
CSE 421 Section 9

NP-completeness

Administrivia

Announcements & Reminders

● HW6 regrade requests are open

● HW7

○ Due tomorrow 11/22 @ 11:59pm

○ Late submissions will be open until Sunday, 11/24 @ 11:59pm

● HW8

○ Will be released over the weekend

○ Due Wednesday, December 4th @ 11:59pm

● No section next week, happy Thanksgiving!

Definition review

Definition review

There were many new definitions in lecture recently that we’ll review now.

To check your understanding, for each definition starting next slide, give an example

of the definition!

Definition review

● Problem: a set of inputs and the correct outputs

● Instance: a single input to a problem

● Decision problem: a problem where the output is “yes” or “no”

● Reduction:

𝐴 ≤𝑝 𝐵 “A reduces to B” “A is not harder than B” “Solve A using B”

Formally, 𝐴 ≤𝑝 𝐵 if there is an algorithm that solves 𝐴 using polynomially many

calls to a solver for 𝐵, running in polynomial time (excluding calls to 𝐵).

Definition review

● P (“polynomial”): The set of decision problems 𝐴 that can be solved in poly time.

● NP (“nondeterministic polynomial”): The set of decision problems 𝐴 for which

YES-instances can be verified in poly time.

Formally, there is a poly time algorithm VERIFYA such that for all inputs 𝑥,

○ If 𝑥 is YES, there exists a poly length string 𝑦 such that VERIFYA(𝑥, 𝑦) = YES.

○ If 𝑥 is NO, then for all poly length strings 𝑦, VERIFYA(𝑥, 𝑦) = NO.

● NP-hard: A problem 𝐵 is NP-hard if 𝐴 ≤𝑝 𝐵 for all 𝐴 in NP.

● NP-complete: A problem 𝐵 is NP-complete if 𝐵 is in NP and 𝐵 is NP-hard.

Definition review

● Boolean literal: A Boolean variable 𝑥𝑖 or its negation ¬𝑥𝑖

● Clause: OR of zero or more literals

● CNF formula: AND of zero or more clauses

● 3SAT problem:

Input: A CNF formula with exactly 3 literals per clause

Output: Is there an assignment to the variables that makes the formula true?

3SAT is a fundamental NP-complete problem.

Practice with SAT

Problem 1 – SATisfy This

Determine whether each instance of 3-SAT is satisfiable. If it is, list a satisfying variable

assignment.

a) ¬𝑎 ∨ ¬𝑏 ∨ 𝑐 ∧ 𝑎 ∨ 𝑐 ∨ ¬𝑑 ∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∧ ¬𝑎 ∨ 𝑏 ∨ 𝑐 ∧ (¬𝑏 ∨ 𝑐 ∨ ¬𝑑)

b) ¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑

∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∧ ¬𝑎 ∨ 𝑐 ∨ ¬𝑑 ∧ 𝑎 ∨ 𝑏 ∨ 𝑐 ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

Think about it with the people around you, then we’ll discuss!

Problem 1 – SATisfy This

a) ¬𝑎 ∨ ¬𝑏 ∨ 𝑐 ∧ 𝑎 ∨ 𝑐 ∨ ¬𝑑 ∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∧ ¬𝑎 ∨ 𝑏 ∨ 𝑐 ∧ (¬𝑏 ∨ 𝑐 ∨ ¬𝑑)

Satisfiable. Many possible solutions (students only need to list one of these):

● 𝑎 = 0, 𝑏 = 0, 𝑐 = 0, 𝑑 = 0

● 𝑎 = 0, 𝑏 = 0, 𝑐 = 1, 𝑑 = 0

● 𝑎 = 0, 𝑏 = 1, 𝑐 = 0, 𝑑 = 0

● 𝑎 = 0, 𝑏 = 1, 𝑐 = 1, 𝑑 = 0

● 𝑎 = 0, 𝑏 = 1, 𝑐 = 1, 𝑑 = 1

● 𝑎 = 1, 𝑏 = 0, 𝑐 = 1, 𝑑 = 0

● 𝑎 = 1, 𝑏 = 1, 𝑐 = 1, 𝑑 = 0

● 𝑎 = 1, 𝑏 = 1, 𝑐 = 1, 𝑑 = 1

Solution

Problem 1 – SATisfy This

b) ¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑

∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∧ ¬𝑎 ∨ 𝑐 ∨ ¬𝑑 ∧ 𝑎 ∨ 𝑏 ∨ 𝑐 ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

Not satisfiable. Although you might be able to try some ad hoc arguments for why,

there is generally no explanation significantly faster than “try everything”.

The next 16 slides show what that looks like.

Solution

Problem 1 – SATisfy This
b) ¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑

∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∧ ¬𝑎 ∨ 𝑐 ∨ ¬𝑑 ∧ 𝑎 ∨ 𝑏 ∨ 𝑐 ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

Checking assignment: 𝑎 = 0, 𝑏 = 0, 𝑐 = 0, 𝑑 = 0

¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑 ∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑
∧ (¬𝑎 ∨ 𝑐 ∨ ¬𝑑) ∧ (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

¬0 ∨ 0 ∨ 0 ∧ ¬0 ∨ 0 ∨ 0 ∧ 0 ∨ ¬0 ∨ 0 ∧ 0 ∨ ¬0 ∨ ¬0 ∧ 0 ∨ ¬0 ∨ ¬0
∧ (¬0 ∨ 0 ∨ ¬0) ∧ (0 ∨ 0 ∨ 0) ∧ (¬0 ∨ ¬0 ∨ ¬0)

