CSE 421 Winter 2025
Lecture 10: Divide and Conquer 2

Nathan Brunelle
http://www.cs.uw.edu/421

http://www.cs.uw.edu/421

Divide and Conquer (Trominoes)

* Base Case:
- * Fora 2 X 2 board, the empty cells will be exactly a tromino

* Break of the board into quadrants of size 2"~ x 2" 1 each

* Put a tromino at the intersection such that all quadrants have one
occupied cell

* Conquer:
* Cover each quadrant

| Combine:

* Reconnect quadrants

Divide and Conquer (Merge Sort)

* Base Case:
* |f the list is of length 1 or O, it’s already sorted, so just return it
 (Alternative: when length is < 15, use insertion sort)

5182941 Divide:

 Split the list into two “sublists” of (roughly) equal length

21518 11419 OCanuer:

* Sort both lists recursively

e Combine:

* Merge sorted sublists into one sorted list

Divide and Conquer (Running Time)

T(c) =k * Base Case:
* When the problem size is small (< ¢), solve non-recursively

a = number of

subproblems Divide:
— =size of each UIvide: o . |

subbroblem When problem size is large, identify 1 or more smaller
f (n)u—ptime to divide 1 versions of exactly the same problem

d — q

a-T (E) </°Conquer:

b :
* Recursively solve each smaller subproblem

<’*/Combine:

f-(n) =time to combine

* Use the subproblems’ solutions to solve to the original

Overall: T(n) = aT (%) + f(n) where f(n) = fq(n) + fc(n) 4

Divide and Conquer (Running Time)

T(c) =k * Base Case:
* When the problem size is small (< ¢), solve non-recursively

a = number of
subproblems

% =size of each Divide:

 When problem size is large, identify 1 or more smaller

subproblem versions of exactly the same problem

fq(n) = time to divide

n
a-T (_) * Conquer:
b * Recursively solve each smaller subproblem

f.(n) =time to combine | ° Combine:

* Use the subproblems’ solutions to solve to the original

Overall: T(n) = aT (%) + 0(nk) where fy(n) + f.(n) € O(nk) i

Tree Method (Merge Sort)

Red box represents a
problem instance

Blue value represents
time spent at that level of
recursion

T(n) = ZT(E)+n

2

n

n

/\

n/2

2

—

n/4

B S

n/4

S

"\ = n comparisons / level

n/2 %
n/m4 n >log, n levels
/\ * ‘/:\A4 of recursion
1 1 1

log, n

T(n) = z n = 0(nlogn)

=0 6

e (o
Tree Method (|ow CPP from last time)

n
Red box represents a T(n) = 2T (E) + n?

problem instance

2
Blue value represents n A . 12 n2

n
time spent at that level of n = 2! ﬁ - ; work for
recursion /\ .
,) level i
n n

— N —

n/4 n n/4 n’ n/4 " n/4 n_>10g2n|evels
S~ /N Y /NN /Y of recursion

N

1

J
uogz n

(=
Tree Method (More Subproblems) >
Red box represents a T(n) = 3T E +n 6 — 2
problem instance

Blue value represents n in .
time spent at that level of n @Ork for level i
recursion (/'T
n —

n/2 |3 n/2 5 n/2 3
4\ n //\ L/n& n
n/4 | n/4 |7 n/4 L n/4 5o n/4) n/d

72N NS N O A AN

1 1 [Ty g

1 ...
? '
T(Tl) = n@ = @(nlogz 3) ~ @(n1.585)
i=0 "’_— :

n
T(n) = aT(—) + nk
Tree Method ’
Red box represents a nk (\//
problem instance n
Blue value represents AN hild) i nk .
time spent at that level of //\\ cennaren — a ﬁ work for level i
recursion y N \
, ne] /b e
n
n/b |- n/b |

bk
n/b% % | n/b% = | n/b%? | n/b% " > ~ log, n levels
Y /N AN 7/ of recursion

X X X ©ec X X X j&/

Work Stays Constant

n/2 |3 n/?2 g n
¢/n\ . L/n\ .
n/4 ;| n/4 |7 | n/4 |; n/4 Z[
A S S S A
1 R 1 T g [; L

J/ pk — 21
log, n
T(n) = 2 n(1) = w

=0
x| [*

Total work is the

i J > work for any level,

times the height

10

Work Decreases

n/4 % n/4
ANV
1 11

’

Total work is
asymptotically
dominated by the
root

11

2
Work Increases a_2_1

— \u — \\ O\ S Total work is

asymptotically

>
~~
N
S
>

N~
N

>

N~
N

| S
S
~~
N
Sl S
S
N~
N
S S
S
VS
l\JlUJN

* AN dominated by
) J the leaves

>

)
>

)

— N b

12

summary

When solving a recurrence of the form

n
— >T() =aT (B) + nk
The tree method will produce the series
logy n i
a
=) " (5)

i=0
An asymptotic bound on T(n) then only

depends on the value ofik
b

Y

Y

4 nk N (1]
O(n*logn

alogb n _ nlogb a]

Solving Divide and Conquer Recurrences
Master Theorem: Suppose that T(n) = a-T(n/b) + O(nk) forn > b.

