
CSE 421 Winter 2025
Lecture 11: Quicksort and Medians

Nathan Brunelle

http://www.cs.uw.edu/421

http://www.cs.uw.edu/421

𝑓 𝑛 + 𝑚 vs. 𝑓 𝑛 + 𝑓(𝑚)

• When is each true?
• 𝑓 𝑛 + 𝑚 = 𝑓 𝑛 + 𝑓(𝑚)

• 𝑓 𝑛 + 𝑚 < 𝑓 𝑛 + 𝑓(𝑚)

• 𝑓 𝑛 + 𝑚 > 𝑓 𝑛 + 𝑓(𝑚)

𝑓 𝑛 = Θ(𝑛)

3

𝑛 𝑚 𝑛 + 𝑚

𝑓(𝑛) 𝑓(𝑚) 𝑓(𝑛)

𝑓(𝑚)

𝑓 𝑛 + 𝑚 = 𝑓 𝑛 + 𝑓(𝑚)

𝑓 𝑛 ∈ O(𝑛)

4

𝑛 𝑚 𝑛 + 𝑚

𝑓(𝑛) 𝑓(𝑚)
𝑓(𝑛)

𝑓(𝑚)

𝑓 𝑛 + 𝑚 ≤ 𝑓 𝑛 + 𝑓(𝑚)

𝑓 𝑛 ∈ Ω(𝑛)

5

𝑛 𝑚 𝑛 + 𝑚

𝑓(𝑛)
𝑓(𝑛)

𝑓(𝑚)

𝑓 𝑛 + 𝑚 ≥ 𝑓 𝑛 + 𝑓(𝑚)

𝑓(𝑚)

Divide and Conquer (Quick Sort)
• Base Case:

• If the list is of length 1 or 0, it’s already sorted, so just return

• (Alternative: when length is ≤ 15, use insertion sort)

• Divide:
• Select an element to use as a “pivot”

• Partition: rearrange the list so that all elements less than the pivot are
to the left of the pivot, all elements greater are to the right

• Conquer:
• Sort the sublists to the left and right of the pivot recursively.

• Combine:
• Nothing!

6

5

2 5 3 5 7 8 9 8

2 3 5 5 8 8 9

2 3 5 5 7 8 8 9

Partition

1. Put 𝑝 at beginning of list

2. Put a pointer (Begin) just after 𝑝, and a pointer (End) at the end of
the list

3. While Begin < End:
1. If Begin value < 𝑝, move Begin right

2. Else swap Begin value with End value, move End Left

4. If pointers meet at element < 𝑝: Swap 𝑝 with pointer position

5. Else If pointers meet at element > 𝑝: Swap 𝑝 with value to the left

7

Run time? 𝑂(𝑛)

Partition, Procedure

8

8 5 7 3 12 10 1 2 4 9 6 11

If Begin value < 𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

8 5 7 3 12 10 1 2 4 9 6 11

8 5 7 3 12 10 1 2 4 9 6 11

8 5 7 3 11 10 1 2 4 9 6 12

Partition, Procedure

9

8 5 7 3 11 10 1 2 4 9 6 12

8 5 7 3 6 10 1 2 4 9 11 12

8 5 7 3 6 10 1 2 4 9 11 12

8 5 7 3 6 10 1 2 4 9 11 12

If Begin value < 𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

Partition, Procedure

10

8 5 7 3 6 4 1 2 10 9 11 12

Case 1: meet at element < 𝑝

 Swap 𝑝 with pointer position (2 in this case)

2 5 7 3 6 4 1 8 10 9 11 12

If Begin value < 𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

Partition, Procedure

11

8 5 7 3 6 4 1 2 10 9 11 12

Case 2: meet at element > 𝑝

 Swap 𝑝 with value to the left (2 in this case)

2 5 7 3 6 4 1 8 10 9 11 12

If Begin value < 𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

12

Quick Sort Running Time
Master Theorem: Suppose that 𝑻 𝒏 = 𝒂𝑻(𝒏/𝒃) + 𝑂(𝒏𝒌) for 𝒏 > 𝒃.