1 ∨ 0 ∨ 0 ∧ 1 ∨ 0 ∨ 0 ∧ 0 ∨ 1 ∨ 0 ∧ 0 ∨ 1 ∨ 1 ∧ 0 ∨ 1 ∨ 1
∧ (1 ∨ 0 ∨ 1) ∧ (0 ∨ 0 ∨ 0) ∧ (1 ∨ 1 ∨ 1)

Solution

Problem 1 – SATisfy This
b) ¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑

∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∧ ¬𝑎 ∨ 𝑐 ∨ ¬𝑑 ∧ 𝑎 ∨ 𝑏 ∨ 𝑐 ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

Checking assignment: 𝑎 = 0, 𝑏 = 0, 𝑐 = 0, 𝑑 = 1

¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑 ∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑
∧ (¬𝑎 ∨ 𝑐 ∨ ¬𝑑) ∧ (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

¬0 ∨ 0 ∨ 1 ∧ ¬0 ∨ 0 ∨ 1 ∧ 0 ∨ ¬0 ∨ 1 ∧ 0 ∨ ¬0 ∨ ¬1 ∧ 0 ∨ ¬0 ∨ ¬1
∧ (¬0 ∨ 0 ∨ ¬1) ∧ (0 ∨ 0 ∨ 0) ∧ (¬0 ∨ ¬0 ∨ ¬0)

1 ∨ 0 ∨ 1 ∧ 1 ∨ 0 ∨ 1 ∧ 0 ∨ 1 ∨ 1 ∧ 0 ∨ 1 ∨ 0 ∧ 0 ∨ 1 ∨ 0
∧ (1 ∨ 0 ∨ 0) ∧ (0 ∨ 0 ∨ 0) ∧ (1 ∨ 1 ∨ 1)

Solution

Problem 1 – SATisfy This
b) ¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑

∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∧ ¬𝑎 ∨ 𝑐 ∨ ¬𝑑 ∧ 𝑎 ∨ 𝑏 ∨ 𝑐 ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

Checking assignment: 𝑎 = 0, 𝑏 = 0, 𝑐 = 1, 𝑑 = 0

¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑 ∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑
∧ (¬𝑎 ∨ 𝑐 ∨ ¬𝑑) ∧ (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

¬0 ∨ 0 ∨ 0 ∧ ¬0 ∨ 1 ∨ 0 ∧ 0 ∨ ¬1 ∨ 0 ∧ 0 ∨ ¬0 ∨ ¬0 ∧ 0 ∨ ¬1 ∨ ¬0
∧ (¬0 ∨ 1 ∨ ¬0) ∧ (0 ∨ 0 ∨ 1) ∧ (¬0 ∨ ¬0 ∨ ¬1)

1 ∨ 0 ∨ 0 ∧ 1 ∨ 1 ∨ 0 ∧ 0 ∨ 0 ∨ 0 ∧ 0 ∨ 1 ∨ 1 ∧ 0 ∨ 0 ∨ 1
∧ (1 ∨ 1 ∨ 1) ∧ (0 ∨ 0 ∨ 1) ∧ (1 ∨ 1 ∨ 0)

Solution

Problem 1 – SATisfy This
b) ¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑

∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∧ ¬𝑎 ∨ 𝑐 ∨ ¬𝑑 ∧ 𝑎 ∨ 𝑏 ∨ 𝑐 ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

Checking assignment: 𝑎 = 0, 𝑏 = 0, 𝑐 = 1, 𝑑 = 1

¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑 ∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑
∧ (¬𝑎 ∨ 𝑐 ∨ ¬𝑑) ∧ (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

¬0 ∨ 0 ∨ 1 ∧ ¬0 ∨ 1 ∨ 1 ∧ 0 ∨ ¬1 ∨ 1 ∧ 0 ∨ ¬0 ∨ ¬1 ∧ 0 ∨ ¬1 ∨ ¬1
∧ (¬0 ∨ 1 ∨ ¬1) ∧ (0 ∨ 0 ∨ 1) ∧ (¬0 ∨ ¬0 ∨ ¬1)

1 ∨ 0 ∨ 1 ∧ 1 ∨ 1 ∨ 1 ∧ 0 ∨ 0 ∨ 1 ∧ 0 ∨ 1 ∨ 0 ∧ 0 ∨ 0 ∨ 0
∧ (1 ∨ 1 ∨ 0) ∧ (0 ∨ 0 ∨ 1) ∧ (1 ∨ 1 ∨ 0)

Solution

Problem 1 – SATisfy This
b) ¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑

∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∧ ¬𝑎 ∨ 𝑐 ∨ ¬𝑑 ∧ 𝑎 ∨ 𝑏 ∨ 𝑐 ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

Checking assignment: 𝑎 = 0, 𝑏 = 1, 𝑐 = 0, 𝑑 = 0

¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑 ∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑
∧ (¬𝑎 ∨ 𝑐 ∨ ¬𝑑) ∧ (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

¬0 ∨ 1 ∨ 0 ∧ ¬1 ∨ 0 ∨ 0 ∧ 0 ∨ ¬0 ∨ 0 ∧ 0 ∨ ¬1 ∨ ¬0 ∧ 1 ∨ ¬0 ∨ ¬0
∧ (¬0 ∨ 0 ∨ ¬0) ∧ (0 ∨ 1 ∨ 0) ∧ (¬0 ∨ ¬1 ∨ ¬0)

