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Divide and Conquer (Trominoes)
• Base Case: 

• For a 2 × 2 board, the empty cells will be exactly a tromino

• Divide: 
• Break of the board into quadrants of size 2𝑛−1 × 2𝑛−1 each

• Put a tromino at the intersection such that all quadrants have one 
occupied cell

• Conquer:
• Cover each quadrant

• Combine:
• Reconnect quadrants
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Divide and Conquer (Merge Sort)
• Base Case: 

• If the list is of length 1 or 0, it’s already sorted, so just return it

• (Alternative: when length is ≤ 15, use insertion sort)

• Divide: 
• Split the list into two “sublists” of (roughly) equal length

• Conquer:
• Sort both lists recursively

• Combine:
• Merge sorted sublists into one sorted list
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5 8 2 9 4 1

2 5 8 1 4 9

1 2 4 5 8 9

2 5 8 1 4 9



Divide and Conquer (Running Time)
• Base Case: 

• When the problem size is small (≤ 𝑐), solve non-recursively

• Divide: 
• When problem size is large, identify 1 or more smaller 

versions of exactly the same problem

• Conquer:
• Recursively solve each smaller subproblem

• Combine:
• Use the subproblems’ solutions to solve to the original
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𝑇 𝑐 = 𝑘

𝑎 = number of 
        subproblems
𝑛

𝑏
=size of each

 subproblem
𝑓𝑑 𝑛 = time to divide

𝑎 ⋅ 𝑇
𝑛

𝑏

𝑓𝑐 𝑛 =time to combine

Overall: 𝑻 𝒏 = 𝒂𝑻
𝒏

𝒃
+ 𝒇 𝒏  where 𝒇 𝒏 = 𝒇𝒅 𝒏 + 𝒇𝒄(𝒏)



Divide and Conquer (Running Time)
• Base Case: 

• When the problem size is small (≤ 𝑐), solve non-recursively

• Divide: 
• When problem size is large, identify 1 or more smaller 

versions of exactly the same problem

• Conquer:
• Recursively solve each smaller subproblem
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• Use the subproblems’ solutions to solve to the original
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𝑇 𝑐 = 𝑘

𝑎 = number of 
        subproblems
𝑛

𝑏
=size of each

 subproblem
𝑓𝑑 𝑛 = time to divide

𝑎 ⋅ 𝑇
𝑛

𝑏

𝑓𝑐 𝑛 =time to combine

Overall: 𝑻 𝒏 = 𝒂𝑻
𝒏

𝒃
+ 𝚯 𝒏𝒌      where 𝒇𝒅 𝒏 + 𝒇𝒄 𝒏 ∈ 𝚯 𝒏𝒌
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 𝑛 comparisons / level

log2 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇
𝑛

2
 + 𝑛

𝑇 𝑛 = ෍

𝑖=0

log2 𝑛

𝑛 = Θ 𝑛 log 𝑛

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛

𝑛

2

𝑛

2

𝑛

4

𝑛

4

𝑛

4

𝑛

4

1 1 1 1 1 1

Red box represents a 
problem instance

Blue value represents 
time spent at that level of 

recursion

Tree Method (Merge Sort)
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 2i 𝑛2

22𝑖 =
𝑛2

2𝑖  work for 

level 𝑖

log2 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = 2𝑇
𝑛

2
 + 𝑛2

𝑇 𝑛 = ෍

𝑖=0

log2 𝑛
𝑛2

2𝑖
= Θ 𝑛2

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛2

𝑛2

22

𝑛2

22

𝑛2

42

𝑛2

42

𝑛2

42

𝑛2

42

1 1 1 1 1 1

Red box represents a 
problem instance

Blue value represents 
time spent at that level of 

recursion

Tree Method (Slow CPP from last time)
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 3i 𝑛

2𝑖 work for level 𝑖𝑛

𝑇 𝑛 = 3𝑇
𝑛

2
 + 𝑛

𝑇 𝑛 = ෍

𝑖=0

log2 𝑛

𝑛
3

2

𝑖

= Θ 𝑛log2 3 ≈ Θ 𝑛1.585

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛

𝑛

2

𝑛

2

𝑛

4

𝑛

4

𝑛

4

𝑛

4

1 1 1 1 1 1

Red box represents a 
problem instance

Blue value represents 
time spent at that level of 

recursion

Tree Method (More Subproblems)