• If 𝒂 < 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌)
• Cost is dominated by work at top level of recursion

• If 𝒂 = 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌 log 𝒏)
• Total cost is the same for all log𝒃 𝒏 levels of recursion

• If 𝒂 > 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏log𝒃 𝒂)
• Note that log𝒃 𝒂 > 𝒌 in this case
• Cost is dominated by total work at lowest level of recursion

Ideally: 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛

𝒂 = 𝟐, 𝒃 = 𝟐, 𝒌 = 𝟏 so 𝒂 = 𝒃𝒌: Solution: 𝑂 𝒏log 𝒏

Worst Case: 𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

The master theorem does not apply, but the solution is 𝑂(𝒏𝟐)

Expected: 𝑂 𝒏log 𝒏 … Our first task today is to show this!

Expected Runtime for QuickSort: “Global analysis”

Runtime is the # of comparisons

Recurrence & Master Theorem kind of analysis won’t work ...

Instead, use a “global” analysis:
• Number elements 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏 based on final sorted order

• Let 𝒑𝒊,𝒋 = Probability that QuickSort compares 𝒂𝒊 and 𝒂𝒋

Expected number of comparisons:

 σ𝒊=𝟏
𝒏−𝟏 σ𝒋=𝒊+𝟏

𝒏 𝒑𝒊,𝒋

13

Observation – We only compare to pivot

1. Put 𝑝 at beginning of list

2. Put a pointer (Begin) just after 𝑝, and a pointer (End) at the end of the list

3. While Begin < End:
1. If Begin value < 𝑝, move Begin right
2. Else swap Begin value with End value, move End Left

4. If pointers meet at element < 𝑝: Swap 𝑝 with pointer position

5. Else If pointers meet at element > 𝑝: Swap 𝑝 with value to the left

Conclusion: we only compare 𝑎𝑖 with 𝑎𝑗 when both of these are true:

• 𝑎𝑖 and 𝑎𝑗 are in the same subproblem (no previous pivot fell between them)

• One of 𝑎𝑖 and 𝑎𝑗 is the pivot

14

Finding 𝑝𝑖,𝑗 - Adjacent Values

We always compare consecutive elements

15

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑎10 𝑎11 𝑎12

𝑝𝑖,𝑖+1 = 1

Why?
– Intuitively, we MUST compare adjacent items to guarantee we get them in

the right order
– Precisely, 𝑎𝑖 and 𝑎𝑖+1 can’t be on opposite sides of any third value, so they’ll

only end up in separate subproblems when one was the pivot

Finding 𝑝𝑖,𝑗 - Extreme Values

We rarely compare the min and the max

16

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑎10 𝑎11 𝑎12

𝑝1,𝑛 =
2

𝑛

Why?
– The only way we will compare the smallest and largest items is if one

or the other was the very first pivot chosen (
1

𝑛
 chance of each)

Finding 𝑝𝑖,𝑗 - In General

For any pair of elements, the probability we compare them
in proportional to their distance

17

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑎10 𝑎11 𝑎12

𝑝𝑖,𝑗 =
2

𝑗−𝑖+1
 if 𝑖 < 𝑗

Why?

– 𝑎𝑖 and 𝑎𝑗 will only be compared if one of them was the very first pivot chosen
from among the range 𝑎𝑖 , 𝑎𝑖+1, … , 𝑎𝑗

– There are 𝑗 − 𝑖 + 1 items in this range, two of which result in this comparison

Expected Runtime for QuickSort: “Global analysis”

For 𝒊 < 𝒋 we have 𝒑𝒊,𝒋 =
𝟐

𝒋−𝒊+𝟏
.

Expected number of comparisons:

 σ𝒊=𝟏
𝒏−𝟏 σ𝒋=𝒊+𝟏

𝒏 𝒑𝒊,𝒋 = σ𝒊=𝟏
𝒏−𝟏 σ𝒋=𝒊+𝟏

𝒏 𝟐

𝒋−𝒊+𝟏

 = σ𝒊=𝟏
𝒏−𝟏 σ𝒌=𝟏

𝒏−𝒊+𝟏 𝟐

𝒌+𝟏

 < 𝟐 σ𝒊=𝟏
𝒏−𝟏 σ𝒌=𝟏

𝒏 𝟏

𝒌

 < 𝟐 𝒏 𝑯𝒏

 = 𝟐 𝒏 ln 𝒏 + 𝑂 𝒏 ≤ 1.387 𝒏 log𝟐 𝒏

18

for 𝒌 = 𝒋 − 𝒊

Harmonic series sum:

 𝑯𝒏 = σ𝒌=𝟏
𝒏 𝟏

𝒌
= 𝟏 +

𝟏

𝟐
+

𝟏

𝟑
+

𝟏

𝟒
+ ⋯ +

𝟏

𝒏

 Fact: 𝑯𝒏 = ln 𝒏 + 𝑂(𝟏)

QuickSelect

• Finds 𝑘th order statistic
• 𝑘th smallest element in the list

• 1st order statistic: minimum

• 𝑛th order statistic: maximum

•
𝑛

2
th order statistic: median (for odd 𝑛)

19

QuickSelect(𝑆, 𝑘)
• Base Case:

• If 𝑘 = 0 then return 𝑆[0]

• Divide:
• Select an element to use as a “pivot”

• Partition: rearrange 𝑆 so that all elements less than the pivot are to
the left of the pivot, all elements greater are to the right

• Conquer:
• Let 𝑖𝑝𝑖𝑣𝑜𝑡 be the index of the pivot after partitioning

• If 𝑘 < 𝑖𝑝𝑖𝑣𝑜𝑡 then call QuickSelect(𝑆𝑙𝑒𝑓𝑡, 𝑘)

• Otherwise call Quickselect(𝑆𝑟𝑖𝑔ℎ𝑡,𝑘 − 𝑖𝑝𝑖𝑣𝑜𝑡)

• Combine:
• Nothing!

20

2 5 3 5 7 8 9 8

5 7 2 9 8 3 5 8

𝑘 = 0

𝑘 = 0

2 3 5 5 7 8 8 9

𝑘 = 𝑖 𝑘 = 𝑘 − 𝑖𝑝𝑖𝑣𝑜𝑡

OR

21

QuickSelect Running Time
Master Theorem: Suppose that 𝑻 𝒏 = 𝒂𝑻(𝒏/𝒃) + 𝑂(𝒏𝒌) for 𝒏 > 𝒃.

• If 𝒂 < 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌)
• Cost is dominated by work at top level of recursion

• If 𝒂 = 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌 log 𝒏)
• Total cost is the same for all log𝒃 𝒏 levels of recursion

• If 𝒂 > 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏log𝒃 𝒂)
• Note that log𝒃 𝒂 > 𝒌 in this case
• Cost is dominated by total work at lowest level of recursion

Ideally: 𝑇 𝑛 = 𝑇
𝑛

2
+ 𝑛

𝒂 = 𝟏, 𝒃 = 𝟐, 𝒌 = 𝟏 so 𝒂 < 𝒃𝒌: Solution: 𝑂 𝒏

Worst Case: 𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

The master theorem does not apply, but the solution is 𝑂(𝒏𝟐)

22

We don’t need the “ideal” for 𝑂(𝑛)!
Master Theorem: Suppose that 𝑻 𝒏 = 𝒂𝑻(𝒏/𝒃) + 𝑂(𝒏𝒌) for 𝒏 > 𝒃.

• If 𝒂 < 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌)

• Cost is dominated by work at top level of recursion

• If 𝒂 = 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌 log 𝒏)

• Total cost is the same for all log𝒃 𝒏 levels of recursion

• If 𝒂 > 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏log𝒃 𝒂)

• Note that log𝒃 𝒂 > 𝒌 in this case

• Cost is dominated by total work at lowest level of recursion

𝑇 𝑛 = 𝑇
3𝑛

4
+ 𝑛

𝒂 = 𝟏, 𝒃 = 𝟒/𝟑, 𝒌 = 𝟏 so 𝒂 < 𝒃𝒌: Solution: 𝑂 𝒏

QuickSelect: Random Choice of Pivot
Consider a call to QuickSelect. We will say the pivot is “good enough” if it
is among the middle half of the value

With probability ≥ 𝟏/𝟐 pivot 𝒑 is good enough
• For any good enough pivot the recursive call has subproblem size ≤ 𝟑𝒏/𝟒

• After 2 calls, QuickSelect has expected problem size ≤ 𝟑𝒏/𝟒

So 𝑻 𝒏 ≤ 𝟐𝑻′(𝒏) where

𝑻′ 𝒏 = 𝑻′
𝟑𝒏

𝟒
+ 𝒏 for 𝒃 = 𝟒/𝟑 > 𝟏

23

bad 𝒑 bad 𝒑good 𝒑 good 𝒑

Elements of 𝑺 listed in sorted order

⇒ Expected 𝑂(𝒏) time

Say 𝒑 is “good enough” iff
it is in the middle half

Doing Quickselect in 𝑂(𝑛) Worst Case

• We can make adapt Quickselect by running in 𝑂(𝑛) worst case by
applying some tricky extra recursion!