1 ∨ 1 ∨ 0 ∧ 0 ∨ 0 ∨ 0 ∧ 0 ∨ 1 ∨ 0 ∧ 0 ∨ 0 ∨ 1 ∧ 1 ∨ 1 ∨ 1
∧ (1 ∨ 0 ∨ 1) ∧ (0 ∨ 1 ∨ 0) ∧ (1 ∨ 0 ∨ 1)

Solution

Problem 1 – SATisfy This
b) ¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑

∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∧ ¬𝑎 ∨ 𝑐 ∨ ¬𝑑 ∧ 𝑎 ∨ 𝑏 ∨ 𝑐 ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

Checking assignment: 𝑎 = 0, 𝑏 = 1, 𝑐 = 0, 𝑑 = 1

¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑 ∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑
∧ (¬𝑎 ∨ 𝑐 ∨ ¬𝑑) ∧ (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

¬0 ∨ 1 ∨ 1 ∧ ¬1 ∨ 0 ∨ 1 ∧ 0 ∨ ¬0 ∨ 1 ∧ 0 ∨ ¬1 ∨ ¬1 ∧ 1 ∨ ¬0 ∨ ¬1
∧ (¬0 ∨ 0 ∨ ¬1) ∧ (0 ∨ 1 ∨ 0) ∧ (¬0 ∨ ¬1 ∨ ¬0)

1 ∨ 1 ∨ 1 ∧ 0 ∨ 0 ∨ 1 ∧ 0 ∨ 1 ∨ 1 ∧ 0 ∨ 0 ∨ 0 ∧ 1 ∨ 1 ∨ 0
∧ (1 ∨ 0 ∨ 0) ∧ (0 ∨ 1 ∨ 0) ∧ (1 ∨ 0 ∨ 1)

Solution

Problem 1 – SATisfy This
b) ¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑

∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∧ ¬𝑎 ∨ 𝑐 ∨ ¬𝑑 ∧ 𝑎 ∨ 𝑏 ∨ 𝑐 ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

Checking assignment: 𝑎 = 0, 𝑏 = 1, 𝑐 = 1, 𝑑 = 0

¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑 ∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑
∧ (¬𝑎 ∨ 𝑐 ∨ ¬𝑑) ∧ (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

¬0 ∨ 1 ∨ 0 ∧ ¬1 ∨ 1 ∨ 0 ∧ 0 ∨ ¬1 ∨ 0 ∧ 0 ∨ ¬1 ∨ ¬0 ∧ 1 ∨ ¬1 ∨ ¬0
∧ (¬0 ∨ 1 ∨ ¬0) ∧ (0 ∨ 1 ∨ 1) ∧ (¬0 ∨ ¬1 ∨ ¬1)

1 ∨ 1 ∨ 0 ∧ 0 ∨ 1 ∨ 0 ∧ 0 ∨ 0 ∨ 0 ∧ 0 ∨ 0 ∨ 1 ∧ 1 ∨ 0 ∨ 1
∧ (1 ∨ 1 ∨ 1) ∧ (0 ∨ 1 ∨ 1) ∧ (1 ∨ 0 ∨ 0)

Solution

Problem 1 – SATisfy This
b) ¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑

∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∧ ¬𝑎 ∨ 𝑐 ∨ ¬𝑑 ∧ 𝑎 ∨ 𝑏 ∨ 𝑐 ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

Checking assignment: 𝑎 = 0, 𝑏 = 1, 𝑐 = 1, 𝑑 = 1

¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑 ∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑
∧ (¬𝑎 ∨ 𝑐 ∨ ¬𝑑) ∧ (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

¬0 ∨ 1 ∨ 1 ∧ ¬1 ∨ 1 ∨ 1 ∧ 0 ∨ ¬1 ∨ 1 ∧ 0 ∨ ¬1 ∨ ¬1 ∧ 1 ∨ ¬1 ∨ ¬1
∧ (¬0 ∨ 1 ∨ ¬1) ∧ (0 ∨ 1 ∨ 1) ∧ (¬0 ∨ ¬1 ∨ ¬1)

1 ∨ 1 ∨ 1 ∧ 0 ∨ 1 ∨ 1 ∧ 0 ∨ 0 ∨ 1 ∧ 0 ∨ 0 ∨ 0 ∧ 1 ∨ 0 ∨ 0
∧ (1 ∨ 1 ∨ 0) ∧ (0 ∨ 1 ∨ 1) ∧ (1 ∨ 0 ∨ 0)

Solution

Problem 1 – SATisfy This
b) ¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑

∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∧ ¬𝑎 ∨ 𝑐 ∨ ¬𝑑 ∧ 𝑎 ∨ 𝑏 ∨ 𝑐 ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

Checking assignment: 𝑎 = 1, 𝑏 = 0, 𝑐 = 0, 𝑑 = 0

¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑 ∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑
∧ (¬𝑎 ∨ 𝑐 ∨ ¬𝑑) ∧ (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

¬1 ∨ 0 ∨ 0 ∧ ¬0 ∨ 0 ∨ 0 ∧ 1 ∨ ¬0 ∨ 0 ∧ 1 ∨ ¬0 ∨ ¬0 ∧ 0 ∨ ¬0 ∨ ¬0
∧ (¬1 ∨ 0 ∨ ¬0) ∧ (1 ∨ 0 ∨ 0) ∧ (¬1 ∨ ¬0 ∨ ¬0)

0 ∨ 0 ∨ 0 ∧ 1 ∨ 0 ∨ 0 ∧ 1 ∨ 1 ∨ 0 ∧ 1 ∨ 1 ∨ 1 ∧ 0 ∨ 1 ∨ 1
∧ (0 ∨ 0 ∨ 1) ∧ (1 ∨ 0 ∨ 0) ∧ (0 ∨ 1 ∨ 1)