Τ𝑛 2

Τ𝑛 4 Τ𝑛 4
… …

1 1 1 …

𝑛

2

𝑛

4

𝑛

4

1 1 1



Tree Method

 𝑎𝑖 𝑛𝑘

𝑏𝑖𝑘 work for level 𝑖

≈ log𝑏 𝑛 levels
of recursion

𝑛

𝑇 𝑛 = ෍

𝑖=0

logb 𝑛

𝑛𝑘
𝑎

𝑏𝑘

𝑖

Τ𝑛 𝑏 Τ𝑛 𝑏

Τ𝑛 𝑏2 Τ𝑛 𝑏2 Τ𝑛 𝑏2 Τ𝑛 𝑏2

… … … …

𝑥 𝑥 𝑥 … 𝑥 𝑥 𝑥

𝑛𝑘

𝑛𝑘

𝑏𝑘

𝑛𝑘

𝑏𝑘

𝑐 𝑐 c 𝑐 𝑐 𝑐

Red box represents a 
problem instance

Blue value represents 
time spent at that level of 

recursion
Τ𝑛 𝑏 Τ𝑛 𝑏

… 𝑎 children

… …

𝑛𝑘

𝑏2𝑘

𝑛𝑘

𝑏2𝑘

𝑛𝑘

𝑏2𝑘

𝑛𝑘

𝑏2𝑘

𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
 + 𝑛𝑘
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𝑇 𝑛 = 2𝑇
𝑛

2
 + 𝑛

𝑎

𝑏𝑘
=

2

21
= 1

𝑇 𝑛 = ෍

𝑖=0

log2 𝑛

𝑛 1 𝑖 = Θ 𝑛 log 𝑛

𝑛

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …
1 1 1 … 1 1 1

𝑛

𝑛

2

𝑛

2

𝑛

4

𝑛

4

𝑛

4

𝑛

4

1 1 1 1 1 1

Work Stays Constant

𝑛

𝑛

𝑛

𝑛

Total work is the 
work for any level, 
times the height
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𝑇 𝑛 = 2𝑇
𝑛

2
 + 𝑛2

𝑎

𝑏𝑘
=

2

22
=

1

2

𝑇 𝑛 = ෍

𝑖=0

log2 𝑛

𝑛2
1

2

𝑖

= Θ 𝑛2

Work Decreases

𝑛2

𝑛2
1

2

𝑛2
1

2

2

Total work is 
asymptotically 

dominated by the 
root

𝑛

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …
1 1 1 … 1 1 1

𝑛2

𝑛2

22

𝑛2

22

𝑛2

42

𝑛2

42

𝑛2

42

𝑛2

42

1 1 1 1 1 1
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𝑇 𝑛 = 3𝑇
𝑛

2
 + 𝑛

𝑎

𝑏𝑘
=

2

22
=

1

2

𝑇 𝑛 = ෍

𝑖=0

log2 𝑛

𝑛2
1

2

𝑖

= Θ 𝑛2

Work Increases

𝑛

𝑛
3

2

𝑛
3

2

2

𝑎log𝑏 𝑛

Total work is 
asymptotically 
dominated by 

the leaves

𝑛

Τ𝑛 2 Τ𝑛 2

Τ𝑛 4 Τ𝑛 4 Τ𝑛 4 Τ𝑛 4

… … … …

1 1 1 … 1 1 1

𝑛

𝑛

2

𝑛

2

𝑛

4

𝑛

4

𝑛

4

𝑛

4

1 1 1 1 1 1

Τ𝑛 2

Τ𝑛 4 Τ𝑛 4

… …

1 1 1 …

𝑛

2

𝑛

4

𝑛

4

1 1 1



Summary

When solving a recurrence of the form

𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
 + 𝑛𝑘

The tree method will produce the series

𝑇 𝑛 = ෍

𝑖=0

logb 𝑛

𝑛𝑘
𝑎

𝑏𝑘

𝑖

An asymptotic bound on 𝑇 𝑛  then only 

depends on the value of 
𝑎

𝑏𝑘

𝑛𝑘

𝑛𝑘

𝑛𝑘

𝑛𝑘

𝑛𝑘
𝑎

𝑏

0

𝑛𝑘
𝑎

𝑏

1

𝑛𝑘
𝑎

𝑏

2

1

𝑛𝑘

𝑛𝑘
𝑎

𝑏

1

𝑛𝑘
𝑎

𝑏

2

𝑎log𝑏 𝑛 = 𝑛log𝑏 𝑎

𝑎

𝑏𝑘
= 1

𝑎

𝑏𝑘
< 1

𝑎

𝑏𝑘
> 1

Θ(𝑛𝑘 log 𝑛) Θ(𝑛𝑘) Θ(𝑛log𝑏 𝑎)
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Solving Divide and Conquer Recurrences
Master Theorem: Suppose that 𝑻 𝒏 = 𝒂𝑻(𝒏/𝒃) + 𝑂(𝒏𝒌) for 𝒏 > 𝒃.

