
Section 10: Solutions

1. Short answer

These sample questions relate only to material after the midterm, but the real exam will be cumulative.

(a) (KT 7.2) The figure below depicts an instance of maximum flow with the original graph and capacities. The
values in the squares denote the amount of flow currently being sent through each edge. Edges with no square
currently have no flow being pushed through them.

The flow depicted is a maximum flow.

The flow depicted is not a maximum flow.

Briefly justify your answer.

Solution:

Not a maximum flow. 2 more units of flow can be pushed using the augmenting path s, a, c, b, d, t.

(b) (KT 8.1) Recall the Interval Scheduling problem: Given a collection of intervals and an integer k, determine if
the collection contains at least k nonoverlapping intervals.

(i) Does Interval Scheduling ≤p Vertex Cover?

Yes

No

Unknown, because the answer would resolve P vs. NP

Briefly justify your answer.

Solution:

Yes. Many possible reasons:

• Vertex Cover is NP-complete, in particular NP-hard, and Interval Scheduling is clearly in NP (the
certificate is the list of k nonoverlapping intervals). A ≤p B whenever B is NP-hard and A is in
NP.

• Interval Scheduling is in P, as we solved it with a greedy algorithm earlier in this class. A ≤p B
is always true when A is in P.

• We can directly show that Interval Scheduling ≤p Independent Set (draw an edge between two

1

intervals if they overlap), and we showed that Independent Set ≤p Vertex Cover in lecture.

(ii) Does Independent Set ≤p Interval Scheduling?

Yes

No

Unknown, because the answer would resolve P vs. NP

Briefly justify your answer.

Solution:

Unknown. Because Independent Set is NP-complete and Interval Scheduling is in P, Independent
Set ≤p Interval Scheduling would imply that an NP-complete problem is solvable in polynomial time,
which is unknown.

(c) Recall the Set Cover problem: Given a collection of sets containing objects, determine the minimum number
of sets needed to cover all objects. A greedy attempt for Set Cover is:
1: while there exists an uncovered object do
2: choose a set that covers the most number of still-uncovered objects

Suppose you are given an instance of Set Cover in which every set contains exactly 2 elements. Then this
algorithm returns a set cover that is at most a factor 2 larger than the minimum set cover.

True

False

Briefly justify your answer.

Solution:

True. If there are n objects, the algorithm returns at most n sets because every set chosen contains at least
1 new object (or really, n− 1 because the first set chosen contains 2 new objects). Since every object must
be covered, and every set contains only 2 elements, we require at least n/2 sets. Thus the approximation
ratio is 2.

2

2. Dynamic programming

A version of this problem appeared on the Section 5 handout.

Given two strings, s = s1 . . . sm with lengthm and t = t1 . . . tn with length n, find the length of their longest common
subsequence. (A subsequence may not be contiguous. That is, one finds a subsequence by taking any subset of the
indices, and putting together the letters at those indices in their original order.)

Here are a few examples:

• Input: s = backs, t = arches
Solution: The longest common subsequence is acs, so the output should be 3.

• Input: s = skaters, t = hated
Solution: The longest common subsequence is ate, so the output should be 3.

This problem can be solved with dynamic programming. Give a recurrence, including the base cases, that would be
the basis for a dynamic programming algorithm. You should state in what order you will evaluate the subproblems,
and briefly explain why your recurrence is correct.

Solution:

Let OPT(i, j) be the longest common subsequence between elements 1 . . i in s and 1 . . j in t. The parameter i
ranges from 0 tom, and the parameter j ranges from 0 to n (so we have our base cases in our memoization table
for ease of calculation).

The key idea is that we can always choose to pair si and tj if they are equal. To explain this, consider any optimal
solution.

• If si and tj were both unpaired, that solution would not be optimal because we could just pair them.

• If si is unpaired and tj is paired with sk, where k < i, another common subsequence with the same length
would be to leave sk unpaired and pair si with tj , which is what we do.

• If tj is unpaired but si is paired, the case is similar.