Solution

Problem 1 – SATisfy This
b) ¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑

∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∧ ¬𝑎 ∨ 𝑐 ∨ ¬𝑑 ∧ 𝑎 ∨ 𝑏 ∨ 𝑐 ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

Checking assignment: 𝑎 = 1, 𝑏 = 0, 𝑐 = 0, 𝑑 = 1

¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑 ∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑
∧ (¬𝑎 ∨ 𝑐 ∨ ¬𝑑) ∧ (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

¬1 ∨ 0 ∨ 1 ∧ ¬0 ∨ 0 ∨ 1 ∧ 1 ∨ ¬0 ∨ 1 ∧ 1 ∨ ¬0 ∨ ¬1 ∧ 0 ∨ ¬0 ∨ ¬1
∧ (¬1 ∨ 0 ∨ ¬1) ∧ (1 ∨ 0 ∨ 0) ∧ (¬1 ∨ ¬0 ∨ ¬0)

0 ∨ 0 ∨ 1 ∧ 1 ∨ 0 ∨ 1 ∧ 1 ∨ 1 ∨ 1 ∧ 1 ∨ 1 ∨ 0 ∧ 0 ∨ 1 ∨ 0
∧ (0 ∨ 0 ∨ 0) ∧ (1 ∨ 0 ∨ 0) ∧ (0 ∨ 1 ∨ 1)

Solution

Problem 1 – SATisfy This
b) ¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑

∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∧ ¬𝑎 ∨ 𝑐 ∨ ¬𝑑 ∧ 𝑎 ∨ 𝑏 ∨ 𝑐 ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

Checking assignment: 𝑎 = 1, 𝑏 = 0, 𝑐 = 1, 𝑑 = 0

¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑 ∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑
∧ (¬𝑎 ∨ 𝑐 ∨ ¬𝑑) ∧ (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

¬1 ∨ 0 ∨ 0 ∧ ¬0 ∨ 1 ∨ 0 ∧ 1 ∨ ¬1 ∨ 0 ∧ 1 ∨ ¬0 ∨ ¬0 ∧ 0 ∨ ¬1 ∨ ¬0
∧ (¬1 ∨ 1 ∨ ¬0) ∧ (1 ∨ 0 ∨ 1) ∧ (¬1 ∨ ¬0 ∨ ¬1)

0 ∨ 0 ∨ 0 ∧ 1 ∨ 1 ∨ 0 ∧ 1 ∨ 0 ∨ 0 ∧ 1 ∨ 1 ∨ 1 ∧ 0 ∨ 0 ∨ 1
∧ (0 ∨ 1 ∨ 1) ∧ (1 ∨ 0 ∨ 1) ∧ (0 ∨ 1 ∨ 0)

Solution

Problem 1 – SATisfy This
b) ¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑

∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∧ ¬𝑎 ∨ 𝑐 ∨ ¬𝑑 ∧ 𝑎 ∨ 𝑏 ∨ 𝑐 ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

Checking assignment: 𝑎 = 1, 𝑏 = 0, 𝑐 = 1, 𝑑 = 1

¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑 ∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑
∧ (¬𝑎 ∨ 𝑐 ∨ ¬𝑑) ∧ (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

¬1 ∨ 0 ∨ 1 ∧ ¬0 ∨ 1 ∨ 1 ∧ 1 ∨ ¬1 ∨ 1 ∧ 1 ∨ ¬0 ∨ ¬1 ∧ 0 ∨ ¬1 ∨ ¬1
∧ (¬1 ∨ 1 ∨ ¬1) ∧ (1 ∨ 0 ∨ 1) ∧ (¬1 ∨ ¬0 ∨ ¬1)

0 ∨ 0 ∨ 1 ∧ 1 ∨ 1 ∨ 1 ∧ 1 ∨ 0 ∨ 1 ∧ 1 ∨ 1 ∨ 0 ∧ 0 ∨ 0 ∨ 0
∧ (0 ∨ 1 ∨ 0) ∧ (1 ∨ 0 ∨ 1) ∧ (0 ∨ 1 ∨ 0)

Solution

Problem 1 – SATisfy This
b) ¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑

∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∧ ¬𝑎 ∨ 𝑐 ∨ ¬𝑑 ∧ 𝑎 ∨ 𝑏 ∨ 𝑐 ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

Checking assignment: 𝑎 = 1, 𝑏 = 1, 𝑐 = 0, 𝑑 = 0

¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑 ∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑
∧ (¬𝑎 ∨ 𝑐 ∨ ¬𝑑) ∧ (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

¬1 ∨ 1 ∨ 0 ∧ ¬1 ∨ 0 ∨ 0 ∧ 1 ∨ ¬0 ∨ 0 ∧ 1 ∨ ¬1 ∨ ¬0 ∧ 1 ∨ ¬0 ∨ ¬0
∧ (¬1 ∨ 0 ∨ ¬0) ∧ (1 ∨ 1 ∨ 0) ∧ (¬1 ∨ ¬1 ∨ ¬0)

0 ∨ 1 ∨ 0 ∧ 0 ∨ 0 ∨ 0 ∧ 1 ∨ 1 ∨ 0 ∧ 1 ∨ 0 ∨ 1 ∧ 1 ∨ 1 ∨ 1
∧ (0 ∨ 0 ∨ 1) ∧ (1 ∨ 1 ∨ 0) ∧ (0 ∨ 0 ∨ 1)

