
CSE 421 Winter 2025
Lecture 11: Quicksort and Medians

Nathan Brunelle

http://www.cs.uw.edu/421

http://www.cs.uw.edu/421

𝑓 𝑛 + 𝑚 vs. 𝑓 𝑛 + 𝑓(𝑚)

• When is each true?
• 𝑓 𝑛 + 𝑚 = 𝑓 𝑛 + 𝑓(𝑚)

• 𝑓 𝑛 + 𝑚 < 𝑓 𝑛 + 𝑓(𝑚)

• 𝑓 𝑛 + 𝑚 > 𝑓 𝑛 + 𝑓(𝑚)

𝑓 𝑛 = Θ(𝑛)

3

𝑛 𝑚 𝑛 + 𝑚

𝑓(𝑛) 𝑓(𝑚) 𝑓(𝑛)

𝑓(𝑚)

𝑓 𝑛 + 𝑚 = 𝑓 𝑛 + 𝑓(𝑚)

𝑓 𝑛 ∈ O(𝑛)

4

𝑛 𝑚 𝑛 + 𝑚

𝑓(𝑛) 𝑓(𝑚)
𝑓(𝑛)

𝑓(𝑚)

𝑓 𝑛 + 𝑚 ≤ 𝑓 𝑛 + 𝑓(𝑚)

𝑓 𝑛 ∈ Ω(𝑛)

5

𝑛 𝑚 𝑛 + 𝑚

𝑓(𝑛)
𝑓(𝑛)

𝑓(𝑚)

𝑓 𝑛 + 𝑚 ≥ 𝑓 𝑛 + 𝑓(𝑚)

𝑓(𝑚)

Divide and Conquer (Quick Sort)
• Base Case:

• If the list is of length 1 or 0, it’s already sorted, so just return

• (Alternative: when length is ≤ 15, use insertion sort)

• Divide:
• Select an element to use as a “pivot”

• Partition: rearrange the list so that all elements less than the pivot are
to the left of the pivot, all elements greater are to the right

• Conquer:
• Sort the sublists to the left and right of the pivot recursively.

• Combine:
• Nothing!

6

5

2 5 3 5 7 8 9 8

2 3 5 5 8 8 9

2 3 5 5 7 8 8 9

Partition

1. Put 𝑝 at beginning of list

2. Put a pointer (Begin) just after 𝑝, and a pointer (End) at the end of
the list

3. While Begin < End:
1. If Begin value < 𝑝, move Begin right

2. Else swap Begin value with End value, move End Left

4. If pointers meet at element < 𝑝: Swap 𝑝 with pointer position

5. Else If pointers meet at element > 𝑝: Swap 𝑝 with value to the left

7

Run time? 𝑂(𝑛)

Partition, Procedure

8

8 5 7 3 12 10 1 2 4 9 6 11

If Begin value < 𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

8 5 7 3 12 10 1 2 4 9 6 11

8 5 7 3 12 10 1 2 4 9 6 11

8 5 7 3 11 10 1 2 4 9 6 12

Partition, Procedure

9

8 5 7 3 11 10 1 2 4 9 6 12

8 5 7 3 6 10 1 2 4 9 11 12

8 5 7 3 6 10 1 2 4 9 11 12

8 5 7 3 6 10 1 2 4 9 11 12

If Begin value < 𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

Partition, Procedure

10

8 5 7 3 6 4 1 2 10 9 11 12

Case 1: meet at element < 𝑝

 Swap 𝑝 with pointer position (2 in this case)

2 5 7 3 6 4 1 8 10 9 11 12

If Begin value < 𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

Partition, Procedure

11

8 5 7 3 6 4 1 2 10 9 11 12

Case 2: meet at element > 𝑝

 Swap 𝑝 with value to the left (2 in this case)

2 5 7 3 6 4 1 8 10 9 11 12

If Begin value < 𝑝, move Begin right

Else swap Begin value with End value, move End Left

Done when Begin = End

12

Quick Sort Running Time
Master Theorem: Suppose that 𝑻 𝒏 = 𝒂𝑻(𝒏/𝒃) + 𝑂(𝒏𝒌) for 𝒏 > 𝒃.

