
CSE 421 Section 8

Linear Programming and Technique Toolbox

Administrivia

Announcements & Reminders

● HW6 was due yesterday, 2/26

○ Late submissions open until tomorrow, 2/28 @ 11:59pm

● HW7

○ Due Wednesday 3/5@ 11:59pm

○ Late submissions will be open until Friday, 3/7 @ 11:59pm

Linear programming

Review of linear programming

Linear programming is the following problem:

𝐦𝐚𝐱𝐢𝐦𝐢𝐳𝐞𝑐𝑇𝑥

𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0

In other words,

𝐦𝐚𝐱𝐢𝐦𝐢𝐳𝐞𝑐1𝑥1 + 𝑐2𝑥2 +⋯+ 𝑐𝑛𝑥𝑛
𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 ≤ 𝑏1
𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 𝑎21𝑥1 + 𝑎22𝑥2 +⋯+ 𝑎2𝑛𝑥𝑛 ≤ 𝑏2
𝐬𝐮𝐛𝐣𝐞𝐜 𝐭 𝐭𝐨 𝑎11𝑥1 + 𝑎12𝑥2 +⋯+ 𝑎1𝑛𝑥𝑛 ≤ 𝑏1
𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 +⋯+ 𝑎𝑚𝑛𝑥𝑛 ≤ 𝑏𝑚

𝑥𝑖 ≥ 0 for all 𝑖

Standard form is
maximization with less than
or equal to constraints

Problem solving strategy overview

Read and summarize the problem

Decide to use known algorithm or techniques from scratch

Write pseudocode, proof,
and running time analysis

not covered this sectionPreprocess the input into the
form required by the technique

Postprocess the technique’s
output into what you want

Problem 1 – Cost-effective eating

You are given a list of foods indexed 1,… , 𝑛, as well as the calories 𝑐𝑖, sugars (g) 𝑠𝑖, and

vitamin D (mcg) 𝑑𝑖 per serving of each food. You’re trying to maintain a healthy diet by

eating exactly 2000 calories per day. You also heard that the American Heart

Association recommends at most 30 grams of sugar per day. And because you just

moved to Seattle from LA this year, it’s your first winter and you need to eat at least 15

mcg of vitamin D to avoid SAD. Along with the nutrition information, you also know

that one serving of food 𝑖 costs 𝑚𝑖 money. Find a way to compute a healthy diet that is

as cheap as possible.

a) Write a summary of the problem.

Work on this with the people around you, then we’ll check!

Problem 1 – Cost-effective eating
a) Write a summary of the problem.

Input: Calories 𝑐𝑖, sugar 𝑠𝑖, vitamin D 𝑑𝑖, and money 𝑚𝑖 per serving for each food.

Expected output: Minimum amount of money to meet nutrition standards.

Solution

Problem 1 – Cost-effective eating
b) To use linear programming:

i. What should the variables 𝑥𝑖 represent?

ii. What is the objective function?

iii. What are the constraints (directly translated from the problem)?

Work on this with the people around you, then we’ll check!

Problem 1 – Cost-effective eating
b) To use linear programming:

i. What should the variables 𝑥𝑖 represent?

The number of servings of food 𝑖 to eat.

ii. What is the objective function?

𝐦𝐢𝐧𝐢𝐦𝐢𝐳𝐞𝑚1𝑥1 +⋯+𝑚𝑛𝑥𝑛

iii. What are the constraints (directly translated from the problem)?

𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 𝑐1𝑥1 +⋯+ 𝑐𝑛𝑥𝑛 = 2000

𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 𝑠1𝑥1 +⋯+ 𝑠𝑛𝑥𝑛 ≤ 30

𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 𝑑1𝑥1 +⋯+ 𝑑𝑛𝑥𝑛 ≥ 15

𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 𝑥𝑖 ≥ 0 for all 𝑖

Solution

Problem 1 – Cost-effective eating
iv. How can you transform the problem into standard form?

Work on this with the people around you, then we’ll check!

Problem 1 – Cost-effective eating
iv. How can you transform the problem into standard form?

