
CSE 421 Winter 2025
Lecture 10: Divide and Conquer 2

Nathan Brunelle

http://www.cs.uw.edu/421

http://www.cs.uw.edu/421

Divide and Conquer (Trominoes)
• Base Case:

• For a 2 × 2 board, the empty cells will be exactly a tromino

• Divide:
• Break of the board into quadrants of size 2𝑛−1 × 2𝑛−1 each

• Put a tromino at the intersection such that all quadrants have one
occupied cell

• Conquer:
• Cover each quadrant

• Combine:
• Reconnect quadrants

2

Divide and Conquer (Merge Sort)
• Base Case:

• If the list is of length 1 or 0, it’s already sorted, so just return it

• (Alternative: when length is ≤ 15, use insertion sort)

• Divide:
• Split the list into two “sublists” of (roughly) equal length

• Conquer:
• Sort both lists recursively

• Combine:
• Merge sorted sublists into one sorted list

3

5

5 8 2 9 4 1

2 5 8 1 4 9

1 2 4 5 8 9

2 5 8 1 4 9

Divide and Conquer (Running Time)
• Base Case:

• When the problem size is small (≤ 𝑐), solve non-recursively

• Divide:
• When problem size is large, identify 1 or more smaller

versions of exactly the same problem

• Conquer:
• Recursively solve each smaller subproblem

• Combine:
• Use the subproblems’ solutions to solve to the original

4

𝑇 𝑐 = 𝑘

𝑎 = number of
 subproblems
𝑛

𝑏
=size of each

 subproblem
𝑓𝑑 𝑛 = time to divide

𝑎 ⋅ 𝑇
𝑛

𝑏

𝑓𝑐 𝑛 =time to combine

Overall: 𝑻 𝒏 = 𝒂𝑻
𝒏

𝒃
+ 𝒇 𝒏 where 𝒇 𝒏 = 𝒇𝒅 𝒏 + 𝒇𝒄(𝒏)

Divide and Conquer (Running Time)
• Base Case:

• When the problem size is small (≤ 𝑐), solve non-recursively

• Divide:
• When problem size is large, identify 1 or more smaller

versions of exactly the same problem

• Conquer:
• Recursively solve each smaller subproblem

• Combine:
• Use the subproblems’ solutions to solve to the original

5

𝑇 𝑐 = 𝑘

𝑎 = number of
 subproblems
𝑛

𝑏
=size of each

 subproblem
𝑓𝑑 𝑛 = time to divide

𝑎 ⋅ 𝑇
𝑛

𝑏

𝑓𝑐 𝑛 =time to combine

Overall: 𝑻 𝒏 = 𝒂𝑻
𝒏

𝒃
+ 𝚯 𝒏𝒌 where 𝒇𝒅 𝒏 + 𝒇𝒄 𝒏 ∈ 𝚯 𝒏𝒌

6

 𝑛 comparisons / level

log2 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇
𝑛

2
 + 𝑛

𝑇 𝑛 = ෍

𝑖=0

log2 𝑛

𝑛 = Θ 𝑛 log 𝑛

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛

𝑛

2

𝑛

2

𝑛

4

𝑛

4

𝑛

4

𝑛

4

1 1 1 1 1 1

Red box represents a
problem instance

Blue value represents
time spent at that level of

recursion

Tree Method (Merge Sort)

7

 2i 𝑛2

22𝑖 =
𝑛2

2𝑖 work for

level 𝑖

log2 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇
𝑛

2
 + 𝑛2

𝑇 𝑛 = ෍

𝑖=0

log2 𝑛
𝑛2

2𝑖
= Θ 𝑛2

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛2

𝑛2

22

𝑛2

22

𝑛2

42

𝑛2

42

𝑛2

42

𝑛2

42

1 1 1 1 1 1

Red box represents a
problem instance

Blue value represents
time spent at that level of

recursion

Tree Method (Slow CPP from last time)