• If 𝒂 < 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌)

• Cost is dominated by work at top level of recursion

• If 𝒂 = 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌 log 𝒏)

• Total cost is the same for all log𝒃 𝒏 levels of recursion

• If 𝒂 > 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏log𝒃 𝒂)

• Note that log𝒃 𝒂 > 𝒌 in this case

• Cost is dominated by total work at lowest level of recursion 

Binary search: 𝒂 = 𝟏, 𝒃 = 𝟐, 𝒌 = 𝟎 so 𝒂 = 𝒃𝒌: Solution:  𝑂 𝒏𝟎log 𝒏 = 𝑂(log 𝒏)

Mergesort: 𝒂 = 𝟐, 𝒃 = 𝟐, 𝒌 = 𝟏 so 𝒂 = 𝒃𝒌: Solution:  𝑂(𝒏𝟏log 𝒏) = 𝑂(𝒏 log 𝒏)
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Beware! It doesn’t always apply!
Master Theorem: Suppose that 𝑻 𝒏 = 𝒂𝑻(𝒏/𝒃) + 𝑂(𝒏𝒌) for 𝒏 > 𝒃.

• If 𝒂 < 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌)

• Cost is dominated by work at top level of recursion

• If 𝒂 = 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌 log 𝒏)

• Total cost is the same for all log𝒃 𝒏 levels of recursion

• If 𝒂 > 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏log𝒃 𝒂)

• Note that log𝒃 𝒂 > 𝒌 in this case

• Cost is dominated by total work at lowest level of recursion 

𝑇 𝑛 = 4𝑇
𝑛

2
+ 𝑛2 log 𝑛

𝒂 = 𝟒, 𝒃 = 𝟐, 𝒌 =? ? ?



Integer Multiplication
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695273

× 123412
--------------------------------------------

1390546

695273  

2781092    

2085819      

1390546        

695273          
--------------------------------------------------

85805031476

110110

× 101110
--------------------------------------------

000000

110110  

110110    

110110      

000000        

110110          
--------------------------------------------------

100110110100

Decimal Binary

Elementary school algorithm

𝑂(𝒏𝟐) time for 𝒏-bit integers



(                                       )

(   )

110110

× 101110

Divide and Conquer method
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𝑥1 𝑥2

𝑦1 𝑦2

𝑥1 𝑥2+= 2
𝑛
2

𝑦1 𝑦2+= 2
𝑛
2

(                  )

𝑥1 𝑦1×2𝑛

𝑥1 𝑦22
𝑛
2 × 𝑥2 𝑦1×+

𝑥2 𝑦2×

+

+



Divide and Conquer (Integer Multiplication)
• Base Case: 

• If there is only 1 place value, just multiply them

• Divide: 
• Break the operands into 4 values:

• 𝑥1 is the most significant 
𝑛

2
 digits of 𝑥

• 𝑥2 is the least significant 
𝑛

2
 digits of 𝑥

• 𝑦1 is the most significant 
𝑛

2
 digits of 𝑦

• 𝑦2 is the most significant 
𝑛

2
 digits of 𝑦 

• Conquer:
• Compute each of 𝑥1𝑦1, 𝑥1𝑦2, 𝑥2𝑦1, and 𝑥2𝑦2

• Combine:

• Return 2𝑛 𝑥1𝑦1 + 2
𝑛

2 𝑥1𝑦2 + 𝑥2𝑦1 + 𝑥2𝑦2
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𝑥1 𝑥2

𝑦1 𝑦2×

𝑥1𝑦1 𝑥1𝑦2 𝑥2𝑦1 𝑥2𝑦2

𝑥1𝑦1

𝑥1𝑦2

𝑥2𝑦1

𝑥2𝑦2

+

+

+



Divide and Conquer (Integer Multiplication)
• Base Case: 

