CSE 421 Winter 2025
Lecture 11: Quicksort and Medians

Nathan Brunelle
http://www.cs.uw.edu/421

http://www.cs.uw.edu/421

fn+m)vs. f(n) + f(m)

* When is each true?
*f(n+m)=f(n)+ f(m)
* f(n+m) < f(n) + f(m)
* f(n+m) > f(n) + f(m)

f(n) = 0(n)
fmn+m)=fn)+ f(m)
Tl
f(n) f(m)

f(n) € 0(n)

/

f(m)

(%)
@ F) Hm Fm)

| | | | le
n m n+m

fn+m) < f(n) + f(m)

f(n)

e Q(n)
S fm) = F@) + fOm)

V2

f(m)

f(n)

120 140
n+m

Divide and Conquer (Quick Sort)

e Base Case:

5

* |f the list is of length 1 or O, it’s already sorted, so just return
 (Alternative: when length is < 15, use insertion sort)

e Divide:

5[7[8[9]s]

* Select an element to use as a “pivot”

e Partition: rearrange the list so that all elements less than the pivot are
to the left of the pivot, all elements greater are to the right

s - * Conquer:

» Sort the sublists to the left and right of the pivot recursively.
* Combine:

S [ZIEIEIS] . Nothing!

Partition

1. Put p at beginning of list

2. Put a pointer () just after p, and a pointer (End) at the end of
the list

3. While < End:

1. |If value < p, move right
2. Else swap value with End value, move End Left

4. If pointers meet at element : Swap » with
5. Else If pointers meet at element > p: Swap p with

Run time? 0(n)

Partition, Procedure

If value < p, move right
Else swap value with End value, move End Left
Done when = End

4

1 2 4 9 6 | 11

U

1 2 4 9 6 | 11

4

1 2 4 9 6 | 11

‘H

Partition, Procedure

If value < p, move right
Else swap value with End value, move End Left
Done when = End

7 3&10 1 2 4

{

7 3 6 | 10 | 1 2 4

{

7 3 6 [10 | 1 2 4

7 3 Gﬁl 2 4

Partition, Procedure

If value < p, move right
Else swap value with End value, move End Left
Done when = End

Case 1: meet at element

Swap p with (2 in this case)

el

2 5 7 3 6 4 1

10

Partition, Procedure

If value < p, move right
Else swap value with End value, move End Left
Done when = End

Case 2: meet at element > p

Swap p with (2 in this case)

e[Tale

2 5 7 3 6 4 1

11

Quick Sort Running Time

Master Theorem: Suppose that T(n) = a-T(n/b) + O (nk) forn > b.

* If a < b*then T(n) is O(nk)
e Cost is dominated by work at top level of recursion
e If a = b¥then T(n) is 0(n*logn)
* Total cost is the same for all logy, n levels of recursion
e If @ > b*then T(n) is O0(n'°8» @)
* Note that log, a > k in this case
e Cost is dominated by total work at lowest level of recursion

ideally: T(n) = 2T (3) +n

a=2,b=2k=1soa = b"*: Solution: O(nlogn)

Worst Case: T(n) =T(n—1) +n

The master theorem does not apply, but the solution is 0 (n?)
Expected: O(nlog n) ... Our first task today is to show this!

Expected Runtime for QuickSort: “Global analysis”

Runtime is the # of comparisons

Recurrence & Master Theorem kind of analysis won’t work ...
Instead, use a “global” analysis:
* Number elements a4, a,, ..., a,, based on final sorted order
* Let p;; = Probability that QuickSort compares a; and a;

Expected number of comparisons:

n—1n
i=1 Zj=i+1Pij

Observation — We only compare to pivot

1. Putp at beginning of list
2. Putapointer () just after p, and a pointer (End) at the end of the list

3. While < End:
1. If valuemove right

2. Elseswap value with End value, move End Left
4. If pointers meet at elementlj Swap p with
5. Else If pointers meet at element{> p} Swap p with

Conclusion: we only compare a; with a; when both of these are true:
* a; and g; are in the same subproblem (no previous pivot fell between them)
* One of a; and g; is the pivot

Finding p; ; - Adjacent Values

We always compare consecutive elements

Piiv1 = 1

Why?
— Intuitively, we MUST compare adjacent items to guarantee we get them in
the right order

— Precisely, a; and a;.1 can’t be on opposite sides of any third value, so they’ll
only end up in separate subproblems when one was the pivot

Finding p; ; - Extreme Values

We rarely compare the min and the max

2
pl,n_n

Why?
— The only way we will compare the smallest and largest items is if one
. . 1
or the other was the very first pivot chosen (E chance of each)

Finding p; j - In General

For any pair of elements, the probability we compare them
in proportional to their distance

a; |dp | A3 | A4 | A5 | Qg | A7 | Ag | Qg |Q10 [A11 | Q12

pi,j_ 2 |fl<]

Cj-i+1

Why?
— a; and a; will only be compared if one of them was the very first pivot chosen
from among the range a;, a; 4, ..., ;
— There are j — i + 1 items in this range, two of which result in this comparison