Solution

Problem 1 – SATisfy This
b) ¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑

∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∧ ¬𝑎 ∨ 𝑐 ∨ ¬𝑑 ∧ 𝑎 ∨ 𝑏 ∨ 𝑐 ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

Checking assignment: 𝑎 = 1, 𝑏 = 1, 𝑐 = 0, 𝑑 = 1

¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑 ∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑
∧ (¬𝑎 ∨ 𝑐 ∨ ¬𝑑) ∧ (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

¬1 ∨ 1 ∨ 1 ∧ ¬1 ∨ 0 ∨ 1 ∧ 1 ∨ ¬0 ∨ 1 ∧ 1 ∨ ¬1 ∨ ¬1 ∧ 1 ∨ ¬0 ∨ ¬1
∧ (¬1 ∨ 0 ∨ ¬1) ∧ (1 ∨ 1 ∨ 0) ∧ (¬1 ∨ ¬1 ∨ ¬0)

0 ∨ 1 ∨ 1 ∧ 0 ∨ 0 ∨ 1 ∧ 1 ∨ 1 ∨ 1 ∧ 1 ∨ 0 ∨ 0 ∧ 1 ∨ 1 ∨ 0
∧ (0 ∨ 0 ∨ 0) ∧ (1 ∨ 1 ∨ 0) ∧ (0 ∨ 0 ∨ 1)

Solution

Problem 1 – SATisfy This
b) ¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑

∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∧ ¬𝑎 ∨ 𝑐 ∨ ¬𝑑 ∧ 𝑎 ∨ 𝑏 ∨ 𝑐 ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

Checking assignment: 𝑎 = 1, 𝑏 = 1, 𝑐 = 1, 𝑑 = 0

¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑 ∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑
∧ (¬𝑎 ∨ 𝑐 ∨ ¬𝑑) ∧ (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

¬1 ∨ 1 ∨ 0 ∧ ¬1 ∨ 1 ∨ 0 ∧ 1 ∨ ¬1 ∨ 0 ∧ 1 ∨ ¬1 ∨ ¬0 ∧ 1 ∨ ¬1 ∨ ¬0
∧ (¬1 ∨ 1 ∨ ¬0) ∧ (1 ∨ 1 ∨ 1) ∧ (¬1 ∨ ¬1 ∨ ¬1)

0 ∨ 1 ∨ 0 ∧ 0 ∨ 1 ∨ 0 ∧ 1 ∨ 0 ∨ 0 ∧ 1 ∨ 0 ∨ 1 ∧ 1 ∨ 0 ∨ 1
∧ (0 ∨ 1 ∨ 1) ∧ (1 ∨ 1 ∨ 1) ∧ (0 ∨ 0 ∨ 0)

Solution

Problem 1 – SATisfy This
b) ¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑

∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑 ∧ ¬𝑎 ∨ 𝑐 ∨ ¬𝑑 ∧ 𝑎 ∨ 𝑏 ∨ 𝑐 ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

Checking assignment: 𝑎 = 1, 𝑏 = 1, 𝑐 = 1, 𝑑 = 1

¬𝑎 ∨ 𝑏 ∨ 𝑑 ∧ ¬𝑏 ∨ 𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑐 ∨ 𝑑 ∧ 𝑎 ∨ ¬𝑏 ∨ ¬𝑑 ∧ 𝑏 ∨ ¬𝑐 ∨ ¬𝑑
∧ (¬𝑎 ∨ 𝑐 ∨ ¬𝑑) ∧ (𝑎 ∨ 𝑏 ∨ 𝑐) ∧ (¬𝑎 ∨ ¬𝑏 ∨ ¬𝑐)

¬1 ∨ 1 ∨ 1 ∧ ¬1 ∨ 1 ∨ 1 ∧ 1 ∨ ¬1 ∨ 1 ∧ 1 ∨ ¬1 ∨ ¬1 ∧ 1 ∨ ¬1 ∨ ¬1
∧ (¬1 ∨ 1 ∨ ¬1) ∧ (1 ∨ 1 ∨ 1) ∧ (¬1 ∨ ¬1 ∨ ¬1)

0 ∨ 1 ∨ 1 ∧ 0 ∨ 1 ∨ 1 ∧ 1 ∨ 0 ∨ 1 ∧ 1 ∨ 0 ∨ 0 ∧ 1 ∨ 0 ∨ 0
∧ (0 ∨ 1 ∨ 0) ∧ (1 ∨ 1 ∨ 1) ∧ (0 ∨ 0 ∨ 0)

Solution

Reductions

How to prove NP-hardness

In previous weeks of this class, you’ve seen reductions of the following form:

𝐴 ≤𝑝 𝐵

“My problem is easy to solve, because I can just use 𝐵.”

your problem an algorithm to be used as a library,
i.e. stable matching, network flow

How to prove NP-hardness

Now, for NP-hardness, we need to do the opposite.

𝐴 ≤𝑝 𝐵

“My problem is hard, because if it were easy, then 𝐴 would be easy, but 𝐴 is hard.”

In other words, we convert from instances of the hard problem to your problem.

NOT solving your problem!

a problem that is
known to be hard

your problem

How to prove NP-completeness

Show 𝑩 is in NP:

1. State what the certificate is.

2. Say why the certificate can be checked in polynomial time.

Show 𝑩 is NP-hard:

3. Identify an NP-hard problem 𝐴 and say, “We will reduce from 𝐴 to 𝐵”.

4. Define a reduction function 𝑓, which converts instances of 𝐴 into instances of 𝐵.

5. Say why 𝑓 is computable in polynomial time.

6. Show that “𝑥 is a YES-instance for 𝐴” ⇒ “𝑓(𝑥) is a YES-instance for 𝐵”.

● Convert a certificate for 𝑥 into a certificate for 𝑓(𝑥).