* If a < b¥then T(n) is O (nk)
* Cost is dominated by work at top level of recursion ?
* If a = b*then T(n) is O(n*log n)
* Total cost is the same for all logy, n levels of recursion
e If a > b¥ then T(n) is O(n'°8 @)
* Note that log, a > k in this case 31
e Cost is dominated by total work at lowest level of recursion

]

Binary search:a = 1, b = 2, k = 0 so a = b*: Solution: 0(n®logn) = 0(logn)
Mergesort: a = 2, b = 2, k = 1 so a = b*: Solution: 0(nllogn) = 0(nlogn)

Beware! |t doesn’t always apply!
Master Theorem: Suppose that T(n) = a-T(n/b) + O(nk) forn > b.

* If a < b¥then T(n) is O (nk)
* Cost is dominated by work at top level of recursion ?
* If a = b*then T(n) is O(n*log n)
* Total cost is the same for all logy, n levels of recursion
e If a > b¥ then T(n) is O(n'°8 @)
* Note that log, a > k in this case 31
]

e Cost is dominated by total work at lowest level of recursion

(27

T(n) = 4T (3)

a=4,b=2,k=277
J—

Integer Multiplication q}
—>
) ?9295 y }g)?} }g%Elementary school algorithm

1390546
695273
2781092
2085819
1390546
695273

85805031476 100110110100

&nz)}time for n-bit integers

Decimal Binary

16

Divide and Conquer method

T(N) =

/)

Divide and Conquejiﬂnteger Multiplication)

X1Y1 X1Y2 X2YV1 X2Y2

+ X1Y2
+ X2Y1
+ X2Y2

* Base Case:
 If thereis only 1 place value, just multiply them

* Divide: _
* Break the operands into 4 values:
. is the most significant g digits of x
is the least significant g digits of x

. is the most significant g digits of y
»)is the most significant g digits of y

* Conquer:

« Compute each o@@ ,@1, an@

* Combine:

Divide and Conquer (Integer Multiplication)

* Base Case:
 If thereis only 1 place value, just multiply them
* Divide:
* Break the operands into 4 values:
Xq Xy * x4 is the most significant g digits of x
X |y ¥y * X, is the least significant g digits of x
* y; is the most significant g digits of y
* Yy, is the most significant g digits of y

X1V1 X1Va XV XY * Conquer:
* Compute each of x1y1, X1Y>, X241, and X, Y-
X1V1
+ X1Y2 Combine:

|

X2Y1 * Return 2™(x1y1) + 22(x1y, + x2y1) + (x252)
+ X2Y2

Integer Multiplication Recurrence Solution
Master Theorem: Suppose that T(n) = a-T(n/b) + O(nk) forn > b.

* If a < b¥then T(n) is O (nk)
* Cost is dominated by work at top level of recursion
* If a = b*then T(n) is O(n*log n)
* Total cost is the same for all logy, n levels of recursion
e If @ > b*then T(n) is 0(n'°8> @)
* Note that log, a > k in this case 31
e Cost is dominated by total work at lowest level of recursion
n
T(n) =/4 (E) +n
a=4,b=2,k=1,s0a > b* Solution: 0(n'?9%) = 0(n?)

Karatsuba Method Cant aVO'd these

2

+ 27'x1 2 + X5 V1) xzyz

> X1 Y1}
L/\J Can we do this with

one multiplication?

(x1 + xz@’ +y,) =

X1Yo T X2V1|=

Two

multiplications

X1Y1 T X1Y2 T X2Y1 T X2)>

(X1 + x2) (Y1 +¥2) — X1y1 — X2V

One multiplication

Divide and Conquer (Karatsuba Method)

* Base Case:
* If there is only 1 place value, just multiply them
* Divide:
* Break the operands into 4 values:
* x4 is the most significant Z digits of x
* X, is the least significant — digits of x
X1 V2 * vy, is the most significant — digits of y
* Yy, is the most significant > digits of y

* Conquer:

X1Y1 X1V gi 1;3 X2Y2 e Compute each of x1y;, (x; + x5)(y1 + v,), and x5y,
X1Y1 (o 0 .
)) Combine:
(1 +2) * Return n
— X1)1 CL'_ 2™ (x1y1) + 27((361 +x2) (Y1 +¥2) —X1y1 — Xz)’z) + (x2¥2)
— X2Y2

Karatsuba Method Recurrence Solution
Master Theorem: Suppose that T(n) = a-T(n/b) + O(nk) forn > b.