Expected Runtime for QuickSort: “Global analysis”

2
j—i+1

Fori < jwehavep;; = Harmonic serles sum

Hn = k lk — 1 + + + + + -
Expected number of comparisons: Fact: H, = Inn + 0(1)

2

n— 1 n n— 1 n
Z j= l+1pl] Z j= l+1]' i+1

Z Zn i+1 2

k+1 fork=j—i
<2 Y YR 1k
<2nH,
=2nlnn+0(n) <1387nlog, n

QuickSelect

e Finds k" order statistic

e kth smallest element in the list
e 15t order statistic: minimum
e nth order statistic: maximum

. E‘th order statistic: median (for odd n)

QuickSelect(S, k)

712

9

8

3

5

8

5[7[8[9]s]

* Base Case:
* If k = 0 then return S|0]

* Divide:
* Select an element to use as a “pivot”

e Partition: rearrange S so that all elements less than the pivot are to
the left of the pivot, all elements greater are to the right

* Conquer:

OR 7888 ° Leti,;,,: be the index of the pivot after partitioning
k=k—tpwor * Itk <1,;,,; then call QuickSelect(S;.r¢, k)

» Otherwise call Quickselect(S,;yne,k — ipivor)

e Combine:
* Nothing!

20

QuickSelect Running Time

Master Theorem: Suppose that T(n) = a-T(n/b) + O (nk) forn > b.
* If a < b*then T(n) is O(nk)
e Cost is dominated by work at top level of recursion
e If a = b¥then T(n) is 0(n*logn)
* Total cost is the same for all logy, n levels of recursion
e If @ > b*then T(n) is O0(n'°8» @)
* Note that log, a > k in this case
e Cost is dominated by total work at lowest level of recursion

Ideally: T(n) =T (3) +n

a=1,b=2k=1soa < b*: Solution: 0(n)

Worst Case: T(n) =T(n—1) +n

The master theorem does not apply, but the solution is 0 (n?)

We don’t need the “ideal” for O(n)!

Master Theorem: Suppose that T(n) = a-T(n/b) + O(nk) forn > b.
+ If a < b¥ then T(n) is 0 (n¥) ?

* Cost is dominated by work at top level of recursion
* If a = b*then T(n) is O(n*log n)

* Total cost is the same for all logy, n levels of recursion
e If a > b¥ then T(n) is O(n'°8 @)

* Note that log, a > k in this case
e Cost is dominated by total work at lowest level of recursion

T(n)=T<%Tn>+n

a=1,b=4/3,k=1so0a < b* Solution: 0(n)

QuickSelect: Random Choice of Pivot

Consider a call to QuickSelect. We will say the pivot is “good enough” if it
is among the middle half of the value

Elements of § listed in sorted order

Say p is “good enough” iff
] | B e middie ha

t t t t
bad p good p good p bad p

With probability = 1/2 pivot p is good enough
* For any good enough pivot the recursive call has subproblem size < 3n/4
* After 2 calls, QuickSelect has expected problem size < 3n/4

SoT(n) < 2T'(n) where

. = Expected O(n) time
T'(n) = T' () +nforb=4/3>1

23

Doing Quickselect in O(n) Worst Case

* We can make adapt Quickselect by running in O(n) worst case by
applying some tricky extra recursion!

* Median-of-Medians:

1. Break S into chunks of size 5
2. Sort each chunk by its median value (i.e. value at index 2)
3. Use Quickselect to find the median of these medians, use that as the pivot

M-0-M, Step 1: Construct sets of size 5; Step 2: sort each set

Input:

Group:

Sort each
group:

13, 15, 32, 14, 95, 5, 16, 45, 86, 65, 62, 41, 81, 52, 32, 32, 12, 73, 25, 81, 47, 8,
69, 9, 7, 81, 18, 25, 42, 91, 64, 98, 96, 91, 6, 51, 21, 12, 36, 11, 11, 9, 5, 17, 77

13 5 62 32 47 81 64 51 11
15 16 41 12 8 18 98 21

32 45 81 /3 69 25 96 12

14 86 52 25 42 91 36 17
95 65 32 81 91 6 11 77
95 86 81 81 69 91 98 51 77
32 65 62 73 47 81 96 36 17
15 45 52 32 9 42 91 21 11
14 16 41 25 8 25 64 12

13 5 32 12 7 18 6 11 5

Oo(n)

M-0-M, Step 3: Find median of column medians

Column
medians:

95 86 81 69 91 08 51 77
32 65 62 47 81 96 36 17
15 45 52 9 42 91 21 11
14 16 41 8 25 64 12 9
13 5 32 12 7 18 6 11 5
Choose pivot to be that median of medians
95 86 81 81 69 91 98 51 77
32 65 62 L3 47 81 96 36 17
15 45 52 9 42 91 21 11
14 16 41 |25 8 25 64 12 9
13 5 32 12 7 18 6 11 5

T(n/5)

This Pivot is “Good Enough™!