7. Show that “𝑓(𝑥) is a YES-instance for 𝐵” ⇒ “𝑥 is a YES-instance for 𝐴”.

● Convert a certificate for 𝑓(𝑥) into a certificate for 𝑥.

Problem 2 – 5SAT

Define the problem 5SAT to be:

Input: A CNF formula with exactly 5 literals per clause

Output: Is there an assignment to the variables that makes the formula true?

We will show that 5SAT is NP-complete.

First, we will show that 5SAT is in NP.

a) State what the certificate is.

b) Say why the certificate can be checked in polynomial time.

Think about this briefly!

Problem 2 – 5SAT

a) State what the certificate is.

Certificate: An assignment to the variables that makes the formula true.

b) Say why the certificate can be checked in polynomial time.

Verifier: Takes as input the original 5SAT input and the certificate (the assignment).

Just apply the assignment to every clause, and return whether all clauses are satisfied.

Runs in linear time.

Solution

Problem 2 – 5SAT

Recall 3SAT:

Input: A CNF formula with exactly 3 literals per clause

Output: Is there an assignment to the variables that makes the formula true?

We will now prove that 5SAT is NP-hard with a reduction involving 3SAT.

c) Fill in the blank: “We will reduce from __ to __”. Which is 𝐴, and which is 𝐵?

Think about this briefly!

Problem 2 – 5SAT

Recall 3SAT:

Input: A CNF formula with exactly 3 literals per clause

Output: Is there an assignment to the variables that makes the formula true?

We will now prove that 5SAT is NP-hard with a reduction involving 3SAT.

c) Fill in the blank: “We will reduce from __ to __”. Which is 𝐴, and which is 𝐵?

We will reduce from 𝐴 = 3SAT to 𝐵 = 5SAT.

In other words, convert instances of 3SAT into instances of 5SAT.

Solution

Problem 2 – 5SAT

c) Fill in the blank: “We will reduce from __ to __”. Which is 𝐴, and which is 𝐵?

d) Define a reduction function 𝑓, which converts instances of 𝐴 into 𝐵.

Problem 2 – 5SAT

c) Fill in the blank: “We will reduce from __ to __”. Which is 𝐴, and which is 𝐵?

We will reduce from 𝐴 = 3SAT to 𝐵 = 5SAT.

In other words, convert instances of 3SAT into instances of 5SAT.

d) Define a reduction function 𝑓, which converts instances of 𝐴 into 𝐵.

Previous Solution

Think about it with the people around you, then we’ll discuss!

Problem 2 – 5SAT

c) Fill in the blank: “We will reduce from __ to __”. Which is 𝐴, and which is 𝐵?

We will reduce from 𝐴 = 3SAT to 𝐵 = 5SAT.

In other words, convert instances of 3SAT into instances of 5SAT.

d) Define a reduction function 𝑓, which converts instances of 𝐴 into 𝐵.

Let 𝐶1, 𝐶2, . . . , 𝐶𝑚 be the clauses of the 3SAT instance.

Create two dummy variables 𝑦 and 𝑧. For each clause 𝐶𝑖, create four clauses:

𝐶𝑖 ∨ 𝑦 ∨ 𝑧 𝐶𝑖 ∨ ¬𝑦 ∨ 𝑧 𝐶𝑖 ∨ 𝑦 ∨ ¬𝑧 𝐶𝑖 ∨ ¬𝑦 ∨ ¬𝑧

Our 5SAT instance is the AND of all 4𝑚 clauses described above.

Solution

Problem 2 – 5SAT

e) Say why 𝑓 is computable in polynomial time.

Think about this briefly!

Problem 2 – 5SAT

e) Say why 𝑓 is computable in polynomial time.

We loop through the clauses and create a constant number of new clauses for each,

thus linear time.

Solution

Problem 2 – 5SAT

To prove the correctness:

f) Show that “𝑥 is a YES-instance for 𝐴” ⇒ “𝑓(𝑥) is a YES-instance for 𝐵”.

(Remember: convert a certificate for 𝑥 into a certificate for 𝑓(𝑥)!)

Think about it with the people around you, then we’ll discuss!

Problem 2 – 5SAT

To prove the correctness:

f) Show that “𝑥 is a YES-instance for 𝐴” ⇒ “𝑓(𝑥) is a YES-instance for 𝐵”.

(Remember: convert a certificate for 𝑥 into a certificate for 𝑓(𝑥)!)

● There is an assignment 𝛼 that makes the original 3SAT YES-instance true.

● Let us define an assignment 𝛽 that satisfies our constructed 5SAT instance.

𝛽 𝑥𝑖 = 𝛼(𝑥𝑖) for all 𝑥𝑖 in the original instance

𝛽 𝑦 = 0 (or 1, doesn’t matter)

𝛽 𝑧 = 0 (or 1, doesn’t matter)

● Satisfies our constructed 5SAT instance because every clause contains one of the

original 3SAT clauses.

Solution

Problem 2 – 5SAT

To prove the correctness:

g) Show that “𝑓(𝑥) is a YES-instance for 𝐵” ⇒ “𝑥 is a YES-instance for 𝐴”.

(Remember: convert a certificate for 𝑓(𝑥) into a certificate for 𝑥!)

