

=131 (2)

- o7 19n
(n) = (2—0) +n

a=1,b=20/19,k = 1soa < b": Solution: 0(n)

	Slide 1: CSE 421 Winter 2025 Lecture 11: Quicksort and Medians
	Slide 2: f open paren n plus m , close paren vs. f of n , plus f open paren m close paren
	Slide 3: f of n , equals cap theta open paren n close paren
	Slide 4: f of n , element of O open paren n close paren
	Slide 5: f of n , element of cap omega open paren n close paren
	Slide 6: Divide and Conquer (Quick Sort)
	Slide 7: Partition
	Slide 8: Partition, Procedure
	Slide 9: Partition, Procedure
	Slide 10: Partition, Procedure
	Slide 11: Partition, Procedure
	Slide 12: Quick Sort Running Time
	Slide 13: Expected Runtime for QuickSort: “Global analysis”
	Slide 14: Observation – We only compare to pivot
	Slide 15: Finding p sub , i. ,j end subscript - Adjacent Values
	Slide 16: Finding p sub , i. ,j end subscript - Extreme Values
	Slide 17: Finding p sub , i. ,j end subscript - In General
	Slide 18: Expected Runtime for QuickSort: “Global analysis”
	Slide 19: QuickSelect
	Slide 20: QuickSelect(cap S, k)
	Slide 21: QuickSelect Running Time
	Slide 22: We don’t need the “ideal” for cap O open paren n close paren !
	Slide 23: QuickSelect: Random Choice of Pivot
	Slide 24: Doing Quickselect in cap O open paren n close paren Worst Case
	Slide 25: M-o-M, Step 1: Construct sets of size 5; Step 2: sort each set
	Slide 26: M-o-M, Step 3: Find median of column medians
	Slide 27: This Pivot is “Good Enough”!
	Slide 28: This Pivot is “Good Enough”!
	Slide 29: This Pivot is “Good Enough”!
	Slide 30: QuickSelect With Median-of-Medians
	Slide 31: Solving the QS with MoM Recurrence