𝐦𝐚𝐱𝐢𝐦𝐢𝐳𝐞 −𝑚1𝑥1 −⋯−𝑚𝑛𝑥𝑛

𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 𝑐1𝑥1 +⋯+ 𝑐𝑛𝑥𝑛 ≤ 2000

𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 − 𝑐1𝑥1 −⋯− 𝑐𝑛𝑥𝑛 ≤ −2000
𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 𝑠1𝑥1 +⋯+ 𝑠𝑛𝑥𝑛 ≤ 30

𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 − 𝑑1𝑥1 −⋯− 𝑑𝑛𝑥𝑛 ≤ −15

𝐬𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 𝑥𝑖 ≥ 0 for all 𝑖

1. Multiply “minimize” objective by -1.

2. Convert equalities into two inequalities.
3. Multiply ≥ inequalities by -1.

Solution

Problem 1 – Cost-effective eating
For basic LP problems, we will only be looking for a brief sketch of correctness, unless

there is something nontrivial beyond directly translating the constraints.

c) Sketch the correctness of your solution.

Work on this with the people around you, then we’ll check!

Problem 1 – Cost-effective eating
For basic LP problems, we will only be looking for a brief sketch of correctness, unless

there is something nontrivial beyond directly translating the constraints.

c) Sketch the correctness of your solution.

Because ℎ𝑖 is the price per serving, we pay ℎ𝑖𝑥𝑖 if we pick 𝑥𝑖 servings of food 𝑖, so our

goal is to minimize ℎ1𝑥1 +⋯+ ℎ𝑛𝑥𝑛. Similarly, we are given per-serving values for the

calories, sugar, and vitamin D of each food, so we have 𝑐1𝑥1 +⋯+ 𝑐𝑛𝑥𝑛 = 2000,

𝑠1𝑥1 +⋯+ 𝑠𝑛𝑥𝑛 ≤ 30, and 𝑑1𝑥1 +⋯+ 𝑑𝑛𝑥𝑛 ≥ 15. We transformed them to

standard form using basic algebra. Relying on an LP algorithm, we output the best

𝑥1, … , 𝑥𝑛 as desired.

Solution

Technique toolbox

Which technique should I try?

We have covered many techniques for algorithms so far.

How should you pick which method to try?

Using known algorithms Developing from scratch

• Stable matching
• Graph traversal algorithms
• Weighted graph algorithms
• Network flows
• Linear programming

• Greedy algorithms
• Divide and conquer
• Dynamic programming

Problem solving strategy overview

Read and summarize the problem

Does the problem remind me of something I already know?

Call the known algorithm
as a subroutine

1. Visualize the problem with examples.

2. Try a greedy idea against your examples.

3. Identify subproblems, are they halves or
just slightly smaller?

Yes No

Problem 2 - Technique toolbox activity

We have learned many useful algorithms in this class, including:
● Stable matching

● Graph traversal algorithms (B/DFS, topological sort, etc.)
● Weighted (greedy) graph algorithms (Dijkstra’s, various MST algorithms)

● Network flows

● Linear programming
● Greedy algorithms
● Divide and conquer

● Dynamic programming

When faced with a new problem, how do we choose a technique?

Problem 2 - Technique toolbox activity

Each group will take 4 problems from the section worksheet. For each problem, (1)
identify the class of algorithm type that can be used to solve it and (2) give a brief

justification as to why that choice is appropriate.

● Group #1: (a) - (d)

● Group #2: (e) - (h)
● Group #3: (i) - (l)
● Group #4: (m) - (p)

There may be multiple algorithms that work (ex. Network flow vs Linear
Programming). In that case, pick the one that feels more natural.

Problem 2 - Technique toolbox activity

❑ Stable matching

❑ Graph traversal algorithms

❑ Weighted (greedy) graph algorithms

❑ Greedy algorithms

❑ Divide and conquer

❑ Dynamic programming

❑ Network flows

❑ Linear programming

Problem 2 - Technique toolbox activity

Solution

Graph traversal algorithms. The list prerequisites contains pairs of courses that can be

represented as edges and the course numbers can represent vertices in a graph. The

problem is equivalent to finding cycles in this graph.

Problem 2 - Technique toolbox activity

❑ Stable matching

❑ Graph traversal algorithms

❑ Weighted (greedy) graph algorithms

❑ Greedy algorithms

❑ Divide and conquer

❑ Dynamic programming

❑ Network flows

❑ Linear programming

Problem 2 - Technique toolbox activity

Solution

Linear programming. Making several real-valued choices with linear constraints is

typically a clear sign that linear programming may be helpful.

Problem 2 - Technique toolbox activity

❑ Stable matching

❑ Graph traversal algorithms

❑ Weighted (greedy) graph algorithms

❑ Greedy algorithms

❑ Divide and conquer

❑ Dynamic programming

❑ Network flows

❑ Linear programming

Problem 2 - Technique toolbox activity

Solution

Stable matching. The existence of preferences makes stable matching a natural

choice.

