CSE 421 Section 10

Final Review

Announcements & Reminders

- HW8
 - Was due yesterday, Wednesday 3/12
- Final review with Nathan: G20 this Friday 4:30 PM
 - o He will go over the practice final, so try it before the session if you can
- The **final exam** is on G20 2:30-4:20 PM, Monday 3/17
 - o If you are sick the day of the exam, let us know and we will schedule a makeup
- Course evaluations are due 3/16 at 12 PM
 - Section evaluations are due 3/16 at 12 PM

Final exam format

- Similar to midterm exam, but longer
 - A sample final is available on Ed
- 135 minutes
- You will be given a standard reference sheet
 - Is expanded from the midterm, attached to sample final on Ed
- You may bring one sheet of double sided 8.5x11" paper containing your own handwritten notes.
 - Must write name, student number, and UW NetID
 - Must turn in with exam
 - If you want to access your midterm notes sheet, go to Prof. Beame's OH

Today's plan

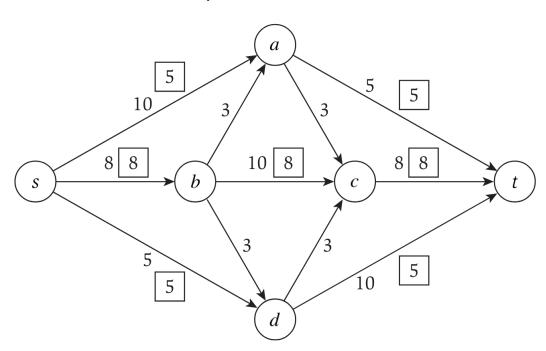
- 1. (35 min) 6 stations around the room with practice problems
 - (focused on second half of course, but exam is cumulative)
 - Station 1: Short answer
 - Station 2: Dynamic programming*
 - Station 3: Network flow
 - Station 4: Linear programming*
 - Station 5: Reduction
 - Station 6: Bonus problem
- 1. (10 min) Go over some of these problems

^{*}the problem at this station was an extra problem on a previous section handout

Problems

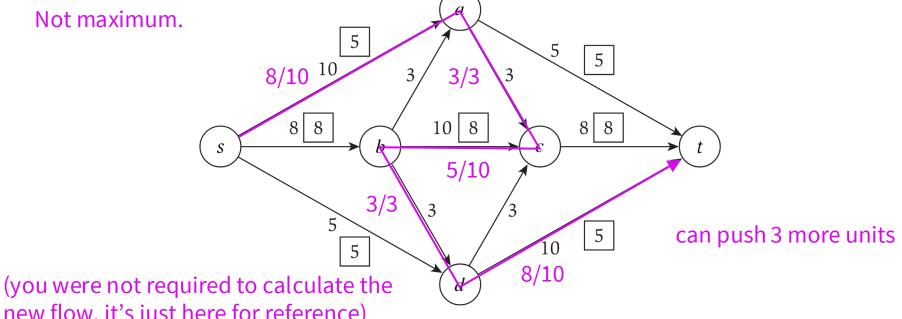
1 2 3 4 5 6

In the network flow below, is the depicted flow a maximum flow?



In the network flow below, is the depicted flow a maximum flow?

Not maximum.



new flow, it's just here for reference)

Recall Interval Scheduling: Given a collection of intervals and an integer k, determine if the collection contains at least k nonoverlapping intervals.

i. Does Interval Scheduling \leq_p Vertex Cover?

Recall Interval Scheduling: Given a collection of intervals and an integer k, determine if the collection contains at least k nonoverlapping intervals.

i. Does Interval Scheduling \leq_p Vertex Cover?

Yes. Many possible reasons:

- Vertex Cover is NP-complete, in particular NP-hard, and Interval Scheduling is clearly in NP (the certificate is the list of k nonoverlapping intervals). $A \leq_p B$ whenever B is NP-hard and A is in NP.
- Interval Scheduling is in P, as we solved it with a greedy algorithm earlier in this class. $A \leq_p B$ is always true when A is in P.