* If a < b¥then T(n) is O (nk)
* Cost is dominated by work at top level of recursion ?
* If a = b*then T(n) is O(n*log n)
* Total cost is the same for all logy, n levels of recursion
e If @ > b*then T(n) is 0(n'°8> @)
* Note that log, a > k in this case 31
e Cost is dominated by total work at lowest level of recursion

_
T(n)=3T(g)+n

a=3,b=2,k=1,s0a>b*: Solution: 0(n'9»%) = 0(n'o923) = 0(n158%)

Matrix Multiplicati

60 72 384
132 162 192

204 252 300.
Run time? 0(n?®)

24

Multiplying Matrices

fori<1ton
forj<1ton
Cli,jl< O
fork<1ton
Cli,jl < C|i,j] + A|i, k]-B|k,j]
endfor
endfor
endfor

Can we improve this with divide and conquer?

We can see subproblems!

All
A11 A2 | Q13 Aq4]
A1 App | z3 A4
dz1 A3z A3z 0434
Ag1 Qg2 Q43 Ay |

A11b11 + AygDoq|+ Q1331 + Q14D
Ay,1b11 + AroDy1|+ Ay3b31 + Arabaq
a31b11 + azybz1 + az3bzy + A34byy
|A41b11 + A4by1 + Ay3b31 + Agebyy

A11 X Byq

A11D12 + Q12055+ A13b3; + Aq4by;

bi5 + Ay9by5 |4+ Ar3b35 + Arabyy
A31b17 + A32D25 + A33b3; + Az4by;
Ag1b17 + A42b27 + Ay3b35 + Aysby;

26

Matrix Multiplication D&C
Multiply n X n matrices (A and B)

Ay X By + A1, X Byy Ajg X Byp + 415 X By,

AXB =
Ay X By1 + 435 X Byy Ay X Byy + Ay X By,

— I -
/ C/))_.d% 72)+ o0

Divide an

onquerMatrix Multiplication

 Base Case:

* Fora 1l X 1 matrices, return the productinal X 1
matrix

* Divide:
e Use each quadrant of the input n X n matrices as it’s

n n]
own Py X Ematrlx <a
P, =444 11 P5 = A21-§,)B11

* Conquer: P, = A1§X\By; Pe = A3z ®)B2s
P P P P
! ’ ’ ' Py = A11®B12 P; = Ap1 /By,

e Compute each of:
P, P, P, P, P P, = Ay, 3B, {8 = Azz@zz

/ e Combine:

Py+P, P3tPh * Compute the value of each quadrant by summing
P; ... Pg as shown

Ps+Pg P, + Pg

28

Karatsuba Method Recurrence Solution
Master Theorem: Suppose that T(n) = a-T(n/b) + O(nk) forn > b.

* If a < b¥then T(n) is O (nk)

* Cost is dominated by work at top level of recursion ?
* If a = b*then T(n) is O(n*log n)

* Total cost is the same for all logy, n levels of recursion
e If a > b¥ then T(n) is O(n'°8 @)

* Note that log, a > k in this case 31
e Cost is dominated by total work at lowest level of recursion]
7

n
T(n) =/8T §)+n2

a=8,b=2k=2s0a>b" Solution: 0(n'°9%) = O(nl"gzg) = 0(n3)

How to Improve?
Multiply n X n matrices (A and B)

Ay X By + A1, X Byy Ajg X Byp + 415 X By,

AXB =
Ay X By1 + 435 X Byy Ay X Byy + Ay X By,

ldea: Use an idea like Karatsuba! Can we derive
these products using addition/subtraction?