Problem 2 - Technique toolbox activity

❑ Stable matching

❑ Graph traversal algorithms

❑ Weighted (greedy) graph algorithms

❑ Greedy algorithms

❑ Divide and conquer

❑ Dynamic programming

❑ Network flows

❑ Linear programming

Problem 2 - Technique toolbox activity

Solution

Graph traversal algorithms. The MST algorithms studied in this class do not take O(m +

n) time. Using the “cut” and “cycle” properties of MSTs, e = (u, v) does not belong to an

MST iff there is a path from u to v using only edges cheaper than e. Thus, the algorithm

is: construct a graph G’ by deleting all edges with weight at least c(e), and use B/DFS

to determine if there is a path from u to v

Problem 2 - Technique toolbox activity

❑ Stable matching

❑ Graph traversal algorithms

❑ Weighted (greedy) graph algorithms

❑ Greedy algorithms

❑ Divide and conquer

❑ Dynamic programming

❑ Network flows

❑ Linear programming

Problem 2 - Technique toolbox activity

Solution

Greedy. There is a natural way to sort the “value” of the items (by price per liter), and

picking items now does not prevent us from picking better items later, so greedy

seems like a good choice.

Problem 2 - Technique toolbox activity

❑ Stable matching

❑ Graph traversal algorithms

❑ Weighted (greedy) graph algorithms

❑ Greedy algorithms

❑ Divide and conquer

❑ Dynamic programming

❑ Network flows

❑ Linear programming

Problem 2 - Technique toolbox activity

Solution

Divide and conquer. When the input is sorted, divide and conquer should be a first

thing to try.

Problem 2 - Technique toolbox activity

❑ Stable matching

❑ Graph traversal algorithms

❑ Weighted (greedy) graph algorithms

❑ Greedy algorithms

❑ Divide and conquer

❑ Dynamic programming

❑ Network flows

❑ Linear programming

Problem 2 - Technique toolbox activity

Solution

Network flow. Travel planning is often a network flow problem, and here the overlap

restrictions can be phrased as vertex/edge capacities.

Problem 2 - Technique toolbox activity

❑ Stable matching

❑ Graph traversal algorithms

❑ Weighted (greedy) graph algorithms

❑ Greedy algorithms

❑ Divide and conquer

❑ Dynamic programming

❑ Network flows

❑ Linear programming

Problem 2 - Technique toolbox activity

Solution

Linear programming. Again, making real-valued choices with linear constraints.

Problem 2 - Technique toolbox activity

❑ Stable matching

❑ Graph traversal algorithms

❑ Weighted (greedy) graph algorithms

❑ Greedy algorithms

❑ Divide and conquer

❑ Dynamic programming

❑ Network flows

❑ Linear programming

Problem 2 - Technique toolbox activity

Solution

Greedy. Choosing the farthest resting site within d miles does not prevent us from

being able to choose a better sequence of sites later on.

Problem 2 - Technique toolbox activity

❑ Stable matching

❑ Graph traversal algorithms

❑ Weighted (greedy) graph algorithms

❑ Greedy algorithms

❑ Divide and conquer

❑ Dynamic programming

❑ Network flows

❑ Linear programming

Problem 2 - Technique toolbox activity

Solution

Dynamic programming. If a perfect square s is chosen to be part of the solution, then

finding the least number of perfect square numbers that create n − s is another sub-

problem that should be memoized.

Problem 2 - Technique toolbox activity

❑ Stable matching

❑ Graph traversal algorithms

❑ Weighted (greedy) graph algorithms

❑ Greedy algorithms

❑ Divide and conquer

❑ Dynamic programming

❑ Network flows

❑ Linear programming

Problem 2 - Technique toolbox activity

Solution

Weighted graph algorithms. The problem appears to be a variant of MST.

Problem 2 - Technique toolbox activity

❑ Stable matching

❑ Graph traversal algorithms

❑ Weighted (greedy) graph algorithms

❑ Greedy algorithms

❑ Divide and conquer

❑ Dynamic programming

❑ Network flows

❑ Linear programming

Problem 2 - Technique toolbox activity

Solution

Divide and conquer. Since we want to find the number of smaller elements to the right

of an element in an unsorted array, there should probably be some sorting involved,

so a modified divide and conquer sorting algorithm can be used.