8

 3i 𝑛

2𝑖 work for level 𝑖𝑛

𝑇 𝑛 = 3𝑇
𝑛

2
 + 𝑛

𝑇 𝑛 = ෍

𝑖=0

log2 𝑛

𝑛
3

2

𝑖

= Θ 𝑛log2 3 ≈ Θ 𝑛1.585

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛

𝑛

2

𝑛

2

𝑛

4

𝑛

4

𝑛

4

𝑛

4

1 1 1 1 1 1

Red box represents a
problem instance

Blue value represents
time spent at that level of

recursion

Tree Method (More Subproblems)

Τ𝑛 2

Τ𝑛 4 Τ𝑛 4
… …

1 1 1 …

𝑛

2

𝑛

4

𝑛

4

1 1 1

Tree Method

 𝑎𝑖 𝑛𝑘

𝑏𝑖𝑘 work for level 𝑖

≈ log𝑏 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = ෍

𝑖=0

logb 𝑛

𝑛𝑘
𝑎

𝑏𝑘

𝑖

Τ𝑛 𝑏 Τ𝑛 𝑏

Τ𝑛 𝑏2 Τ𝑛 𝑏2 Τ𝑛 𝑏2 Τ𝑛 𝑏2

… … … …

𝑥 𝑥 𝑥 … 𝑥 𝑥 𝑥

𝑛𝑘

𝑛𝑘

𝑏𝑘

𝑛𝑘

𝑏𝑘

𝑐 𝑐 c 𝑐 𝑐 𝑐

Red box represents a
problem instance

Blue value represents
time spent at that level of

recursion
Τ𝑛 𝑏 Τ𝑛 𝑏

… 𝑎 children

… …

𝑛𝑘

𝑏2𝑘

𝑛𝑘

𝑏2𝑘

𝑛𝑘

𝑏2𝑘

𝑛𝑘

𝑏2𝑘

𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
 + 𝑛𝑘

10

𝑇 𝑛 = 2𝑇
𝑛

2
 + 𝑛

𝑎

𝑏𝑘
=

2

21
= 1

𝑇 𝑛 = ෍

𝑖=0

log2 𝑛

𝑛 1 𝑖 = Θ 𝑛 log 𝑛

𝑛

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …
1 1 1 … 1 1 1

𝑛

𝑛

2

𝑛

2

𝑛

4

𝑛

4

𝑛

4

𝑛

4

1 1 1 1 1 1

Work Stays Constant

𝑛

𝑛

𝑛

𝑛

Total work is the
work for any level,
times the height

11

𝑇 𝑛 = 2𝑇
𝑛

2
 + 𝑛2

𝑎

𝑏𝑘
=

2

22
=

1

2

𝑇 𝑛 = ෍

𝑖=0

log2 𝑛

𝑛2
1

2

𝑖

= Θ 𝑛2

Work Decreases

𝑛2

𝑛2
1

2

𝑛2
1

2

2

Total work is
asymptotically

dominated by the
root

𝑛

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …
1 1 1 … 1 1 1

𝑛2

𝑛2

22

𝑛2

22

𝑛2

42

𝑛2

42

𝑛2

42

𝑛2

42

1 1 1 1 1 1

12

𝑇 𝑛 = 3𝑇
𝑛

2
 + 𝑛

𝑎

𝑏𝑘
=

2

22
=

1

2

𝑇 𝑛 = ෍

𝑖=0

log2 𝑛

𝑛2
1

2

𝑖

= Θ 𝑛2

Work Increases

𝑛

𝑛
3

2

𝑛
3

2

2

𝑎log𝑏 𝑛

Total work is
asymptotically
dominated by

the leaves

𝑛

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛

𝑛

2

𝑛

2

𝑛

4

𝑛

4

𝑛

4

𝑛

4

1 1 1 1 1 1

Τ𝑛 2

Τ𝑛 4 Τ𝑛 4

… …

1 1 1 …

𝑛

2

𝑛

4

𝑛

4

1 1 1

Summary

When solving a recurrence of the form

𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
 + 𝑛𝑘

The tree method will produce the series

𝑇 𝑛 = ෍

𝑖=0

logb 𝑛

𝑛𝑘
𝑎

𝑏𝑘

𝑖

An asymptotic bound on 𝑇 𝑛 then only