• If 𝒂 < 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌)
• Cost is dominated by work at top level of recursion

• If 𝒂 = 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌 log 𝒏)
• Total cost is the same for all log𝒃 𝒏 levels of recursion

• If 𝒂 > 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏log𝒃 𝒂)
• Note that log𝒃 𝒂 > 𝒌 in this case
• Cost is dominated by total work at lowest level of recursion

Ideally: 𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑛

𝒂 = 𝟐, 𝒃 = 𝟐, 𝒌 = 𝟏 so 𝒂 = 𝒃𝒌: Solution: 𝑂 𝒏log 𝒏

Worst Case: 𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

The master theorem does not apply, but the solution is 𝑂(𝒏𝟐)

Expected: 𝑂 𝒏log 𝒏 … Our first task today is to show this!

Expected Runtime for QuickSort: “Global analysis”

Runtime is the # of comparisons

Recurrence & Master Theorem kind of analysis won’t work ...

Instead, use a “global” analysis:
• Number elements 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒏 based on final sorted order

• Let 𝒑𝒊,𝒋 = Probability that QuickSort compares 𝒂𝒊 and 𝒂𝒋

Expected number of comparisons:

 σ𝒊=𝟏
𝒏−𝟏 σ𝒋=𝒊+𝟏

𝒏 𝒑𝒊,𝒋

13

Observation – We only compare to pivot

1. Put 𝑝 at beginning of list

2. Put a pointer (Begin) just after 𝑝, and a pointer (End) at the end of the list

3. While Begin < End:
1. If Begin value < 𝑝, move Begin right
2. Else swap Begin value with End value, move End Left

4. If pointers meet at element < 𝑝: Swap 𝑝 with pointer position

5. Else If pointers meet at element > 𝑝: Swap 𝑝 with value to the left

Conclusion: we only compare 𝑎𝑖 with 𝑎𝑗 when both of these are true:

• 𝑎𝑖 and 𝑎𝑗 are in the same subproblem (no previous pivot fell between them)

• One of 𝑎𝑖 and 𝑎𝑗 is the pivot

14

Finding 𝑝𝑖,𝑗 - Adjacent Values

We always compare consecutive elements

15

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑎10 𝑎11 𝑎12

𝑝𝑖,𝑖+1 = 1

Why?
– Intuitively, we MUST compare adjacent items to guarantee we get them in

the right order
– Precisely, 𝑎𝑖 and 𝑎𝑖+1 can’t be on opposite sides of any third value, so they’ll

only end up in separate subproblems when one was the pivot

Finding 𝑝𝑖,𝑗 - Extreme Values

We rarely compare the min and the max

16

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑎10 𝑎11 𝑎12

𝑝1,𝑛 =
2

𝑛

Why?
– The only way we will compare the smallest and largest items is if one

or the other was the very first pivot chosen (
1

𝑛
 chance of each)

Finding 𝑝𝑖,𝑗 - In General

For any pair of elements, the probability we compare them
in proportional to their distance

17

𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 𝑎7 𝑎8 𝑎9 𝑎10 𝑎11 𝑎12

𝑝𝑖,𝑗 =
2

𝑗−𝑖+1
 if 𝑖 < 𝑗

Why?

– 𝑎𝑖 and 𝑎𝑗 will only be compared if one of them was the very first pivot chosen
from among the range 𝑎𝑖 , 𝑎𝑖+1, … , 𝑎𝑗

– There are 𝑗 − 𝑖 + 1 items in this range, two of which result in this comparison

Expected Runtime for QuickSort: “Global analysis”

For 𝒊 < 𝒋 we have 𝒑𝒊,𝒋 =
𝟐

𝒋−𝒊+𝟏
.

Expected number of comparisons:

 σ𝒊=𝟏
𝒏−𝟏 σ𝒋=𝒊+𝟏

𝒏 𝒑𝒊,𝒋 = σ𝒊=𝟏
𝒏−𝟏 σ𝒋=𝒊+𝟏

𝒏 𝟐

𝒋−𝒊+𝟏

 = σ𝒊=𝟏
𝒏−𝟏 σ𝒌=𝟏

𝒏−𝒊+𝟏 𝟐

𝒌+𝟏

 < 𝟐 σ𝒊=𝟏
𝒏−𝟏 σ𝒌=𝟏

𝒏 𝟏

𝒌

 < 𝟐 𝒏 𝑯𝒏

 = 𝟐 𝒏 ln 𝒏 + 𝑂 𝒏 ≤ 1.387 𝒏 log𝟐 𝒏

18

for 𝒌 = 𝒋 − 𝒊

Harmonic series sum:

 𝑯𝒏 = σ𝒌=𝟏
𝒏 𝟏

𝒌
= 𝟏 +

𝟏

𝟐
+

𝟏

𝟑
+

𝟏

𝟒
+ ⋯ +

𝟏

𝒏

 Fact: 𝑯𝒏 = ln 𝒏 + 𝑂(𝟏)

QuickSelect

• Finds 𝑘th order statistic
• 𝑘th smallest element in the list

• 1st order statistic: minimum

• 𝑛th order statistic: maximum

•
𝑛

2
th order statistic: median (for odd 𝑛)

19

QuickSelect(𝑆, 𝑘)
• Base Case:

• If 𝑘 = 0 then return 𝑆[0]

• Divide:
• Select an element to use as a “pivot”

• Partition: rearrange 𝑆 so that all elements less than the pivot are to
the left of the pivot, all elements greater are to the right

• Conquer:
• Let 𝑖𝑝𝑖𝑣𝑜𝑡 be the index of the pivot after partitioning

• If 𝑘 < 𝑖𝑝𝑖𝑣𝑜𝑡 then call QuickSelect(𝑆𝑙𝑒𝑓𝑡, 𝑘)

• Otherwise call Quickselect(𝑆𝑟𝑖𝑔ℎ𝑡,𝑘 − 𝑖𝑝𝑖𝑣𝑜𝑡)

• Combine:
• Nothing!

20

2 5 3 5 7 8 9 8

5 7 2 9 8 3 5 8

𝑘 = 0

𝑘 = 0

2 3 5 5 7 8 8 9

𝑘 = 𝑖 𝑘 = 𝑘 − 𝑖𝑝𝑖𝑣𝑜𝑡

OR

21

QuickSelect Running Time
Master Theorem: Suppose that 𝑻 𝒏 = 𝒂𝑻(𝒏/𝒃) + 𝑂(𝒏𝒌) for 𝒏 > 𝒃.

• If 𝒂 < 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌)
• Cost is dominated by work at top level of recursion

• If 𝒂 = 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌 log 𝒏)
• Total cost is the same for all log𝒃 𝒏 levels of recursion

• If 𝒂 > 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏log𝒃 𝒂)
• Note that log𝒃 𝒂 > 𝒌 in this case
• Cost is dominated by total work at lowest level of recursion

Ideally: 𝑇 𝑛 = 𝑇
𝑛

2
+ 𝑛

𝒂 = 𝟏, 𝒃 = 𝟐, 𝒌 = 𝟏 so 𝒂 < 𝒃𝒌: Solution: 𝑂 𝒏

Worst Case: 𝑇 𝑛 = 𝑇 𝑛 − 1 + 𝑛

The master theorem does not apply, but the solution is 𝑂(𝒏𝟐)

22

We don’t need the “ideal” for 𝑂(𝑛)!
Master Theorem: Suppose that 𝑻 𝒏 = 𝒂𝑻(𝒏/𝒃) + 𝑂(𝒏𝒌) for 𝒏 > 𝒃.

• If 𝒂 < 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌)

• Cost is dominated by work at top level of recursion

• If 𝒂 = 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌 log 𝒏)

• Total cost is the same for all log𝒃 𝒏 levels of recursion

• If 𝒂 > 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏log𝒃 𝒂)

• Note that log𝒃 𝒂 > 𝒌 in this case

• Cost is dominated by total work at lowest level of recursion

𝑇 𝑛 = 𝑇
3𝑛

4
+ 𝑛

𝒂 = 𝟏, 𝒃 = 𝟒/𝟑, 𝒌 = 𝟏 so 𝒂 < 𝒃𝒌: Solution: 𝑂 𝒏

QuickSelect: Random Choice of Pivot
Consider a call to QuickSelect. We will say the pivot is “good enough” if it
is among the middle half of the value

With probability ≥ 𝟏/𝟐 pivot 𝒑 is good enough
• For any good enough pivot the recursive call has subproblem size ≤ 𝟑𝒏/𝟒

• After 2 calls, QuickSelect has expected problem size ≤ 𝟑𝒏/𝟒

So 𝑻 𝒏 ≤ 𝟐𝑻′(𝒏) where

𝑻′ 𝒏 = 𝑻′
𝟑𝒏

𝟒
+ 𝒏 for 𝒃 = 𝟒/𝟑 > 𝟏

23

bad 𝒑 bad 𝒑good 𝒑 good 𝒑

Elements of 𝑺 listed in sorted order

⇒ Expected 𝑂(𝒏) time

Say 𝒑 is “good enough” iff
it is in the middle half

Doing Quickselect in 𝑂(𝑛) Worst Case

• We can make adapt Quickselect by running in 𝑂(𝑛) worst case by
applying some tricky extra recursion!