Think about it with the people around you, then we’ll discuss!

Problem 2 – 5SAT

To prove the correctness:

g) Show that “𝑓(𝑥) is a YES-instance for 𝐵” ⇒ “𝑥 is a YES-instance for 𝐴”.

(Remember: convert a certificate for 𝑓(𝑥) into a certificate for 𝑥!)

● There is an assignment 𝛽 that makes the formula we constructed true.

● But our formula has clauses

𝐶𝑖 ∨ 𝑦 ∨ 𝑧 𝐶𝑖 ∨ ¬𝑦 ∨ 𝑧 𝐶𝑖 ∨ 𝑦 ∨ ¬𝑧 𝐶𝑖 ∨ ¬𝑦 ∨ ¬𝑧

○ In one of these clauses, the literals involving 𝑦 and 𝑧 will both be false in 𝛽.

○ Because 𝛽 satisfies every clause, it must satisfy 𝐶𝑖 alone.

● Thus, if we define 𝛼 𝑥𝑖 = 𝛽 𝑥𝑖 for all 𝑥𝑖, then 𝛼 satisfies the original instance.

Solution

Problem 3 – Reduction with different types

The Integer Linear Programming problem (ILP) is:

Input: An integer matrix 𝐴 and integer vector 𝑏

Output: Is there an integer vector 𝑥 such that 𝐴𝑥 ≤ 𝑏?

In lecture, you saw that 3SAT ≤𝑷 ILP via a long series of reductions.

Prove this directly by a single reduction. (We will skip showing ILP is in NP today.)

c) Fill in the blank: “We will reduce from __ to __”. Which is 𝐴, and which is 𝐵?

Decision version!
Nothing to optimize for.

Think about this briefly!

Problem 3 – Reduction with different types

The Integer Linear Programming problem (ILP) is:

Input: An integer matrix 𝐴 and integer vector 𝑏

Output: Is there an integer vector 𝑥 such that 𝐴𝑥 ≤ 𝑏?

In lecture, you saw that 3SAT ≤𝑷 ILP via a long series of reductions.

Prove this directly by a single reduction.

c) Fill in the blank: “We will reduce from __ to __”. Which is 𝐴, and which is 𝐵?

We will reduce from 𝐴 = 3SAT to 𝐵 = ILP.

In other words, convert instances of 3SAT into instances of ILP.

Decision version!
Nothing to optimize for.

Solution

Problem 3 – Reduction with different types

This is tricky, so let’s think about solving this example with ILP:

(¬𝑤 ∨ ¬𝑥 ∨ 𝑦) ∧ (𝑤 ∨ 𝑦 ∨ ¬𝑧)

1. What variables should we use for the ILP?

Just 𝑤, 𝑥, 𝑦, and 𝑧

2. What constraints can we write to say that our variables must be Boolean?

0 ≤ 𝑤, 𝑤 ≤ 1, and similarly for 𝑥, 𝑦, and 𝑧

3. How do we encode negations, like ¬𝑤?

1 − 𝑤

4. What constraints can we write to say that every clause is satisfied?

Sum of all literals ≥ 1, for example 1 − 𝑤 + 1 − 𝑥 + 𝑦 ≥ 1

These are fairly generic steps
for ANY reduction from 3SAT!

Solution

Problem 3 – Reduction with different types

d) Define a reduction function 𝑓, which converts instances of 𝐴 into 𝐵.

(We did an example on the previous slide, so the question is just: how to write this

generally?)

Think about it with the people around you, then we’ll discuss!

Problem 3 – Reduction with different types

d) Define a reduction function 𝑓, which converts instances of 𝐴 into 𝐵.

To avoid confusion, denote 𝑦1, . . . , 𝑦𝑛 the variables in the 3SAT instance and

𝐶1, 𝐶2, . . . , 𝐶𝑚 the clauses, and we will use 𝑥𝑖 as the ILP variable corresponding to 𝑦𝑖.

Our constraints are:

● 0 ≤ 𝑥𝑖 and 𝑥𝑖 ≤ 1 for all 𝑖 = 1, … , 𝑛

● σ𝑦𝑖∈𝐶𝑗
(𝑥𝑖) + σ¬𝑦𝑖∈𝐶𝑗

(1 − 𝑥𝑖) ≥ 1 for all 𝑗 = 1,… ,𝑚

We would convert these to standard form.

Solution

Problem 3 – Reduction with different types

e) Say why 𝑓 is computable in polynomial time.

Think about this briefly!

Problem 3 – Reduction with different types

e) Say why 𝑓 is computable in polynomial time.

We create 2 constraints for every variable and 1 constraint for every clause. Every

constraint is a row in the ILP input matrix 𝐴, so the reduction takes 𝑚 + 𝑛 𝑛 time,

which is polynomial.

Solution

Problem 3 – Reduction with different types

To prove the correctness:

f) Show that “𝑥 is a YES-instance for 𝐴” ⇒ “𝑓(𝑥) is a YES-instance for 𝐵”.

(Remember: convert a certificate for 𝑥 into a certificate for 𝑓(𝑥)!)

Think about it with the people around you, then we’ll discuss!

Problem 3 – Reduction with different types

To prove the correctness:

f) Show that “𝑥 is a YES-instance for 𝐴” ⇒ “𝑓(𝑥) is a YES-instance for 𝐵”.

(Remember: convert a certificate for 𝑥 into a certificate for 𝑓(𝑥)!)

● There is an assignment 𝛼 that makes the original 3SAT YES-instance true.