depends on the value of
𝑎

𝑏𝑘

𝑛𝑘

𝑛𝑘

𝑛𝑘

𝑛𝑘

𝑛𝑘
𝑎

𝑏

0

𝑛𝑘
𝑎

𝑏

1

𝑛𝑘
𝑎

𝑏

2

1

𝑛𝑘

𝑛𝑘
𝑎

𝑏

1

𝑛𝑘
𝑎

𝑏

2

𝑎log𝑏 𝑛 = 𝑛log𝑏 𝑎

𝑎

𝑏𝑘
= 1

𝑎

𝑏𝑘
< 1

𝑎

𝑏𝑘
> 1

Θ(𝑛𝑘 log 𝑛) Θ(𝑛𝑘) Θ(𝑛log𝑏 𝑎)

14

Solving Divide and Conquer Recurrences
Master Theorem: Suppose that 𝑻 𝒏 = 𝒂𝑻(𝒏/𝒃) + 𝑂(𝒏𝒌) for 𝒏 > 𝒃.

• If 𝒂 < 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌)

• Cost is dominated by work at top level of recursion

• If 𝒂 = 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌 log 𝒏)

• Total cost is the same for all log𝒃 𝒏 levels of recursion

• If 𝒂 > 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏log𝒃 𝒂)

• Note that log𝒃 𝒂 > 𝒌 in this case

• Cost is dominated by total work at lowest level of recursion

Binary search: 𝒂 = 𝟏, 𝒃 = 𝟐, 𝒌 = 𝟎 so 𝒂 = 𝒃𝒌: Solution: 𝑂 𝒏𝟎log 𝒏 = 𝑂(log 𝒏)

Mergesort: 𝒂 = 𝟐, 𝒃 = 𝟐, 𝒌 = 𝟏 so 𝒂 = 𝒃𝒌: Solution: 𝑂(𝒏𝟏log 𝒏) = 𝑂(𝒏 log 𝒏)

15

Beware! It doesn’t always apply!
Master Theorem: Suppose that 𝑻 𝒏 = 𝒂𝑻(𝒏/𝒃) + 𝑂(𝒏𝒌) for 𝒏 > 𝒃.

• If 𝒂 < 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌)

• Cost is dominated by work at top level of recursion

• If 𝒂 = 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌 log 𝒏)

• Total cost is the same for all log𝒃 𝒏 levels of recursion

• If 𝒂 > 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏log𝒃 𝒂)

• Note that log𝒃 𝒂 > 𝒌 in this case

• Cost is dominated by total work at lowest level of recursion

𝑇 𝑛 = 4𝑇
𝑛

2
+ 𝑛2 log 𝑛

𝒂 = 𝟒, 𝒃 = 𝟐, 𝒌 =? ? ?

Integer Multiplication

16

695273

× 123412
--

1390546

695273

2781092

2085819

1390546

695273
--

85805031476

110110

× 101110
--

000000

110110

110110

110110

000000

110110
--

100110110100

Decimal Binary

Elementary school algorithm

𝑂(𝒏𝟐) time for 𝒏-bit integers

()

()

110110

× 101110

Divide and Conquer method

17

𝑥1 𝑥2

𝑦1 𝑦2

𝑥1 𝑥2+= 2
𝑛
2

𝑦1 𝑦2+= 2
𝑛
2

()

𝑥1 𝑦1×2𝑛

𝑥1 𝑦22
𝑛
2 × 𝑥2 𝑦1×+

𝑥2 𝑦2×

+

+

Divide and Conquer (Integer Multiplication)
• Base Case:

• If there is only 1 place value, just multiply them

• Divide:
• Break the operands into 4 values:

• 𝑥1 is the most significant
𝑛

2
 digits of 𝑥

• 𝑥2 is the least significant
𝑛

2
 digits of 𝑥

• 𝑦1 is the most significant
𝑛

2
 digits of 𝑦

• 𝑦2 is the most significant
𝑛

2
 digits of 𝑦

• Conquer:
• Compute each of 𝑥1𝑦1, 𝑥1𝑦2, 𝑥2𝑦1, and 𝑥2𝑦2

• Combine:

• Return 2𝑛 𝑥1𝑦1 + 2
𝑛

2 𝑥1𝑦2 + 𝑥2𝑦1 + 𝑥2𝑦2

18

𝑥1 𝑥2

𝑦1 𝑦2×

𝑥1𝑦1 𝑥1𝑦2 𝑥2𝑦1 𝑥2𝑦2

𝑥1𝑦1

𝑥1𝑦2

𝑥2𝑦1

𝑥2𝑦2

+

+

+

Divide and Conquer (Integer Multiplication)
• Base Case:

• If there is only 1 place value, just multiply them

• Divide:
• Break the operands into 4 values:

• 𝑥1 is the most significant
𝑛

2
 digits of 𝑥

• 𝑥2 is the least significant
𝑛

2
 digits of 𝑥

• 𝑦1 is the most significant
𝑛

2
 digits of 𝑦

• 𝑦2 is the most significant
𝑛

2
 digits of 𝑦

• Conquer:
• Compute each of 𝑥1𝑦1, 𝑥1𝑦2, 𝑥2𝑦1, and 𝑥2𝑦2

• Combine:

• Return 2𝑛 𝑥1𝑦1 + 2
𝑛

2 𝑥1𝑦2 + 𝑥2𝑦1 + 𝑥2𝑦2

19

𝑥1 𝑥2

𝑦1 𝑦2×

𝑥1𝑦1 𝑥1𝑦2 𝑥2𝑦1 𝑥2𝑦2

𝑥1𝑦1

𝑥1𝑦2

𝑥2𝑦1

𝑥2𝑦2

+

+

+

20

Integer Multiplication Recurrence Solution
Master Theorem: Suppose that 𝑻 𝒏 = 𝒂𝑻(𝒏/𝒃) + 𝑂(𝒏𝒌) for 𝒏 > 𝒃.

• If 𝒂 < 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌)

• Cost is dominated by work at top level of recursion

• If 𝒂 = 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌 log 𝒏)

• Total cost is the same for all log𝒃 𝒏 levels of recursion

• If 𝒂 > 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏log𝒃 𝒂)

• Note that log𝒃 𝒂 > 𝒌 in this case

• Cost is dominated by total work at lowest level of recursion

𝑇 𝑛 = 4𝑇
𝑛

2
+ 𝑛

𝒂 = 𝟒, 𝒃 = 𝟐, 𝒌 = 𝟏, so 𝒂 > 𝒃𝒌: Solution: 𝑂(𝒏𝒍𝒐𝒈𝒃𝒂) = 𝑂(𝒏𝟐)

Karatsuba Method

21

2𝑛 𝑥1𝑦1 + 2
𝑛
2 𝑥1𝑦2 + 𝑥2𝑦1 + 𝑥2𝑦2

Can’t avoid these

Can we do this with
one multiplication?

𝑥1 + 𝑥2 𝑦1 + 𝑦2 =

𝑥1𝑦1 + 𝑥1𝑦2 + 𝑥2𝑦1 + 𝑥2𝑦2

𝑥1𝑦2 + 𝑥2𝑦1 = 𝑥1 + 𝑥2 𝑦1 + 𝑦2 − 𝑥1𝑦1 − 𝑥2𝑦2

One multiplication
Two
multiplications

Divide and Conquer (Karatsuba Method)
• Base Case:

• If there is only 1 place value, just multiply them

• Divide:
• Break the operands into 4 values:

• 𝑥1 is the most significant
𝑛

2
 digits of 𝑥

• 𝑥2 is the least significant
𝑛

2
 digits of 𝑥

• 𝑦1 is the most significant
𝑛

2
 digits of 𝑦

• 𝑦2 is the most significant
𝑛

2
 digits of 𝑦

• Conquer:
• Compute each of 𝑥1𝑦1, 𝑥1 + 𝑥2 𝑦1 + 𝑦2 , and 𝑥2𝑦2

• Combine:
• Return

2𝑛 𝑥1𝑦1 + 2
𝑛
2 𝑥1 + 𝑥2 𝑦1 + 𝑦2 − 𝑥1𝑦1 − 𝑥2𝑦2 + 𝑥2𝑦2

22

𝑥1 𝑥2

𝑦1 𝑦2×

𝑥1𝑦1 𝑥1𝑦2
𝑥1 + 𝑥2

𝑦1 + 𝑦2
𝑥2𝑦2

𝑥1𝑦1

𝑥1𝑦1

𝑥2𝑦2

−

+

+

𝑥2𝑦2−

𝑥1 + 𝑥2

𝑦1 + 𝑦2

23

Karatsuba Method Recurrence Solution
Master Theorem: Suppose that 𝑻 𝒏 = 𝒂𝑻(𝒏/𝒃) + 𝑂(𝒏𝒌) for 𝒏 > 𝒃.

• If 𝒂 < 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌)

• Cost is dominated by work at top level of recursion

• If 𝒂 = 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌 log 𝒏)

• Total cost is the same for all log𝒃 𝒏 levels of recursion

• If 𝒂 > 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏log𝒃 𝒂)

• Note that log𝒃 𝒂 > 𝒌 in this case

• Cost is dominated by total work at lowest level of recursion

𝑇 𝑛 = 3𝑇
𝑛

2
+ 𝑛

𝒂 = 𝟑, 𝒃 = 𝟐, 𝒌 = 𝟏, so 𝒂 > 𝒃𝒌: Solution: 𝑂(𝒏𝒍𝒐𝒈𝒃𝒂) = 𝑂 𝒏𝒍𝒐𝒈𝟐𝟑 = 𝑂 𝑛1.585

Matrix Multiplication

24

1 2 3
4 5 6
7 8 9

×
2 4 6
8 10 12

14 16 18

=
60 72 84

132 162 192
204 252 300

=
1 ⋅ 2 + 2 ⋅ 8 + 3 ⋅ 16 1 ⋅ 4 + 2 ⋅ 10 + 3 ⋅ 16 1 ⋅ 6 + 2 ⋅ 12 + 3 ⋅ 18

⋅ ⋅ ⋅
⋅ ⋅ ⋅

Run time? 𝑂(𝑛3)

𝑛

𝑛

25

Multiplying Matrices

for 𝒊  𝟏 to 𝒏

 for 𝒋  𝟏 to 𝒏

 𝑪[𝒊, 𝒋]  𝟎

 for 𝒌  𝟏 to 𝒏

 𝑪[𝒊, 𝒋]  𝑪[𝒊, 𝒋] + 𝑨[𝒊, 𝒌]𝑩[𝒌, 𝒋]

 endfor

 endfor

endfor

Can we improve this with divide and conquer?

We can see subproblems!