Thus we pair si and tj if they are equal, resulting in the recurrence (for i, j ≥ 1):

OPT(i, j) =

{
1 + OPT(i− 1, j − 1) if si = tj

max(OPT(i− 1, j),OPT(i, j − 1)) if si 6= tj

The base cases are OPT(i, 0) = OPT(0, j) = 0 for all i and j.

To evaluate, first do all the base cases, then either an outer loop for i and inner loop for j, or vice versa.

3

3. Network flows

A group of traders are leaving Switzerland, and need to convert their cash in Francs (the local currency) into various
international currencies. Meanwhile, the central bank is updating the security of its cash bills, and needs to collect
as much cash in Francs as possible in order to efficiently retire the old bills.

There are n traders and m currencies. Trader i has Ti Francs to convert. The bank has Cj of currency j, and the
exchange rate is Rj of currency j for every 1 Franc. Trader i is traveling to multiple countries and is willing to trade
anywhere from Lij to Hij of their Francs for currency j. For example, a trader with 1000 Francs might be willing
to convert between 300 and 700 of their Francs for US dollars, between 200 and 500 of their Francs for Euros, and
exactly 0 Francs for Japanese yen. It would be valid to have them trade 400 Francs for US dollars and 400 Francs
for Euros. Assume that

∑
j Lij ≤ Ti.

All traders give their requests to the bank at the same time, and the bank is deciding how to fulfill them. Describe
an efficient algorithm that determines whether or not the bank can satisfy all requests, and if so, a method of
satisfying the requests to maximize the amount of Francs it collects. Briefly explain all the choices made in your
algorithm.

Solution:

First, attempt to give every trader their minimum requests Lij by checking whether or not Cj/Rj ≥
∑

i Lij for
all j (if the bank has at least as much of currency j, after exchange rate, as the total amount demanded). If not
possible, return “not possible”.

Then, set up a flow network with a source s, sink t, a row of vertices t1, ..., tn represents the traders, and a row
of vertices b1, ..., bm represents the currency held by the bank. Assign capacities to edges as follows:

• (s, ti) has capacity Ti −
∑

j Lij , the total amount trader i still wants to change after giving their minimum
request.

• (ti, bj) has capacity Hij −Lij , the maximum number of Francs trader i still wants to trade into currency j
after giving their minimum request.

• (bj , t) has capacity Cj/Rj−
∑

i Lij , the number of Franc equivalents the bank has of currency j after giving
away all minimum requests.

The maximum flow in this graph, plus the amount given by satisfying the minimum requests, is the maximum
number of Francs the bank can receive.

4

4. Linear programming

A version of this problem appeared on the Section 8 handout.

You are a politician running for local office, and you want to appeal to a wide voter base. There are k groups of
voters, let mi be the number of voters in the ith group, and you want at least half of each group to vote for you.
Without any campaigning, ai voters from group i will vote for you (0 ≤ ai ≤ mi).

Your campaign staff have determined that there are n issues that voters care about, and they will react differently
depending on their group. In particular, for every $1000 you spend on advertising for issue j, dij is the number of
additional voters in group i who will now vote for you. (If dij is negative, it means you lost voters in group i.)

Write a linear program in standard form to determine the minimum advertising cost so that at least half of each
group votes for you, if possible at all. Briefly explain all choices made in your program.

Solution:

Let xj be the amount of money in thousands spent on advertising issue j. The linear program (not in standard
form) is to:

minimize x1 + · · ·+ xn

subject to d11x1 + · · ·+ d1nxn + a1 ≥ m1

2
...

dk1x1 + · · ·+ dknxn + ak ≥ mk

2
x ≥ 0

This expresses that we want to minimize spending, and ensure that every group has at least ni/2 voters voting
for you, after starting with ai support and gaining dijxj support for spending xj money on issue j.

Converting to standard form, we get

maximize − x1 − · · · − xn

subject to − d11x1 − · · · − d1nxn ≤ a1 −
m1

2
...