Recall Interval Scheduling: Given a collection of intervals and an integer k, determine if the collection contains at least k nonoverlapping intervals.

ii. Does Independent Set \leq_p Interval Scheduling?

Recall Interval Scheduling: Given a collection of intervals and an integer k, determine if the collection contains at least k nonoverlapping intervals.

ii. Does Independent Set \leq_p Interval Scheduling?

Unknown. Because Independent Set is NP-complete and Interval Scheduling is in P, Independent Set \leq_p Interval Scheduling would imply that an NP-complete problem is solvable in polynomial time, which is unknown.

A greedy attempt at Set Cover is:

while there exists an uncovered object do choose a set that covers the most number of still-uncovered objects

Suppose you are given an instance where every set contains exactly 2 elements. Then this algorithm returns a set cover that is at most a factor 2 larger than the minimum.

Solution

Problem 1 - Short answer

A greedy attempt at Set Cover is:

while there exists an uncovered object do choose a set that covers the most number of still-uncovered objects

Suppose you are given an instance where every set contains exactly 2 elements. Then this algorithm returns a set cover that is at most a factor 2 larger than the minimum.

True. If there are n objects, the algorithm returns at most n sets because every set chosen contains at least 1 new object. Since every object must be covered, and every set contains only 2 elements, we require n/2 sets. Thus the approximation ratio is 2.

Return to problem select

Problem 2 – Dynamic programming

Given two strings, $s = s_1, ..., s_m$ with length m and $t = t_1, ..., t_n$ with length n, find the length of their longest common subsequence.

Problem 2 – Dynamic programming

Given two strings, $s = s_1, ..., s_m$ with length m and $t = t_1, ..., t_n$ with length n, find the length of their longest common subsequence.

Let OPT(i, j) be the longest common subsequence between $s_1, ..., s_i$ and $t_1, ..., t_j$.

$$OPT(i,j) = \begin{cases} 1 + OPT(i-1,j-1) & \text{if } s_i = t_j \\ \max(OPT(i-1,j), OPT(i,j-1)) & \text{if } s_i \neq t_j \end{cases}$$

The base cases are OPT(i, 0) = OPT(0, j) = 0 for all i and j.

Return to problem select

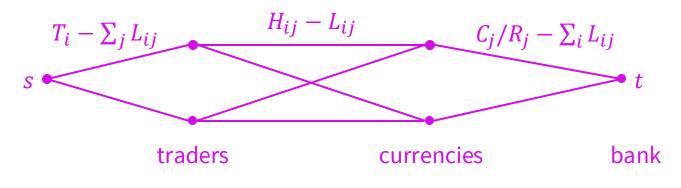
Problem 3 – Network flows

The bank has C_j of currency j, and the exchange rate is R_j of currency j for every 1 Franc. Trader i has T_i Francs to convert and is willing to convert between L_{ij} and H_{ij} of their Francs to currency j. Determine if the bank can satisfy all requests, and if so, how to maximize the amount of Francs it collects.

Problem 3 – Network flows

Determine if the bank can satisfy all requests, and if so, how to maximize the amount of Francs it collects.

First, give all traders their minimum request: check if $C_j/R_j \ge \sum_i L_{ij}$ for all j. Then,



Return to problem select

Problem 4 – Linear programming

There are k groups and m_i voters in group i, of which a_i are already voting for you. If you spend \$1000 advertising issue j, then d_{ij} more voters in group i will vote for you. Determine the minimum spending so that at least half of each group votes for you.

Problem 4 - Linear programming

There are k groups and m_i voters in group i, of which a_i are already voting for you. If you spend \$1000 advertising issue j, then d_{ij} more voters in group i will vote for you. Determine the minimum spending so that at least half of each group votes for you.

Let x_j be the amount of money, in thousands, spent on issue j.

minimize
$$x_1 + \cdots + x_n$$

subject to
$$d_{i1}x_1 + \dots + d_{in}x_n + a_i \ge \frac{m_i}{2}$$
 for all i $x_i \ge 0$ for all j

Problem 4 - Linear programming

There are k groups and m_i voters in group i, of which a_i are already voting for you. If you spend \$1000 advertising issue j, then d_{ij} more voters in group i will vote for you. Determine the minimum spending so that at least half of each group votes for you.