● Let 𝑥 be the vector whose 𝑖th entry is 𝛼(𝑦𝑖). We claim that 𝑥 satisfies the ILP.

○ Certainly 0 ≤ 𝑥𝑖 and 𝑥𝑖 ≤ 1 for all 𝑖.

○ Note that σ𝑦𝑖∈𝐶𝑗
(𝑥𝑖) + σ¬𝑦𝑖∈𝐶𝑗

(1 − 𝑥𝑖) is a sum of non-negative terms.

○ Because 𝛼 satisfies 𝐶𝑗, there is 𝑦𝑖 ∈ 𝐶𝑗 for which 𝛼 𝑦𝑖 = 1, so 𝑥𝑖 = 𝛼 𝑦𝑖 = 1,

or ¬𝑦𝑖 ∈ 𝐶𝑗 for which 𝛼 𝑦𝑖 = 0, in which case 1 − 𝑥𝑖 = 1 − 𝛼 𝑦𝑖 = 1.

○ Either way, we have found a term that evaluates to 1, so the expression is ≥ 1.

Solution

Problem 3 – Reduction with different types

To prove the correctness:

g) Show that “𝑓(𝑥) is a YES-instance for 𝐵” ⇒ “𝑥 is a YES-instance for 𝐴”.

(Remember: convert a certificate for 𝑓(𝑥) into a certificate for 𝑥!)

Think about it with the people around you, then we’ll discuss!

Problem 3 – Reduction with different types

To prove the correctness:

g) Show that “𝑓(𝑥) is a YES-instance for 𝐵” ⇒ “𝑥 is a YES-instance for 𝐴”.

(Remember: convert a certificate for 𝑓(𝑥) into a certificate for 𝑥!)

● There is a vector 𝑥 that satisfies all ILP constraints.

● Let 𝛼 𝑦𝑖 = 𝑥𝑖. We claim that 𝛼 satisfies the original 3SAT instance.

○ 𝛼 is a valid assignment because 𝑥𝑖 is an integer with 0 ≤ 𝑥𝑖 and 𝑥𝑖 ≤ 1.

○ Because σ𝑦𝑖∈𝐶𝑗
(𝑥𝑖) + σ¬𝑦𝑖∈𝐶𝑗

(1 − 𝑥𝑖) ≥ 1, at least one of the terms must be

positive, in which case the relevant literal is true in 𝐶𝑗, similar to the other

direction.

Solution

Thanks for coming to section this week!

● When you want to show 𝑩 is NP-complete, do NOT solve 𝑩!

○ Convert instances of another NP-hard problem 𝐴 into instances of 𝐵.

● For the reduction proof, convert certificates of each problem to certificates of the

other problem.

Summary

	Intro
	Slide 1: CSE 421 Section 9

	Administrivia
	Slide 2: Administrivia
	Slide 3: Announcements & Reminders

	Intro & Definitions
	Slide 4: Definition review
	Slide 5: Definition review
	Slide 6: Definition review
	Slide 7: Definition review
	Slide 8: Definition review

	1
	Slide 9: Practice with SAT
	Slide 10: Problem 1 – SATisfy This
	Slide 11: Problem 1 – SATisfy This
	Slide 12: Problem 1 – SATisfy This
	Slide 13: Problem 1 – SATisfy This
	Slide 14: Problem 1 – SATisfy This
	Slide 15: Problem 1 – SATisfy This
	Slide 16: Problem 1 – SATisfy This
	Slide 17: Problem 1 – SATisfy This
	Slide 18: Problem 1 – SATisfy This
	Slide 19: Problem 1 – SATisfy This
	Slide 20: Problem 1 – SATisfy This
	Slide 21: Problem 1 – SATisfy This
	Slide 22: Problem 1 – SATisfy This
	Slide 23: Problem 1 – SATisfy This
	Slide 24: Problem 1 – SATisfy This
	Slide 25: Problem 1 – SATisfy This
	Slide 26: Problem 1 – SATisfy This
	Slide 27: Problem 1 – SATisfy This
	Slide 28: Problem 1 – SATisfy This

	Reductions
	Slide 29: Reductions
	Slide 30: How to prove NP-hardness
	Slide 31: How to prove NP-hardness
	Slide 32: How to prove NP-completeness

	2
	Slide 33: Problem 2 – 5SAT
	Slide 34: Problem 2 – 5SAT
	Slide 35: Problem 2 – 5SAT
	Slide 36: Problem 2 – 5SAT
	Slide 37: Problem 2 – 5SAT
	Slide 38: Problem 2 – 5SAT
	Slide 39: Problem 2 – 5SAT
	Slide 40: Problem 2 – 5SAT
	Slide 41: Problem 2 – 5SAT
	Slide 42: Problem 2 – 5SAT
	Slide 43: Problem 2 – 5SAT
	Slide 44: Problem 2 – 5SAT
	Slide 45: Problem 2 – 5SAT

	3
	Slide 46: Problem 3 – Reduction with different types
	Slide 47: Problem 3 – Reduction with different types
	Slide 48: Problem 3 – Reduction with different types
	Slide 49: Problem 3 – Reduction with different types
	Slide 50: Problem 3 – Reduction with different types
	Slide 51: Problem 3 – Reduction with different types
	Slide 52: Problem 3 – Reduction with different types
	Slide 53: Problem 3 – Reduction with different types
	Slide 54: Problem 3 – Reduction with different types
	Slide 55: Problem 3 – Reduction with different types
	Slide 56: Problem 3 – Reduction with different types
	Slide 57: Summary