• If there is only 1 place value, just multiply them

• Divide: 
• Break the operands into 4 values:

• 𝑥1 is the most significant 
𝑛

2
 digits of 𝑥

• 𝑥2 is the least significant 
𝑛

2
 digits of 𝑥

• 𝑦1 is the most significant 
𝑛

2
 digits of 𝑦

• 𝑦2 is the most significant 
𝑛

2
 digits of 𝑦 

• Conquer:
• Compute each of 𝑥1𝑦1, 𝑥1𝑦2, 𝑥2𝑦1, and 𝑥2𝑦2

• Combine:

• Return 2𝑛 𝑥1𝑦1 + 2
𝑛

2 𝑥1𝑦2 + 𝑥2𝑦1 + 𝑥2𝑦2

19

𝑥1 𝑥2

𝑦1 𝑦2×

𝑥1𝑦1 𝑥1𝑦2 𝑥2𝑦1 𝑥2𝑦2

𝑥1𝑦1

𝑥1𝑦2

𝑥2𝑦1

𝑥2𝑦2

+

+

+
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Integer Multiplication Recurrence Solution
Master Theorem: Suppose that 𝑻 𝒏 = 𝒂𝑻(𝒏/𝒃) + 𝑂(𝒏𝒌) for 𝒏 > 𝒃.

• If 𝒂 < 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌)

• Cost is dominated by work at top level of recursion

• If 𝒂 = 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌 log 𝒏)

• Total cost is the same for all log𝒃 𝒏 levels of recursion

• If 𝒂 > 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏log𝒃 𝒂)

• Note that log𝒃 𝒂 > 𝒌 in this case

• Cost is dominated by total work at lowest level of recursion 

𝑇 𝑛 = 4𝑇
𝑛

2
+ 𝑛

𝒂 = 𝟒, 𝒃 = 𝟐, 𝒌 = 𝟏, so 𝒂 > 𝒃𝒌: Solution:  𝑂(𝒏𝒍𝒐𝒈𝒃𝒂) = 𝑂(𝒏𝟐)



Karatsuba Method
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2𝑛 𝑥1𝑦1 + 2
𝑛
2 𝑥1𝑦2 + 𝑥2𝑦1 + 𝑥2𝑦2

Can’t avoid these

Can we do this with 
one multiplication?

𝑥1 + 𝑥2 𝑦1 + 𝑦2 =

𝑥1𝑦1 + 𝑥1𝑦2 + 𝑥2𝑦1 + 𝑥2𝑦2

𝑥1𝑦2 + 𝑥2𝑦1 = 𝑥1 + 𝑥2 𝑦1 + 𝑦2 − 𝑥1𝑦1 − 𝑥2𝑦2

One multiplication
Two 
multiplications



Divide and Conquer (Karatsuba Method)
• Base Case: 

• If there is only 1 place value, just multiply them

• Divide: 
• Break the operands into 4 values:

• 𝑥1 is the most significant 
𝑛

2
 digits of 𝑥

• 𝑥2 is the least significant 
𝑛

2
 digits of 𝑥

• 𝑦1 is the most significant 
𝑛

2
 digits of 𝑦

• 𝑦2 is the most significant 
𝑛

2
 digits of 𝑦 

• Conquer:
• Compute each of 𝑥1𝑦1, 𝑥1 + 𝑥2 𝑦1 + 𝑦2 , and 𝑥2𝑦2

• Combine:
• Return 

2𝑛 𝑥1𝑦1 + 2
𝑛
2 𝑥1 + 𝑥2 𝑦1 + 𝑦2 − 𝑥1𝑦1 − 𝑥2𝑦2 + 𝑥2𝑦2

22

𝑥1 𝑥2

𝑦1 𝑦2×

𝑥1𝑦1 𝑥1𝑦2
𝑥1 + 𝑥2

𝑦1 + 𝑦2
𝑥2𝑦2

𝑥1𝑦1

𝑥1𝑦1

𝑥2𝑦2

−

+

+

𝑥2𝑦2−

𝑥1 + 𝑥2

𝑦1 + 𝑦2
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Karatsuba Method Recurrence Solution
Master Theorem: Suppose that 𝑻 𝒏 = 𝒂𝑻(𝒏/𝒃) + 𝑂(𝒏𝒌) for 𝒏 > 𝒃.