26

𝐴 =

𝑎11 𝑎12 𝑎13 𝑎14

𝑎21 𝑎22 𝑎23 𝑎24

𝑎31 𝑎32 𝑎33 𝑎34

𝑎41 𝑎42 𝑎43 𝑎44

𝐵 =

𝑏11 𝑏12 𝑏13 𝑏14

𝑏21 𝑏22 𝑏23 𝑏24

𝑏31 𝑏32 𝑏33 𝑏34

𝑏41 𝑏42 𝑏43 𝑏44

𝐴 × 𝐵 =

𝑎11𝑏11 + 𝑎12𝑏21 + 𝑎13𝑏31 + 𝑎14𝑏41 𝑎11𝑏12 + 𝑎12𝑏22 + 𝑎13𝑏32 + 𝑎14𝑏42 ⋅ ⋅
𝑎21𝑏11 + 𝑎22𝑏21 + 𝑎23𝑏31 + 𝑎24𝑏41 𝑎21𝑏12 + 𝑎22𝑏22 + 𝑎23𝑏32 + 𝑎24𝑏42 ⋅ ⋅
𝑎31𝑏11 + 𝑎32𝑏21 + 𝑎33𝑏31 + 𝑎34𝑏41 𝑎31𝑏12 + 𝑎32𝑏22 + 𝑎33𝑏32 + 𝑎34𝑏42 ⋅ ⋅
𝑎41𝑏11 + 𝑎42𝑏21 + 𝑎43𝑏31 + 𝑎44𝑏41 𝑎41𝑏12 + 𝑎42𝑏22 + 𝑎43𝑏32 + 𝑎44𝑏42 ⋅ ⋅

𝐴11 𝐵11

𝐴11 × 𝐵11
𝐴11 × 𝐵11

Matrix Multiplication D&C

27

Multiply 𝑛 × 𝑛 matrices (𝐴 and 𝐵)

𝐴 × 𝐵 =
𝐴11 × 𝐵11 + 𝐴12 × 𝐵21 𝐴11 × 𝐵12 + 𝐴12 × 𝐵22

𝐴21 × 𝐵11 + 𝐴22 × 𝐵21 𝐴21 × 𝐵12 + 𝐴22 × 𝐵22

𝐴 =

𝑎11 𝑎12 𝑎13 𝑎14

𝑎21 𝑎22 𝑎23 𝑎24

𝑎31 𝑎32 𝑎33 𝑎34

𝑎41 𝑎42 𝑎43 𝑎44

𝐵 =

𝑏11 𝑏12 𝑏13 𝑏14

𝑏21 𝑏22 𝑏23 𝑏24

𝑏31 𝑏32 𝑏33 𝑏34

𝑏41 𝑏42 𝑏43 𝑏44

𝐵11 𝐵12

𝐵21 𝐵22

𝐴11 𝐴12

𝐴21 𝐴22

Divide and Conquer Matrix Multiplication
• Base Case:

• For a 1 × 1 matrices, return the product in a 1 × 1
matrix

• Divide:
• Use each quadrant of the input 𝑛 × 𝑛 matrices as it’s

own
𝑛

2
×

𝑛

2
matrix

• Conquer:
• Compute each of:

• Combine:
• Compute the value of each quadrant by summing

𝑃1 … 𝑃8 as shown

28

𝐴11 𝐴12

𝐴21 𝐴22

𝐵11 𝐵12

𝐵21 𝐵22

𝑃1 = 𝐴11 × 𝐵11

𝑃2 = 𝐴12 × 𝐵21

𝑃3 = 𝐴11 × 𝐵12

𝑃4 = 𝐴12 × 𝐵22

𝑃5 = 𝐴21 × 𝐵11

𝑃6 = 𝐴22 × 𝐵21

𝑃7 = 𝐴21 × 𝐵12

𝑃8 = 𝐴22 × 𝐵22

𝑃1 𝑃2 𝑃3 𝑃4

𝑃5 𝑃6 𝑃7 𝑃8

𝑃1 + 𝑃2 𝑃3 + 𝑃4

𝑃5 + 𝑃6 𝑃7 + 𝑃8

29

Karatsuba Method Recurrence Solution
Master Theorem: Suppose that 𝑻 𝒏 = 𝒂𝑻(𝒏/𝒃) + 𝑂(𝒏𝒌) for 𝒏 > 𝒃.

• If 𝒂 < 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌)

• Cost is dominated by work at top level of recursion

• If 𝒂 = 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌 log 𝒏)

• Total cost is the same for all log𝒃 𝒏 levels of recursion

• If 𝒂 > 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏log𝒃 𝒂)

• Note that log𝒃 𝒂 > 𝒌 in this case

• Cost is dominated by total work at lowest level of recursion

𝑇 𝑛 = 8𝑇
𝑛

2
+ 𝑛2

𝒂 = 𝟖, 𝒃 = 𝟐, 𝒌 = 𝟐, so 𝒂 > 𝒃𝒌: Solution: 𝑂(𝒏𝒍𝒐𝒈𝒃𝒂) = 𝑂 𝒏𝒍𝒐𝒈𝟐𝟖 = 𝑂 𝑛3

How to Improve?