−dk1x1 − · · · − dknxn ≤ ak − mk

2
x ≥ 0

5

5. Reduction

Consider the following problems:

HamiltonianPath
Input: A directed graph G
Output: Determine if there is a Hamiltonian path in G (a path that visits each vertex exactly once).

HamiltonianCycle
Input: A directed graph G
Output: Determine if there is a Hamiltonian cycle in G (a cycle that visits each vertex exactly once).

Suppose that HamiltonianPath is NP-hard. Use that fact to show HamiltonianCycle is NP-hard.

Solution:

We will show that HamiltonianPath ≤P HamiltonianCycle, that is, we will convert an instance of Hamilto-
nianPath into an equivalent instance of HamiltonianCycle (so that it could be solved with a library function
for HamiltonianCycle).

Algorithm:
Let G be an input for the HamiltonianPath problem. Create the graph H, an instance for the Hamiltonian-
Cycle problem, as follows: Starting from G, add a completely new vertex u. For every vertex v in G, add the
edges (v, u) and (u, v).

Correctness:
We will convert certificates between the two instances (the actual Hamiltonian path or cycle).

Suppose that G has a Hamiltonian path v1, v2, . . . , vn. Then in H, note that v1, v2, . . . , vn, u, v1 is a cycle that
visits every vertex in H (since we copied H and then added, among other edges, the edges (vn, u) and (u, v1)).
Thus H has a Hamiltonian cycle.

Conversely, suppose that H has a Hamiltonian cycle. The cycle must include u. Thus, for some labeling
v1, v2, . . . , vn of the remaining vertices, the cycle can be written as u, v1, v2, . . . , vn, u. Since all edges in H
but not in G have u as an endpoint, the edges vi, vi+1 are from G for all i, and we have that v1, . . . , vn is a
Hamiltonian path in G.

Running time:
Copying the graph, adding two vertices and 2n+ 1 edges can be done in polynomial time.

6

6. Bonus: Dynamic programming, again

The inclusion of this problem is simply because the problem and solution are existing from previous iterations of this
course, and should not be interpreted as indicating stronger emphasis on dynamic programming on the final exam.

The problem is to determine, in a fictional country with two-party elections and an electoral college, the smallest
number of votes needed to win the election. Let the number of states in this country be n.

Let pi be the total number of voters participating in the election from state i, and let vi be the number of electoral
votes for state i. Each state holds a statewide election between the two candidates, and assume that there are no
state-level ties, so candidates must win bpi/2c + 1 votes in state i to win it. All electoral votes of a state go to the
candidate winning that state. If a candidate receives at least V electoral votes in total, where V = b(

∑
i vi)/2c+ 1,

they win the overall election.

Determine the minimum percent of the total popular vote that a candidate must obtain in order to receive at least
V electoral votes and win the overall election.

Solution:

Note that an optimal solution obtains 0 votes from states where the candidate loses, and bpi/2c+ 1 votes from
states i where the candidate wins.

Let OPT(i, v) denote the minimum number of popular votes from states 1, 2, . . . , i in order to obtain at least v
electoral votes. This is defined for i from 0 to n, and v from the negative of the largest vi to V (for easier base
cases). Then,

OPT(i, v) = min
(
OPT(i−1, v),OPT(i−1, v−vi) +

⌊pi
2

⌋
+ 1

)
The first term corresponds to the candidate losing state i, in which case the candidate needs to obtain at least v
electoral votes from states 1, . . . , i− 1, and the second term corresponds to the candidate winning state i, where
the candidate wins vi electoral votes with the requisite popular votes, and needs states 1, . . . , i− 1 to cover the
rest.

The base cases are OPT(i, v) = 0 for all i and all v ≤ 0, and OPT(0, v) = ∞ for v ≥ 1.

The algorithm outputs the desired percentage as 100OPT(n, V)/
∑

i pi.

7

	1 Short answer
	2 Dynamic programming
	3 Network flows
	4 Linear programming
	5 Reduction
	6 Bonus: Dynamic programming, again