• If 𝒂 < 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌)

• Cost is dominated by work at top level of recursion

• If 𝒂 = 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌 log 𝒏)

• Total cost is the same for all log𝒃 𝒏 levels of recursion

• If 𝒂 > 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏log𝒃 𝒂)

• Note that log𝒃 𝒂 > 𝒌 in this case

• Cost is dominated by total work at lowest level of recursion 

𝑇 𝑛 = 3𝑇
𝑛

2
+ 𝑛

𝒂 = 𝟑, 𝒃 = 𝟐, 𝒌 = 𝟏, so 𝒂 > 𝒃𝒌: Solution:  𝑂(𝒏𝒍𝒐𝒈𝒃𝒂) = 𝑂 𝒏𝒍𝒐𝒈𝟐𝟑 = 𝑂 𝑛1.585



Matrix Multiplication

24

1 2 3
4 5 6
7 8 9

×
2 4 6
8 10 12

14 16 18

=
60 72 84

132 162 192
204 252 300

=
1 ⋅ 2 + 2 ⋅ 8 + 3 ⋅ 16 1 ⋅ 4 + 2 ⋅ 10 + 3 ⋅ 16 1 ⋅ 6 + 2 ⋅ 12 + 3 ⋅ 18

⋅ ⋅ ⋅
⋅ ⋅ ⋅

Run time? 𝑂(𝑛3)

𝑛

𝑛
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Multiplying Matrices

for 𝒊  𝟏 to 𝒏

   for 𝒋  𝟏 to 𝒏

     𝑪[𝒊, 𝒋]  𝟎

    for 𝒌  𝟏 to 𝒏

   𝑪[𝒊, 𝒋]  𝑪[𝒊, 𝒋] + 𝑨[𝒊, 𝒌]𝑩[𝒌, 𝒋]

    endfor

   endfor

endfor

Can we improve this with divide and conquer?



We can see subproblems!

26

𝐴 =

𝑎11 𝑎12 𝑎13 𝑎14

𝑎21 𝑎22 𝑎23 𝑎24

𝑎31 𝑎32 𝑎33  𝑎34

𝑎41 𝑎42 𝑎43 𝑎44

𝐵 =

𝑏11 𝑏12 𝑏13 𝑏14

𝑏21 𝑏22 𝑏23 𝑏24

𝑏31 𝑏32 𝑏33  𝑏34

𝑏41 𝑏42 𝑏43 𝑏44

𝐴 × 𝐵 =

𝑎11𝑏11 + 𝑎12𝑏21 + 𝑎13𝑏31 + 𝑎14𝑏41 𝑎11𝑏12 + 𝑎12𝑏22 + 𝑎13𝑏32 + 𝑎14𝑏42 ⋅ ⋅
𝑎21𝑏11 + 𝑎22𝑏21 + 𝑎23𝑏31 + 𝑎24𝑏41 𝑎21𝑏12 + 𝑎22𝑏22 + 𝑎23𝑏32 + 𝑎24𝑏42 ⋅ ⋅
𝑎31𝑏11 + 𝑎32𝑏21 + 𝑎33𝑏31 + 𝑎34𝑏41 𝑎31𝑏12 + 𝑎32𝑏22 + 𝑎33𝑏32 + 𝑎34𝑏42 ⋅ ⋅
𝑎41𝑏11 + 𝑎42𝑏21 + 𝑎43𝑏31 + 𝑎44𝑏41 𝑎41𝑏12 + 𝑎42𝑏22 + 𝑎43𝑏32 + 𝑎44𝑏42 ⋅ ⋅

𝐴11 𝐵11

𝐴11 × 𝐵11
𝐴11 × 𝐵11



Matrix Multiplication D&C
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Multiply 𝑛 × 𝑛 matrices (𝐴 and 𝐵) 

𝐴 × 𝐵 =
𝐴11 × 𝐵11 + 𝐴12 × 𝐵21 𝐴11 × 𝐵12 + 𝐴12 × 𝐵22

𝐴21 × 𝐵11 + 𝐴22 × 𝐵21 𝐴21 × 𝐵12 + 𝐴22 × 𝐵22

𝐴 =

𝑎11 𝑎12 𝑎13 𝑎14

𝑎21 𝑎22 𝑎23 𝑎24

𝑎31 𝑎32 𝑎33  𝑎34

𝑎41 𝑎42 𝑎43 𝑎44

𝐵 =

𝑏11 𝑏12 𝑏13 𝑏14

𝑏21 𝑏22 𝑏23 𝑏24

𝑏31 𝑏32 𝑏33  𝑏34

𝑏41 𝑏42 𝑏43 𝑏44

𝐵11 𝐵12

𝐵21 𝐵22

𝐴11 𝐴12

𝐴21 𝐴22



Divide and Conquer Matrix Multiplication
• Base Case: 