Let x_j be the amount of money, in thousands, spent on issue j.

maximize
$$-x_1 - \dots - x_n$$

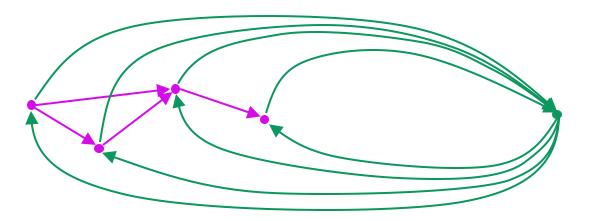
subject to $-d_{i1}x_1 - \dots - d_{in}x_n \le a_i - \frac{m_i}{2}$ for all i
 $x_i \ge 0$ for all j

Return to problem select

A Hamiltonian path/cycle is a path/cycle that visits every vertex exactly once. Suppose that HamiltonianPath is NP-hard. Show that HamiltonianCycle is NP-hard.

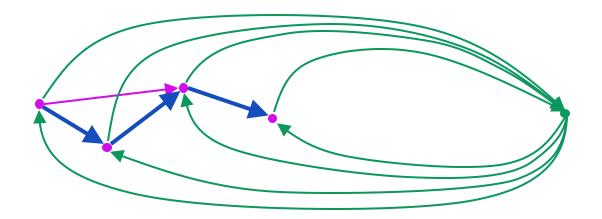
A Hamiltonian path/cycle is a path/cycle that visits every vertex exactly once. Suppose that HamiltonianPath is NP-hard. Show that HamiltonianCycle is NP-hard.

We show HamiltonianPath \leq_p HamiltonianCycle. Consider any input for HamiltonianPath. Create the following graph for HamiltonianCycle:



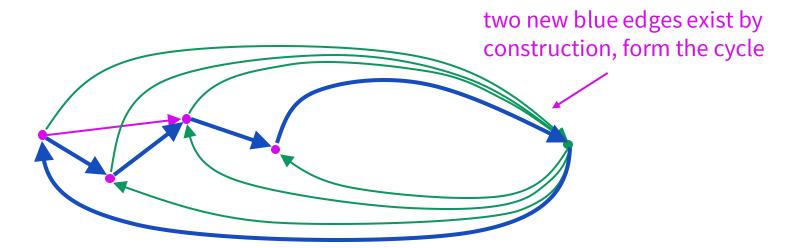
A Hamiltonian path/cycle is a path/cycle that visits every vertex exactly once. Suppose that HamiltonianPath is NP-hard. Show that HamiltonianCycle is NP-hard.

To prove, convert certificate for HamPath to certificate for HamCycle.



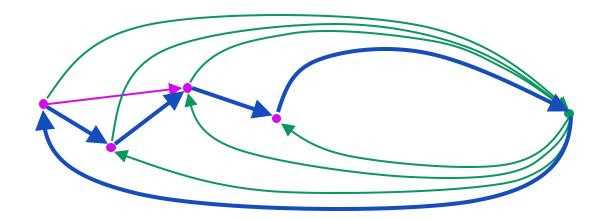
A Hamiltonian path/cycle is a path/cycle that visits every vertex exactly once. Suppose that HamiltonianPath is NP-hard. Show that HamiltonianCycle is NP-hard.

To prove, convert certificate for HamPath to certificate for HamCycle.



A Hamiltonian path/cycle is a path/cycle that visits every vertex exactly once. Suppose that HamiltonianPath is NP-hard. Show that HamiltonianCycle is NP-hard.

To convert back, consider any Hamiltonian cycle in the graph we created.



A Hamiltonian path/cycle is a path/cycle that visits every vertex exactly once. Suppose that HamiltonianPath is NP-hard. Show that HamiltonianCycle is NP-hard.

To convert back, consider any Hamiltonian cycle in the graph we created.