30

Multiply 𝑛 × 𝑛 matrices (𝐴 and 𝐵)

𝐴 × 𝐵 =
𝐴11 × 𝐵11 + 𝐴12 × 𝐵21 𝐴11 × 𝐵12 + 𝐴12 × 𝐵22

𝐴21 × 𝐵11 + 𝐴22 × 𝐵21 𝐴21 × 𝐵12 + 𝐴22 × 𝐵22

𝐴 =

𝑎11 𝑎12 𝑎13 𝑎14

𝑎21 𝑎22 𝑎23 𝑎24

𝑎31 𝑎32 𝑎33 𝑎34

𝑎41 𝑎42 𝑎43 𝑎44

𝐵 =

𝑏11 𝑏12 𝑏13 𝑏14

𝑏21 𝑏22 𝑏23 𝑏24

𝑏31 𝑏32 𝑏33 𝑏34

𝑏41 𝑏42 𝑏43 𝑏44

𝐵11 𝐵12

𝐵21 𝐵22

𝐴11 𝐴12

𝐴21 𝐴22

Idea: Use an idea like Karatsuba! Can we derive
these products using addition/subtraction?

Strassen’s Algorithm

31

Calculate:
𝑄1 = 𝐴11 + 𝐴22 × (𝐵11 + 𝐵22)

𝑄2 = 𝐴21 + 𝐴22 × 𝐵11

𝑄3 = 𝐴11 × (𝐵12 − 𝐵22)

𝑄4 = 𝐴22 × (𝐵21 − 𝐵11)

𝑄6 = 𝐴21 − 𝐴11 × (𝐵11 + 𝐵12)

𝑄5 = 𝐴11 + 𝐴12 × 𝐵22

𝑄7 = 𝐴12 − 𝐴22 × (𝐵21 + 𝐵22)

𝐴1,1𝐵1,1 + 𝐴1,2𝐵2,1 𝐴1,1𝐵1,2 + 𝐴1,2𝐵2,2

𝐴2,1𝐵1,1 + 𝐴2,2𝐵2,1 𝐴2,1𝐵1,2 + 𝐴2,2𝐵2,2
=

𝑄1 + 𝑄4 − 𝑄5 + 𝑄7 𝑄3 + 𝑄5

𝑄2 + 𝑄4 𝑄1 − 𝑄2 + 𝑄3 + 𝑄6

Find 𝐴 × 𝐵:

𝐴 =

𝑎11 𝑎12 𝑎13 𝑎14

𝑎21 𝑎22 𝑎23 𝑎24

𝑎31 𝑎32 𝑎33 𝑎34

𝑎41 𝑎42 𝑎43 𝑎44

𝐵 =

𝑏11 𝑏12 𝑏13 𝑏14

𝑏21 𝑏22 𝑏23 𝑏24

𝑏31 𝑏32 𝑏33 𝑏34

𝑏41 𝑏42 𝑏43 𝑏44

𝐵11 𝐵12

𝐵21 𝐵22

𝐴11 𝐴12

𝐴21 𝐴22

Divide and Conquer Matrix Multiplication
• Base Case:

• For a 32 × 32 matrices, use the textbook algorithm

• Divide:
• Use each quadrant of the input 𝑛 × 𝑛 matrices as it’s

own
𝑛

2
×

𝑛

2
matrix

• Conquer:
• Compute each of:

• Combine:
• Compute the value of each quadrant by summing

𝑄1 … 𝑄8 as shown
32

𝐴11 𝐴12

𝐴21 𝐴22

𝐵11 𝐵12

𝐵21 𝐵22

𝑄1 = 𝐴11 + 𝐴22 × (𝐵11 + 𝐵22)
𝑄2 = 𝐴21 + 𝐴22 × 𝐵11
𝑄3 = 𝐴11 × (𝐵12 − 𝐵22)
𝑄4 = 𝐴22 × (𝐵21 − 𝐵11)
𝑄5 = 𝐴11 + 𝐴12 × 𝐵22
𝑄6 = 𝐴21 − 𝐴11 × (𝐵11 + 𝐵12)
𝑄7 = 𝐴12 − 𝐴22 × (𝐵21 + 𝐵22)