• For a 1 × 1 matrices, return the product in a 1 × 1 
matrix  

• Divide: 
• Use each quadrant of the input 𝑛 × 𝑛 matrices as it’s 

own 
𝑛

2
×

𝑛

2
matrix

• Conquer:
• Compute each of:

• Combine:
• Compute the value of each quadrant by summing 

𝑃1 … 𝑃8 as shown 
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𝐴11 𝐴12

𝐴21 𝐴22

𝐵11 𝐵12

𝐵21 𝐵22

𝑃1 = 𝐴11 × 𝐵11

𝑃2 = 𝐴12 × 𝐵21

𝑃3 = 𝐴11 × 𝐵12

𝑃4 = 𝐴12 × 𝐵22

𝑃5 = 𝐴21 × 𝐵11

𝑃6 = 𝐴22 × 𝐵21

𝑃7 = 𝐴21 × 𝐵12

𝑃8 = 𝐴22 × 𝐵22

𝑃1 𝑃2 𝑃3 𝑃4

𝑃5 𝑃6 𝑃7 𝑃8

𝑃1 + 𝑃2 𝑃3 + 𝑃4

𝑃5 + 𝑃6 𝑃7 + 𝑃8
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Karatsuba Method Recurrence Solution
Master Theorem: Suppose that 𝑻 𝒏 = 𝒂𝑻(𝒏/𝒃) + 𝑂(𝒏𝒌) for 𝒏 > 𝒃.

• If 𝒂 < 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌)

• Cost is dominated by work at top level of recursion

• If 𝒂 = 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌 log 𝒏)

• Total cost is the same for all log𝒃 𝒏 levels of recursion

• If 𝒂 > 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏log𝒃 𝒂)

• Note that log𝒃 𝒂 > 𝒌 in this case

• Cost is dominated by total work at lowest level of recursion 

𝑇 𝑛 = 8𝑇
𝑛

2
+ 𝑛2

𝒂 = 𝟖, 𝒃 = 𝟐, 𝒌 = 𝟐, so 𝒂 > 𝒃𝒌: Solution:  𝑂(𝒏𝒍𝒐𝒈𝒃𝒂) = 𝑂 𝒏𝒍𝒐𝒈𝟐𝟖 = 𝑂 𝑛3



How to Improve?
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Multiply 𝑛 × 𝑛 matrices (𝐴 and 𝐵) 

𝐴 × 𝐵 =
𝐴11 × 𝐵11 + 𝐴12 × 𝐵21 𝐴11 × 𝐵12 + 𝐴12 × 𝐵22

𝐴21 × 𝐵11 + 𝐴22 × 𝐵21 𝐴21 × 𝐵12 + 𝐴22 × 𝐵22

𝐴 =

𝑎11 𝑎12 𝑎13 𝑎14

𝑎21 𝑎22 𝑎23 𝑎24

𝑎31 𝑎32 𝑎33  𝑎34

𝑎41 𝑎42 𝑎43 𝑎44

𝐵 =

𝑏11 𝑏12 𝑏13 𝑏14

𝑏21 𝑏22 𝑏23 𝑏24

𝑏31 𝑏32 𝑏33  𝑏34

𝑏41 𝑏42 𝑏43 𝑏44

𝐵11 𝐵12

𝐵21 𝐵22

𝐴11 𝐴12

𝐴21 𝐴22

Idea: Use an idea like Karatsuba! Can we derive 
these products using addition/subtraction?