Problem 2 - Technique toolbox activity

❑ Stable matching

❑ Graph traversal algorithms

❑ Weighted (greedy) graph algorithms

❑ Greedy algorithms

❑ Divide and conquer

❑ Dynamic programming

❑ Network flows

❑ Linear programming

Problem 2 - Technique toolbox activity

Solution

Greedy. Looping through source and taking the first character that is still not taken in

target does not block any future good choices from being taken.

Problem 2 - Technique toolbox activity

❑ Stable matching

❑ Graph traversal algorithms

❑ Weighted (greedy) graph algorithms

❑ Greedy algorithms

❑ Divide and conquer

❑ Dynamic programming

❑ Network flows

❑ Linear programming

Problem 2 - Technique toolbox activity

Solution

Dynamic programming on graphs. This is an extension of Bellman–Ford, with an

additional parameter for how many coupons we have access to.

Problem 2 - Technique toolbox activity

❑ Stable matching

❑ Graph traversal algorithms

❑ Weighted (greedy) graph algorithms

❑ Greedy algorithms

❑ Divide and conquer

❑ Dynamic programming

❑ Network flows

❑ Linear programming

Problem 2 - Technique toolbox activity

Solution

Network flow. Variations of bipartite matching are often a good place to use network

flow algorithms. In this case, we are matching doctors with days in each vacation

period.

Problem 2 - Technique toolbox activity

❑ Stable matching

❑ Graph traversal algorithms

❑ Weighted (greedy) graph algorithms

❑ Greedy algorithms

❑ Divide and conquer

❑ Dynamic programming

❑ Network flows

❑ Linear programming

Problem 2 - Technique toolbox activity

Solution

Dynamic programming. By using a coin, the total amount of money remaining is

reduced, which becomes the next subproblem.

	Intro
	Slide 1: CSE 421 Section 8

	Administrivia
	Slide 2: Administrivia
	Slide 3: Announcements & Reminders

	Linear Programming
	Slide 4: Linear programming
	Slide 5: Review of linear programming
	Slide 6: Problem solving strategy overview
	Slide 7: Problem 1 – Cost-effective eating
	Slide 8: Problem 1 – Cost-effective eating
	Slide 9: Problem 1 – Cost-effective eating
	Slide 10: Problem 1 – Cost-effective eating
	Slide 11: Problem 1 – Cost-effective eating
	Slide 12: Problem 1 – Cost-effective eating
	Slide 13: Problem 1 – Cost-effective eating
	Slide 14: Problem 1 – Cost-effective eating

	What Tool
	Slide 15: Technique toolbox
	Slide 16: Which technique should I try?
	Slide 17: Problem solving strategy overview
	Slide 18: Problem 2 - Technique toolbox activity
	Slide 19: Problem 2 - Technique toolbox activity
	Slide 20: Problem 2 - Technique toolbox activity
	Slide 21: Problem 2 - Technique toolbox activity
	Slide 22: Problem 2 - Technique toolbox activity
	Slide 23: Problem 2 - Technique toolbox activity
	Slide 24: Problem 2 - Technique toolbox activity
	Slide 25: Problem 2 - Technique toolbox activity
	Slide 26: Problem 2 - Technique toolbox activity
	Slide 27: Problem 2 - Technique toolbox activity
	Slide 28: Problem 2 - Technique toolbox activity
	Slide 29: Problem 2 - Technique toolbox activity
	Slide 30: Problem 2 - Technique toolbox activity
	Slide 31: Problem 2 - Technique toolbox activity
	Slide 32: Problem 2 - Technique toolbox activity
	Slide 33: Problem 2 - Technique toolbox activity
	Slide 34: Problem 2 - Technique toolbox activity
	Slide 35: Problem 2 - Technique toolbox activity
	Slide 36: Problem 2 - Technique toolbox activity
	Slide 37: Problem 2 - Technique toolbox activity
	Slide 38: Problem 2 - Technique toolbox activity
	Slide 39: Problem 2 - Technique toolbox activity
	Slide 40: Problem 2 - Technique toolbox activity
	Slide 41: Problem 2 - Technique toolbox activity
	Slide 42: Problem 2 - Technique toolbox activity
	Slide 43: Problem 2 - Technique toolbox activity
	Slide 44: Problem 2 - Technique toolbox activity
	Slide 45: Problem 2 - Technique toolbox activity
	Slide 46: Problem 2 - Technique toolbox activity
	Slide 47: Problem 2 - Technique toolbox activity
	Slide 48: Problem 2 - Technique toolbox activity
	Slide 49: Problem 2 - Technique toolbox activity
	Slide 50: Problem 2 - Technique toolbox activity
	Slide 51: Problem 2 - Technique toolbox activity