30

Strassen’s Algorithm

Aqq Aqp Bi4 B;,
A= B =
Ayq Ays " B34 B»>
Calculate: Find A X B:
Q1 = (A11 + Azz) X (By1 + Byy)]
0, = (Ayy + Ayy) X Byy Ay1B11+A4:,B,7 A11B1, + 45,855 _
Qs = Ayq X (Byy — Byy) Az 1B11 +A22B21 Az1Bi2 + 42287,
Q4 = Ay X (By1 — B11)]
A A s Q1 + Q4 — Qs + Q5 Qs + Qs
Qs = (A1 + A12) X By, 0, + 0 01— 0, + 0a + 0
Qs = (A1 — A11) X (B11 + By2)) 2 4 1 2 3 6
Q7 = (A3 — Azp) X (Bpy + Bya)

Divide and Conquer Matrix Multiplication

A11 A12
A21 A22
Q1 Q2
QS Q6

Q1+ 04— Qs +0Q7

Q2+ Q4

Bi1 Biy
By,1 By
Q3 Q4
Q7

Q3 + Qs

Q1 — Q2+ Q3+ Q6

 Base Case:

* For a 32 X 32 matrices, use the textbook algorithm

e Divide:

e Use each quadrant of the input n X n matrices as it’s

n n .
own Py X Ematrlx

* Conquer:
 Compute each of:

e Combine:

Q1 = (A11 + A23) X (B11 + Byy)
Q2 = (A1 + Azz) X Byq
Q3 = A11 X (B1z — Byz)
Qs = Azz X (B21 — B11)
Qs = (411 + A12) X By
Q¢ = (A21 — A1) X (B11 + By3)
Q7 = (A12 — Ayz) X (Byg + Byy)

* Compute the value of each quadrant by summing

Q1 ... Qg as shown

Karatsuba Method Recurrence Solution
Master Theorem: Suppose that T(n) = a-T(n/b) + O(nk) forn > b.

* If a < b¥then T(n) is O (nk)
* Cost is dominated by work at top level of recursion ?
* If a = b*then T(n) is O(n*log n)
* Total cost is the same for all logy, n levels of recursion
e If @ > b*then T(n) is 0(n'°8> @)
* Note that log, a > k in this case 31
e Cost is dominated by total work at lowest level of recursion

T(n) ;@(g) + n*

a=7,b=2k=2s0a>b" Solution: 0(n'°9%) = O(nl"927) = 0(n*8%)

]

Strassen’s Algorithm

|
-1000000

‘500000 /

600000 /
n3 /
-460000 vl

_—

B
T e

~200000

A 40 50 60 70 80 90 100~

s this the fastest?

3.0

29 -

2.7

2.5

24

naive

Strassen

) Pan
L\}Bini et al.

Schénhage & p omani

Coppersmith, Winograd Strassen

Stothers A
Williams

Coppersmith, Winograd

1950

1960 1970 1980 1990 2000 2010

Every few years someone
comes up with an
asymptotically faster algorithm
Current best is O (n?3728596)
but it requires input sizes in the
millions to actually be faster

We know there is no algorithm
with running time o(n?)

The best possible running time
is unknown!
(and weirdly, may not exist!)

Year

	Slide 1: CSE 421 Winter 2025 Lecture 10: Divide and Conquer 2
	Slide 2: Divide and Conquer (Trominoes)
	Slide 3: Divide and Conquer (Merge Sort)
	Slide 4: Divide and Conquer (Running Time)
	Slide 5: Divide and Conquer (Running Time)
	Slide 6: Tree Method (Merge Sort)
	Slide 7: Tree Method (Slow CPP from last time)
	Slide 8: Tree Method (More Subproblems)
	Slide 9: Tree Method
	Slide 10: Work Stays Constant
	Slide 11: Work Decreases
	Slide 12: Work Increases
	Slide 13: Summary
	Slide 14: Solving Divide and Conquer Recurrences
	Slide 15: Beware! It doesn’t always apply!
	Slide 16: Integer Multiplication
	Slide 17: Divide and Conquer method
	Slide 18: Divide and Conquer (Integer Multiplication)
	Slide 19: Divide and Conquer (Integer Multiplication)
	Slide 20: Integer Multiplication Recurrence Solution
	Slide 21: Karatsuba Method
	Slide 22: Divide and Conquer (Karatsuba Method)
	Slide 23: Karatsuba Method Recurrence Solution
	Slide 24: Matrix Multiplication
	Slide 25: Multiplying Matrices
	Slide 26: We can see subproblems!
	Slide 27: Matrix Multiplication D&C
	Slide 28: Divide and Conquer Matrix Multiplication
	Slide 29: Karatsuba Method Recurrence Solution
	Slide 30: How to Improve?
	Slide 31: Strassen’s Algorithm
	Slide 32: Divide and Conquer Matrix Multiplication
	Slide 33: Karatsuba Method Recurrence Solution
	Slide 34: Strassen’s Algorithm
	Slide 35: Is this the fastest?