𝑄1 𝑄2 𝑄3 𝑄4

𝑄5 𝑄6 𝑄7

𝑄1 + 𝑄4 − 𝑄5 + 𝑄7 𝑄3 + 𝑄5

𝑄2 + 𝑄4 𝑄1 − 𝑄2 + 𝑄3 + 𝑄6

33

Karatsuba Method Recurrence Solution
Master Theorem: Suppose that 𝑻 𝒏 = 𝒂𝑻(𝒏/𝒃) + 𝑂(𝒏𝒌) for 𝒏 > 𝒃.

• If 𝒂 < 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌)

• Cost is dominated by work at top level of recursion

• If 𝒂 = 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌 log 𝒏)

• Total cost is the same for all log𝒃 𝒏 levels of recursion

• If 𝒂 > 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏log𝒃 𝒂)

• Note that log𝒃 𝒂 > 𝒌 in this case

• Cost is dominated by total work at lowest level of recursion

𝑇 𝑛 = 7𝑇
𝑛

2
+ 𝑛2

𝒂 = 𝟕, 𝒃 = 𝟐, 𝒌 = 𝟐, so 𝒂 > 𝒃𝒌: Solution: 𝑂(𝒏𝒍𝒐𝒈𝒃𝒂) = 𝑂 𝒏𝒍𝒐𝒈𝟐𝟕 = 𝑂 𝑛2.807

34

𝑛3

𝑛log2 7

Strassen’s Algorithm

Is this the fastest?

35

Every few years someone
comes up with an
asymptotically faster algorithm

Current best is 𝑂 𝑛2.3728596 ,
but it requires input sizes in the
millions to actually be faster

We know there is no algorithm
with running time 𝑜 𝑛2

The best possible running time
is unknown!
(and weirdly, may not exist!)

	Slide 1: CSE 421 Winter 2025 Lecture 10: Divide and Conquer 2
	Slide 2: Divide and Conquer (Trominoes)
	Slide 3: Divide and Conquer (Merge Sort)
	Slide 4: Divide and Conquer (Running Time)
	Slide 5: Divide and Conquer (Running Time)
	Slide 6: Tree Method (Merge Sort)
	Slide 7: Tree Method (Slow CPP from last time)
	Slide 8: Tree Method (More Subproblems)
	Slide 9: Tree Method
	Slide 10: Work Stays Constant
	Slide 11: Work Decreases
	Slide 12: Work Increases
	Slide 13: Summary
	Slide 14: Solving Divide and Conquer Recurrences
	Slide 15: Beware! It doesn’t always apply!
	Slide 16: Integer Multiplication
	Slide 17: Divide and Conquer method
	Slide 18: Divide and Conquer (Integer Multiplication)
	Slide 19: Divide and Conquer (Integer Multiplication)
	Slide 20: Integer Multiplication Recurrence Solution
	Slide 21: Karatsuba Method
	Slide 22: Divide and Conquer (Karatsuba Method)
	Slide 23: Karatsuba Method Recurrence Solution
	Slide 24: Matrix Multiplication
	Slide 25: Multiplying Matrices
	Slide 26: We can see subproblems!
	Slide 27: Matrix Multiplication D&C
	Slide 28: Divide and Conquer Matrix Multiplication
	Slide 29: Karatsuba Method Recurrence Solution
	Slide 30: How to Improve?
	Slide 31: Strassen’s Algorithm
	Slide 32: Divide and Conquer Matrix Multiplication
	Slide 33: Karatsuba Method Recurrence Solution
	Slide 34: Strassen’s Algorithm
	Slide 35: Is this the fastest?