• Median-of-Medians:
1. Break 𝑆 into chunks of size 5

2. Sort each chunk by its median value (i.e. value at index 2)

3. Use Quickselect to find the median of these medians, use that as the pivot

M-o-M, Step 1: Construct sets of size 5; Step 2: sort each set

13 5 62 32 47 81 64 51 11

15 16 41 12 8 18 98 21 9

32 45 81 73 69 25 96 12 5

14 86 52 25 9 42 91 36 17

95 65 32 81 7 91 6 11 77

95 86 81 81 69 91 98 51 77

32 65 62 73 47 81 96 36 17

15 45 52 32 9 42 91 21 11

14 16 41 25 8 25 64 12 9

13 5 32 12 7 18 6 11 5

13, 15, 32, 14, 95, 5, 16, 45, 86, 65, 62, 41, 81, 52, 32, 32, 12, 73, 25, 81, 47, 8,

69, 9, 7, 81, 18, 25, 42, 91, 64, 98, 96, 91, 6, 51, 21, 12, 36, 11, 11, 9, 5, 17, 77

Group:

Input:

Sort each
group:

𝑂 𝒏

M-o-M, Step 3: Find median of column medians

26

95 86 81 81 69 91 98 51 77

32 65 62 73 47 81 96 36 17

15 45 52 32 9 42 91 21 11

14 16 41 25 8 25 64 12 9

13 5 32 12 7 18 6 11 5

Column
medians:

95 86 81 81 69 91 98 51 77

32 65 62 73 47 81 96 36 17

15 45 52 32 9 42 91 21 11

14 16 41 25 8 25 64 12 9

13 5 32 12 7 18 6 11 5

Choose pivot to be that median of medians

𝑻(𝒏/𝟓)

95 51 77 69 81 91 98 86 81

32 36 17 47 73 81 96 65 62

15 21 11 9 32 42 91 45 52

14 12 9 8 25 25 64 16 41

13 11 5 7 12 18 6 5 32

This Pivot is “Good Enough”!

27

95 86 81 81 69 91 98 51 77

32 65 62 73 47 81 96 36 17

15 45 52 32 9 42 91 21 11

14 16 41 25 8 25 64 12 9

13 5 32 12 7 18 6 11 5

Column
medians:

Imagining rearranging columns by columns’ medians

𝑻(𝒏/𝟓)

95 51 77 69 81 91 98 86 81

32 36 17 47 73 81 96 65 62

15 21 11 9 32 42 91 45 52

14 12 9 8 25 25 64 16 41

13 11 5 7 12 18 6 5 32

This Pivot is “Good Enough”!

28

95 86 81 81 69 91 98 51 77

32 65 62 73 47 81 96 36 17

15 45 52 32 9 42 91 21 11

14 16 41 25 8 25 64 12 9

13 5 32 12 7 18 6 11 5

Column
medians:

Choose pivot to be that median of medians

𝑻(𝒏/𝟓)

Not in 𝑺𝒓𝒊𝒈𝒉𝒕

Size ≥ 𝒏/𝟒

All ≤ pivot

Size of 𝑺𝒓𝒊𝒈𝒉𝒕 is ≤
3𝑛

4

95 51 77 69 81 91 98 86 81

32 36 17 47 73 81 96 65 62

15 21 11 9 32 42 91 45 52

14 12 9 8 25 25 64 16 41

13 11 5 7 12 18 6 5 32

This Pivot is “Good Enough”!