• Median-of-Medians:
1. Break 𝑆 into chunks of size 5, sort them

2. Sort each chunk by its median value (i.e. value at index 2)

3. Use Quickselect to find the median of these medians, use that as the pivot

M-o-M, Step 1: Construct sets of size 5; Step 2: sort each set

13 5 62 32 47 81 64 51 11

15 16 41 12 8 18 98 21 9

32 45 81 73 69 25 96 12 5

14 86 52 25 9 42 91 36 17

95 65 32 81 7 91 6 11 77

95 86 81 81 69 91 98 51 77

32 65 62 73 47 81 96 36 17

15 45 52 32 9 42 91 21 11

14 16 41 25 8 25 64 12 9

13 5 32 12 7 18 6 11 5

13, 15, 32, 14, 95, 5, 16, 45, 86, 65, 62, 41, 81, 52, 32, 32, 12, 73, 25, 81, 47, 8,

69, 9, 7, 81, 18, 25, 42, 91, 64, 98, 96, 91, 6, 51, 21, 12, 36, 11, 11, 9, 5, 17, 77

Group:

Input:

Sort each
group:

𝑂 𝒏

M-o-M, Step 3: Find median of column medians

26

95 86 81 81 69 91 98 51 77

32 65 62 73 47 81 96 36 17

15 45 52 32 9 42 91 21 11

14 16 41 25 8 25 64 12 9

13 5 32 12 7 18 6 11 5

Column
medians:

95 86 81 81 69 91 98 51 77

32 65 62 73 47 81 96 36 17

15 45 52 32 9 42 91 21 11

14 16 41 25 8 25 64 12 9

13 5 32 12 7 18 6 11 5

Choose pivot to be that median of medians

𝑻(𝒏/𝟓)

95 51 77 69 81 91 98 86 81

32 36 17 47 73 81 96 65 62

15 21 11 9 32 42 91 45 52

14 12 9 8 25 25 64 16 41

13 11 5 7 12 18 6 5 32

This Pivot is “Good Enough”!

27

95 86 81 81 69 91 98 51 77

32 65 62 73 47 81 96 36 17

15 45 52 32 9 42 91 21 11

14 16 41 25 8 25 64 12 9

13 5 32 12 7 18 6 11 5

Column
medians:

Imagining rearranging columns by columns’ medians

𝑻(𝒏/𝟓)

95 51 77 69 81 91 98 86 81

32 36 17 47 73 81 96 65 62

15 21 11 9 32 42 91 45 52

14 12 9 8 25 25 64 16 41

13 11 5 7 12 18 6 5 32

This Pivot is “Good Enough”!

28

95 86 81 81 69 91 98 51 77

32 65 62 73 47 81 96 36 17

15 45 52 32 9 42 91 21 11

14 16 41 25 8 25 64 12 9

13 5 32 12 7 18 6 11 5

Column
medians:

Choose pivot to be that median of medians

𝑻(𝒏/𝟓)

Not in 𝑺𝒓𝒊𝒈𝒉𝒕

Size ≥ 𝒏/𝟒

All ≤ pivot

Size of 𝑺𝒓𝒊𝒈𝒉𝒕 is ≤
3𝑛

4

95 51 77 69 81 91 98 86 81

32 36 17 47 73 81 96 65 62

15 21 11 9 32 42 91 45 52

14 12 9 8 25 25 64 16 41

13 11 5 7 12 18 6 5 32

This Pivot is “Good Enough”!