Column
medians:

95 86 81 69 91 08 51 77
32 65 62 47 81 96 36 17
15 45 52 9 42 91 21 11
14 16 41 25 64 12 9
13 5 32 12 7 18 6 11 5
Imagining rearranging columns by columns’ medians
95 51 144 69 81 91 98 86 81
32 36 17 a7 |13 81 96 65 62
15 21 11 9 32 42 91 45 52
14 12 9 [25 25 64 16 41
13 11 7 12 18 6 5 32

T(n/5)

This Pivot is “Good Enough”!

Column
medians:

All < pivot

Notin S;ign:

Size=n/4

3n
Sizeof S,.; ,psis < —
right '> =

95 86 81 69 91 08 51 77
32 65 62 47 81 96 36 17
15 45 52 9 42 91 21 11
14 16 41 8 25 64 12

13 5 32 12 7 18 6 11 5

Choose pivot to be that median of medians

95 51 144 69 81 91 98 86 81
32 36 17 A7 |73 81 96 65 62
15 21 11 32 42 91 45 52
14 12 25 25 64 16 41
13 11 12 18 6 5 32

T(n/5)

This Pivot is “Good Enough™!

Column
medians:

95 86 81 69 91 98 51 77
32 65 62 47 81 96 36 17
15 45 52 9 42 91 21 11
14 16 41 8 25 64 12

13 5 32 12 7 18 6 11 5

Choose pivot to be that median of medians

95 51 77 69 81 91 98 86 81
32 36 17 A7 81 96 65 62
15 21 11 9 | 32 42 91 45 52
14 12 9 s 25 64 16 41
13 11 7 12 18 6 5 32

T(n/5)

All = pivot
Not in Sleft

Size > n/4

: . _3n
Size of Sppp is < i

QuickSelect With Median-of-Medians

* Base Case:
2|7]2]9]8[3]>]8 * If i = 0 then return S[0]
 Divide:
* Use median-of-medians to select an element to use as a “pivot”
* Break S into % chunks of size 5 each

L1l n
215(3]|5 _ B * Sort each chunk T (—) +n

i=0 * Make a new list M conntaining all chunks’ medians 5
* Use QuickSelect(M, E) as the pivot
* Partition n
* Conquer:
2, 2 .5 2] or _ * Leti,;,,; betheindex of the pivot after partitioning 3n
Pl P Tpivet * If i < i,iy0¢ then call QuickSelect(S;., i) T (T)
* Otherwise call Quickselect(S,; /0 — Lpivor)

e Combine:
* Nothing!

T(n)=T(g)+T(%>+n

Solving the QS with MoM Recurrence

Master Theorem: Suppose that T(n) = a-T(n/b) + O (nk) forn > b.

* If a < b*then T(n) is O(nk)
e Cost is dominated by work at top level of recursion
e If a = b¥then T(n) is 0(n*logn)
* Total cost is the same for all logy, n levels of recursion
e If @ > b*then T(n) is O0(n'°8» @)
* Note that log, a > k in this case
e Cost is dominated by total work at lowest level of recursion

T(n)=T(g)+T(%Tn)+n

- o7 19n
(n) = (2—0) +n

a=1,b=20/19,k = 1soa < b": Solution: 0(n)

	Slide 1: CSE 421 Winter 2025 Lecture 11: Quicksort and Medians
	Slide 2: f open paren n plus m , close paren vs. f of n , plus f open paren m close paren
	Slide 3: f of n , equals cap theta open paren n close paren
	Slide 4: f of n , element of O open paren n close paren
	Slide 5: f of n , element of cap omega open paren n close paren
	Slide 6: Divide and Conquer (Quick Sort)
	Slide 7: Partition
	Slide 8: Partition, Procedure
	Slide 9: Partition, Procedure
	Slide 10: Partition, Procedure
	Slide 11: Partition, Procedure
	Slide 12: Quick Sort Running Time
	Slide 13: Expected Runtime for QuickSort: “Global analysis”
	Slide 14: Observation – We only compare to pivot
	Slide 15: Finding p sub , i. ,j end subscript - Adjacent Values
	Slide 16: Finding p sub , i. ,j end subscript - Extreme Values
	Slide 17: Finding p sub , i. ,j end subscript - In General
	Slide 18: Expected Runtime for QuickSort: “Global analysis”
	Slide 19: QuickSelect
	Slide 20: QuickSelect(cap S, k)
	Slide 21: QuickSelect Running Time
	Slide 22: We don’t need the “ideal” for cap O open paren n close paren !
	Slide 23: QuickSelect: Random Choice of Pivot
	Slide 24: Doing Quickselect in cap O open paren n close paren Worst Case
	Slide 25: M-o-M, Step 1: Construct sets of size 5; Step 2: sort each set
	Slide 26: M-o-M, Step 3: Find median of column medians
	Slide 27: This Pivot is “Good Enough”!
	Slide 28: This Pivot is “Good Enough”!
	Slide 29: This Pivot is “Good Enough”!
	Slide 30: QuickSelect With Median-of-Medians
	Slide 31: Solving the QS with MoM Recurrence