29

95 86 81 81 69 91 98 51 77

32 65 62 73 47 81 96 36 17

15 45 52 32 9 42 91 21 11

14 16 41 25 8 25 64 12 9

13 5 32 12 7 18 6 11 5

Column
medians:

Choose pivot to be that median of medians

𝑻(𝒏/𝟓)

Not in 𝑺𝒍𝒆𝒇𝒕

Size ≥ 𝒏/𝟒

All ≥ pivot

Size of 𝑺𝒍𝒆𝒇𝒕 is ≤
3𝑛

4

QuickSelect With Median-of-Medians
• Base Case:

• If 𝑖 = 0 then return 𝑆[0]

• Divide:
• Use median-of-medians to select an element to use as a “pivot”

• Break 𝑆 into
𝑛

5
 chunks of size 5 each

• Sort each chunk
• Make a new list 𝑀 containing all chunks’ medians
• Use QuickSelect(𝑀,

𝑛

10
) as the pivot

• Partition

• Conquer:
• Let 𝑖𝑝𝑖𝑣𝑜𝑡 be the index of the pivot after partitioning
• If 𝑖 < 𝑖𝑝𝑖𝑣𝑜𝑡 then call QuickSelect(𝑆𝑙𝑒𝑓𝑡, 𝑖)
• Otherwise call Quickselect(𝑆𝑟𝑖𝑔ℎ𝑡,𝑖 − 𝑖𝑝𝑖𝑣𝑜𝑡)

• Combine:
• Nothing!

2 5 3 5 7 8 9 8

5 7 2 9 8 3 5 8

𝑖 = 0

𝑖 = 0

2 3 5 5 7 8 8 9

𝑖 = 𝑖 𝑖 = 𝑖 − 𝑖𝑝𝑖𝑣𝑜𝑡

OR

𝑇 𝑛 = 𝑇
𝑛

5
+ 𝑇

3𝑛

4
+ 𝑛

𝑇
𝑛

5
+ 𝑛

𝑇
3𝑛

4

𝑛

31

Solving the QS with MoM Recurrence
Master Theorem: Suppose that 𝑻 𝒏 = 𝒂𝑻(𝒏/𝒃) + 𝑂(𝒏𝒌) for 𝒏 > 𝒃.

• If 𝒂 < 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌)
• Cost is dominated by work at top level of recursion

• If 𝒂 = 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌 log 𝒏)
• Total cost is the same for all log𝒃 𝒏 levels of recursion

• If 𝒂 > 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏log𝒃 𝒂)
• Note that log𝒃 𝒂 > 𝒌 in this case
• Cost is dominated by total work at lowest level of recursion

𝑇 𝑛 = 𝑇
𝑛

5
+ 𝑇

3𝑛

4
+ 𝑛

𝑇 𝑛 ≤ 𝑇
19𝑛

20
+ 𝑛

𝒂 = 𝟏, 𝒃 = 𝟐𝟎/𝟏𝟗, 𝒌 = 𝟏 so 𝒂 < 𝒃𝒌: Solution: 𝑂 𝒏

	Slide 1: CSE 421 Winter 2025 Lecture 11: Quicksort and Medians
	Slide 2: f open paren n plus m , close paren vs. f of n , plus f open paren m close paren
	Slide 3: f of n , equals cap theta open paren n close paren
	Slide 4: f of n , element of O open paren n close paren
	Slide 5: f of n , element of cap omega open paren n close paren
	Slide 6: Divide and Conquer (Quick Sort)
	Slide 7: Partition
	Slide 8: Partition, Procedure
	Slide 9: Partition, Procedure
	Slide 10: Partition, Procedure
	Slide 11: Partition, Procedure
	Slide 12: Quick Sort Running Time
	Slide 13: Expected Runtime for QuickSort: “Global analysis”
	Slide 14: Observation – We only compare to pivot
	Slide 15: Finding p sub , i. ,j end subscript - Adjacent Values
	Slide 16: Finding p sub , i. ,j end subscript - Extreme Values
	Slide 17: Finding p sub , i. ,j end subscript - In General
	Slide 18: Expected Runtime for QuickSort: “Global analysis”
	Slide 19: QuickSelect
	Slide 20: QuickSelect(cap S, k)
	Slide 21: QuickSelect Running Time
	Slide 22: We don’t need the “ideal” for cap O open paren n close paren !
	Slide 23: QuickSelect: Random Choice of Pivot
	Slide 24: Doing Quickselect in cap O open paren n close paren Worst Case
	Slide 25: M-o-M, Step 1: Construct sets of size 5; Step 2: sort each set
	Slide 26: M-o-M, Step 3: Find median of column medians
	Slide 27: This Pivot is “Good Enough”!
	Slide 28: This Pivot is “Good Enough”!
	Slide 29: This Pivot is “Good Enough”!
	Slide 30: QuickSelect With Median-of-Medians
	Slide 31: Solving the QS with MoM Recurrence