29

95 86 81 81 69 91 98 51 77

32 65 62 73 47 81 96 36 17

15 45 52 32 9 42 91 21 11

14 16 41 25 8 25 64 12 9

13 5 32 12 7 18 6 11 5

Column
medians:

Choose pivot to be that median of medians

𝑻(𝒏/𝟓)

Not in 𝑺𝒍𝒆𝒇𝒕

Size ≥ 𝒏/𝟒

All ≥ pivot

Size of 𝑺𝒍𝒆𝒇𝒕 is ≤
3𝑛

4

QuickSelect With Median-of-Medians
• Base Case:

• If 𝑖 = 0 then return 𝑆[0]

• Divide:
• Use median-of-medians to select an element to use as a “pivot”

• Break 𝑆 into
𝑛

5
 chunks of size 5 each

• Sort each chunk
• Make a new list 𝑀 containing all chunks’ medians
• Use QuickSelect(𝑀,

𝑛

10
) as the pivot

• Partition

• Conquer:
• Let 𝑖𝑝𝑖𝑣𝑜𝑡 be the index of the pivot after partitioning
• If 𝑖 < 𝑖𝑝𝑖𝑣𝑜𝑡 then call QuickSelect(𝑆𝑙𝑒𝑓𝑡, 𝑖)
• Otherwise call Quickselect(𝑆𝑟𝑖𝑔ℎ𝑡,𝑖 − 𝑖𝑝𝑖𝑣𝑜𝑡)

• Combine:
• Nothing!

2 5 3 5 7 8 9 8

5 7 2 9 8 3 5 8

𝑖 = 0

𝑖 = 0

2 3 5 5 7 8 8 9

𝑖 = 𝑖 𝑖 = 𝑖 − 𝑖𝑝𝑖𝑣𝑜𝑡

OR

𝑇 𝑛 = 𝑇
𝑛

5
+ 𝑇

3𝑛

4
+ 𝑛

𝑇
𝑛

5
+ 𝑛

𝑇
3𝑛

4

𝑛

31

Solving the QS with MoM Recurrence
Master Theorem: Suppose that 𝑻 𝒏 = 𝒂𝑻(𝒏/𝒃) + 𝑂(𝒏𝒌) for 𝒏 > 𝒃.

• If 𝒂 < 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌)
• Cost is dominated by work at top level of recursion

• If 𝒂 = 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌 log 𝒏)
• Total cost is the same for all log𝒃 𝒏 levels of recursion

• If 𝒂 > 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏log𝒃 𝒂)
• Note that log𝒃 𝒂 > 𝒌 in this case
• Cost is dominated by total work at lowest level of recursion

𝑇 𝑛 = 𝑇
𝑛

5
+ 𝑇

3𝑛

4
+ 𝑛

𝑇 𝑛 ≤ 𝑇
19𝑛

20
+ 𝑛

𝒂 = 𝟏, 𝒃 = 𝟐𝟎/𝟏𝟗, 𝒌 = 𝟏 so 𝒂 < 𝒃𝒌: Solution: 𝑂 𝒏

	Slide 1: CSE 421 Winter 2025 Lecture 11: Quicksort and Medians
	Slide 2: f open paren n plus m , close paren vs. f of n , plus f open paren m close paren
	Slide 3: f of n , equals cap theta open paren n close paren
	Slide 4: f of n , element of O open paren n close paren
	Slide 5: f of n , element of cap omega open paren n close paren
	Slide 6: Divide and Conquer (Quick Sort)
	Slide 7: Partition
	Slide 8: Partition, Procedure
	Slide 9: Partition, Procedure
	Slide 10: Partition, Procedure
	Slide 11: Partition, Procedure
	Slide 12: Quick Sort Running Time
	Slide 13: Expected Runtime for QuickSort: “Global analysis”
	Slide 14: Observation – We only compare to pivot
	Slide 15: Finding p sub , i. ,j end subscript - Adjacent Values
	Slide 16: Finding p sub , i. ,j end subscript - Extreme Values
	Slide 17: Finding p sub , i. ,j end subscript - In General
	Slide 18: Expected Runtime for QuickSort: “Global analysis”
	Slide 19: QuickSelect
	Slide 20: QuickSelect(cap S, k)
	Slide 21: QuickSelect Running Time
	Slide 22: We don’t need the “ideal” for cap O open paren n close paren !
	Slide 23: QuickSelect: Random Choice of Pivot
	Slide 24: Doing Quickselect in cap O open paren n close paren Worst Case
	Slide 25: M-o-M, Step 1: Construct sets of size 5; Step 2: sort each set
	Slide 26: M-o-M, Step 3: Find median of column medians
	Slide 27: This Pivot is “Good Enough”!
	Slide 28: This Pivot is “Good Enough”!
	Slide 29: This Pivot is “Good Enough”!
	Slide 30: QuickSelect With Median-of-Medians
	Slide 31: Solving the QS with MoM Recurrence