Strassen’s Algorithm
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Calculate:
𝑄1 = 𝐴11 + 𝐴22 × (𝐵11 + 𝐵22)

𝑄2 = 𝐴21 + 𝐴22 × 𝐵11

𝑄3 = 𝐴11 × (𝐵12  − 𝐵22)

𝑄4 = 𝐴22 × (𝐵21 − 𝐵11)

𝑄6 = 𝐴21 − 𝐴11 × (𝐵11 + 𝐵12)

𝑄5 = 𝐴11 + 𝐴12 × 𝐵22

𝑄7 = 𝐴12 − 𝐴22 × (𝐵21 + 𝐵22)

𝐴1,1𝐵1,1 + 𝐴1,2𝐵2,1 𝐴1,1𝐵1,2 + 𝐴1,2𝐵2,2

𝐴2,1𝐵1,1 + 𝐴2,2𝐵2,1 𝐴2,1𝐵1,2 + 𝐴2,2𝐵2,2
=

𝑄1 + 𝑄4 − 𝑄5 + 𝑄7 𝑄3 + 𝑄5

𝑄2 + 𝑄4 𝑄1 − 𝑄2 + 𝑄3 + 𝑄6

Find 𝐴 × 𝐵:

𝐴 =

𝑎11 𝑎12 𝑎13 𝑎14

𝑎21 𝑎22 𝑎23 𝑎24

𝑎31 𝑎32 𝑎33  𝑎34

𝑎41 𝑎42 𝑎43 𝑎44

𝐵 =

𝑏11 𝑏12 𝑏13 𝑏14

𝑏21 𝑏22 𝑏23 𝑏24

𝑏31 𝑏32 𝑏33  𝑏34

𝑏41 𝑏42 𝑏43 𝑏44

𝐵11 𝐵12

𝐵21 𝐵22

𝐴11 𝐴12

𝐴21 𝐴22



Divide and Conquer Matrix Multiplication
• Base Case: 

• For a 32 × 32 matrices, use the textbook algorithm

• Divide: 
• Use each quadrant of the input 𝑛 × 𝑛 matrices as it’s 

own 
𝑛

2
×

𝑛

2
matrix

• Conquer:
• Compute each of:

• Combine:
• Compute the value of each quadrant by summing 

𝑄1 … 𝑄8 as shown 
32

𝐴11 𝐴12

𝐴21 𝐴22

𝐵11 𝐵12

𝐵21 𝐵22

𝑄1 = 𝐴11 + 𝐴22 × (𝐵11 + 𝐵22) 
𝑄2 = 𝐴21 + 𝐴22 × 𝐵11 
𝑄3 = 𝐴11 × (𝐵12  − 𝐵22) 
𝑄4 = 𝐴22 × (𝐵21 − 𝐵11) 
𝑄5 = 𝐴11 + 𝐴12 × 𝐵22 
𝑄6 = 𝐴21 − 𝐴11 × (𝐵11 + 𝐵12) 
𝑄7 = 𝐴12 − 𝐴22 × (𝐵21 + 𝐵22) 

𝑄1 𝑄2 𝑄3 𝑄4

𝑄5 𝑄6 𝑄7

𝑄1 + 𝑄4 − 𝑄5 + 𝑄7 𝑄3 + 𝑄5

𝑄2 + 𝑄4 𝑄1 − 𝑄2 + 𝑄3 + 𝑄6
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Karatsuba Method Recurrence Solution
Master Theorem: Suppose that 𝑻 𝒏 = 𝒂𝑻(𝒏/𝒃) + 𝑂(𝒏𝒌) for 𝒏 > 𝒃.

• If 𝒂 < 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌)

• Cost is dominated by work at top level of recursion

• If 𝒂 = 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏𝒌 log 𝒏)

• Total cost is the same for all log𝒃 𝒏 levels of recursion

• If 𝒂 > 𝒃𝒌 then 𝑻(𝒏) is 𝑂(𝒏log𝒃 𝒂)

• Note that log𝒃 𝒂 > 𝒌 in this case

• Cost is dominated by total work at lowest level of recursion 

𝑇 𝑛 = 7𝑇
𝑛

2
+ 𝑛2

𝒂 = 𝟕, 𝒃 = 𝟐, 𝒌 = 𝟐, so 𝒂 > 𝒃𝒌: Solution:  𝑂(𝒏𝒍𝒐𝒈𝒃𝒂) = 𝑂 𝒏𝒍𝒐𝒈𝟐𝟕 = 𝑂 𝑛2.807
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𝑛3

𝑛log2 7

Strassen’s Algorithm



Is this the fastest?
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Every few years someone 
comes up with an 
asymptotically faster algorithm

Current best is 𝑂 𝑛2.3728596 , 
but it requires input sizes in the 
millions to actually be faster

We know there is no algorithm 
with running time 𝑜 𝑛2

The best possible running time 
is unknown!
(and weirdly, may not exist!)
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